Combustion of syngas vs. combustion of solid biomass.
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68581",title:"Synthesis of Tropane Derivatives",doi:"10.5772/intechopen.83382",slug:"synthesis-of-tropane-derivatives",body:'Tropane alkaloids (Figure 1) are among the oldest medicines known to men. A secondary metabolites containing the tropane nucleus constitute one of the largest and most important group of naturally occurring compounds [1]. Secondary metabolites of Solanaceae plant, sharing tropane skeleton (1) as a common structural feature can be divided into two classes: tropine (2) and ecgonine (3) derivatives [2]. The first group is represented by atropine from Atropa belladonna (4) and scopolamine (5) (Scopola carniolica) which are considered to be anticholinergic drugs. The second includes one of the strong stimulants and mostly used as a recreational drug, cocaine (6).
Some tropane alkaloids.
Over 600 naturally occurring alkaloids of tropane can be found in plants such as Datura stramonium [3]. Cocaine (6) was first isolated from Erythroxylon coca in 1860 [4, 5, 6, 7] and is still a prolific field of research. Although alkaloids with the tropane moiety are the oldest medicines known to man, they are still a subject of continual review in the chemical literature, and only recently they have been isolated, purified, and studied [8, 9].
Alkaloids possess quite complex structures, and the study of biosynthesis of these alkaloids has a long history. It is generally thought that the tropane moiety arises from complex enzymatic processes involving phytochemical precursors. Incorporation of radioactive labeled precursors has eased monitoring pathway on which the tropane derivatives are formed [10]. Recent studies making use of labeled ornithine (7), N-methylornithine (8), and 1,4-butanediamine (9) prepared biosynthetically, have firmly established these precursors and representative examples of complex tropane alkaloids found in Solanaceae plant [11]. After the establishment of the origins of these precursors, attention has been directed mainly toward those alkaloids which, in addition to the tropane residue, contain a 9- or 10-carbon atom unit such as 3α-senecioyloxy-6β-tropane (see Figure 2). These units exist in many variant forms, but certain recurrent features led to the belief that many variants have a common phytochemical precursors, for instance, L-ornithine (7) is believed to be converted to diamine (9) by specific enzyme such as hyoscyamine-6β-hydroxylase (H6H) and the former (9) is considered the precursor in biosynthesis of the bicyclic [3.2.1] skeleton of tropane alkaloids which is outlined in Figure 3.
3Alpha-senecioyloxy-6beta-hydroxytropane.
Amino acids precursors in the biosynthesis of tropane skeeton.
It has been found that oxidation of tropane ring can be achieved by molecular oxygen in the presence of ferrous ions. Also, it has been found that these keto forms of tropane can be catalyzed by an enzyme called reductase [12]. For instance, the biosynthesis pathway to tropane alkaloids, tropinone (10), is reduced by reductase to tropine (2), as it can be seen in Figure 4.
Bio-synthesis of tropane alkaloids-Alcheetron.com-760 × 570.
Structural assignments of tropane molecules have exhibited difficult problems, and, as a result, progress in their endeavors has been closely associated with development of modern analytical techniques of spectroscopy, of which mass spectroscopy deserves particular mention such as ESI MS, GC-MS, HPLC-MS, and MALDI MS.
Concerning the pharmacological effects, these compounds are so important because of their pharmacological properties [13]. Alkaloids such as atropine (4), scopolamine (5), and cocaine (6) and their derivatives are best recognized to have pharmacological actions related in the body to the function of neurotransmitter acetylcholine [14]. Some tropane alkaloids can act as anticholinergic effects or stimulants [15]. Pharmaceuticals of tropane derivatives are economically important. Over 20 active pharmaceutical ingredients containing tropane moiety in their structures are manufactured and used as antispasmodics, anesthetic, and mydriatics (see Figure 5) [16].
Some pharmaceutical ingredients containing tropane moiety.
Tropane does not occur naturally in free forms. The favored forms of tropane in plant species are the esters forms. These esters are generally secondary metabolites of the plant species. Tropane esters were isolated from different plant families like Proteaceae, Rhizophoraceae, Euphorbiaceae, and Convolvulaceae, and they are well known to occur in Solanaceae. Most tropane alkaloids in the Solanaceae family arises from the esterification of acids, such as acetic acid, propanoic acid, isobutyric acid, isovaleric acid, 2-methylbutyric acid, tifilic acid (+)-α-hydroxyl-β-phenylpropionic acid, tropic acid, and atropic acid with various hydroxytropanes (α-tropane-diol or α-tropane-triol) [5]. Almost all of the tropane-based pharmaceuticals are natural or semisynthetic esters [5, 17, 18]. There are also alkylated or arylated tropane compounds known as phenyltropane (Figure 6).
Some phenyl tropane compounds.
Although there are many synthetic routes, Robinsons one-pot synthesis of tropane and its derivatives designed in 1917 [19] is still the best choice for the synthesis of such compounds. The parameters have been changed from time to time in order to increase yield to synthesize a specific derivative (Figure 7).
Robinson’s one pot synthesis of tropinone (10).
The naturally occurring alkaloid, cocaine (6), possesses a functional group at C-2 in the tropane ring system, which has been modified to give various 2-aminotropanes. Willstatter [20], in his work devoted to the elucidation of the structure of ecgonine (3), obtained the amide (11) which it degraded by Hofmann reaction to 2α-aminotropane (12) (the α-configurations retained throughout this sequence can be assigned for later work) (Figure 8) [21].
Hoffmann of the amide (11) to the (12).
Willstatter also obtained (12) by Curtius reaction of the ester (13), and this reaction has been used earlier by Fodor [22] to obtain the amino alcohols (14) and (15), although, again, the configurations at C-2 and C-3 were not known when the work was carried out (Figure 9).
Curtius reduction of ecgonine to amino alcohols (14) and (15).
Apart from these isolated examples, the most consistent interest in 2-substituted tropanes was shown in connection with the alkaloid dioscorine (16), which was for some time thought to have structure (17) and therefore to be related to tropan-2-one (18). This ketone is an optically active form, which was first prepared by Bell and Archer from ecgonine (3) (Figure 10) [23].
Some 2-substituted tropane alkaloids.
The action of phosphoryl chloride on ecgonine (3) was shown by Einborn to give the acid chloride of anhydroecgonine (19) [24]. Bell and Archer converted the crude acid chloride directly to the corresponding amide (20), from which L-(+)-tropan-2-one (18) was obtained in fair yield by Hofmann reaction (Figure 11).
Synthesis of tropane-2-one.
When this material was compared with the ketone obtained by degradation of dioscorine (16), the two could not be distinguished [25], and it was left to Pinder and his co-workers to prove that dioscorine was not in fact a tropane derivative [26]. Pinder found that tropidine (21) reacts with the more usual peracid oxidizing agents to give the N-oxide (22), and in acid solution no reaction took place [27]. However, the action of trifluoroperacetic acid on tropidine trifluoroacetate salt (23) gave the 2β,3β-epoxide (24). Reduction of the epoxide with lithium aluminum hydride yielded tropan-3-β-o1 (25), but it was found impossible to oxidize this amino alcohol to tropan-2-one (18) (Figure 12).
Synthesis of tropane-beta-ol (25).
A synthesis of the desired ketone was eventually achieved by a larger route. Treatment of 2-ethoxycarbonyl-pyrrole (26) with phosphoryl chloride and dimethylformide yielded the two isomeric aldehydes, (27) and (28), which were separated fairly easily by fractional distillation in vacuum. Thereafter the crucial stage, a Dieckmann cyclization, led to the β-ketoester (29), which hydrolyzed and was decarboxylated to tropan-2-one (18), outlined in Figure 13 [26].
Synthesis of tropane-2-one (18).
Pinder resolved the racemic product into its optically active components and discovered that (+)-tropan-2-one (18) was quite different from the ketone derived from the alkaloid dioscorine (16). With this demonstration that dioscorine (16) was not a tropane derivative, the interest in 2-substituted tropanes diminished, and few papers concerned with these compounds have appeared since 1962.
Tropane-2-one (18) is a convenient source of both tropan-2-αβ-ols. Reduction of the ketone with lithium aluminum hydride yields tropan-2α-ol (25), which is the expected, equatorial product [23, 26]. Reduction of a cyclic ketone with sodium alcohol mixtures also usually gives the thermodynamically more stable, equatorial alcohol [28], but with sodium in propan-2-ol, pentan-3-ol, tropan-2-one gave mixtures of tropan-2β-ol (30) and tropan-2α-ol (25) [23] (Figures 13 and 14). Moreover, when the ratio of alcohol to alkoxide ion at the end of the reaction was increased, the product was found to contain increasing amounts up to 90% of tropan-2β-ol (30). These facts suggested that the axial alcohol (25) is more stable thermodynamically, and this was confirmed by subjecting the pure equatorial isomer (25) to equilibration by means of sodium 2-pentoxide in pentan-3-ol containing 10% fluorenone: the equilibrium mixture contained 85% of the axial isomer (25) [23].
Synthesis of tropane-2-ol (30).
This reversal of the usual axial equatorial stability relationship may be attributed to the presence of strong, intramolecular hydrogen bonding between the axial hydroxyl group and the nitrogen bridge (31). When the possibility of hydrogen bond formation is removed, as in the anions (32) and (33), the equatorial configuration becomes more stable. When the ratio of free alcohol to alkoxide ion at the end of the sodium alcohol reduction is large, the equilibrium will be mainly between the two alcohols (25) and (30); in these conditions, the product will contain a high proportion of the more stable, axial alcohol. Conversely, when the final proportion of alkoxide ion in the reaction mixture is high, a significant equilibrium between anions (32) and (33) will exist, and the product will contain a higher proportion of the equatorial alcohol (30), arising from the more stable anion (32) (Figure 15). These stability relationships enable a useful control of the product ratio to be exercised.
The stability relationship of the products (25) and (30).
Two further preparations, of 2-halotropanes, are worthy of note. Nickon found that the addition of 1 molar equivalent of bromine to a methanolic solution of tropinone (10) yielded a granular complex, which rearranged to 2β-bromotropinone (34), by spontaneous transition under ether or by acid catalysis [29]. Earlier, Hobson and Riddell obtained 2β-chlorotropane (36) by decomposition of the N-chloramine (35) in the presence of silver ion (Figure 16) [30, 31]. The identical chlorotropane was also obtained by chlorination of the mine hydrochloride, followed by cyclization of the dichloride (37).
Synthesis of 2-bromo-3-tropinone (34) and the 2-chlorotropane (36).
Although tropan-2-one (18) appeared to be a very convenient synthetic precursor of both tropan-2α-ol (30) and tropan-2β-ol (25), the ketone itself was not easy to prepare. The ketone may be obtained in good yield from ecgonine (3) or cocaine (6), but these alkaloids are expensive. The alternative starting material used by Pinder and co-workers, 2-ethoxycarbonyl-pyrrole (26), is also expensive, and the subsequent synthesis was too long for it to be useful for the preparation of large amount of tropan-2-one.
Tropinone (10) was available in reasonable quantities and was chosen as a convenient source of tropane derivatives. Reduction of this ketone with borohydride gave a mixture of the epimeric tropan-3-ols (38), which were dehydrated to tropidine (21) by Landenburg’s method [31] as it can be seen in Figure 17.
Synthesis of tropidine (21) from Tropane-3-one.
An allylic oxidation of tropidine (21) with selenium dioxide [32] to yield a β-unsaturated ketone (39) was an attractive prospect, but this could not be realized: there was no apparent reaction in aqueous dioxin after 50 hours on a boiling water bath. Other allylic reagents, such as N-bromosuccinimide or lead tetraacetate, would also be ineffectual in the presence of the N-methyl group, so that the most convenient method of protecting the nitrogen atom is provided by the reaction of tropane derivative with phenyl chloroformate [33]; thus, treatment of tropidine (21) with phenyl chloroformate in dichloromethane gave N-phenoxycarbonyl-nor-tropidine (40) a good yield (Figure 18). The nitrogen of the urethane group is non-basic, and, furthermore, the N-methyl group can be regenerated by reduction of the urethane with lithium aluminum hydride.
Synthesis of the compound (40).
Goering and Mayer [34] have reported that optically pure bicyclo[3.2.1]oct-2-ene (41) reacts with tert-butyl perbenzoate, in the presence of cuprous ion, to give racemic of (42) presumably via a symmetrical allyl radical (Figure 19).
Synthesis of the racemic mixture of (42).
Epoxidation of unreactive olefins with trifluoroperacetic acid is usually carried out in dichloromethane with phosphate present to buffer the trifluoroacetic acid that is a product of the reaction [35]. The epoxidation of N-phenoxycarbonyl-nor-tropidine (40) by means of trifluoroperacetic acid was inconvenient for two reasons. Firstly, it gave a mixture of products, including a large proportion of unchanged olefin, which necessitated careful column chromatography of the mixture in order to obtain the required 2β,3β-epoxide (43a, b) (Figure 20). Secondly, the peracid itself is inconvenient to prepare and is an unpleasant reagent. It has been reported that there is a simplified procedure for epoxidation, using a nitrile as a reactant with hydrogen peroxide [36, 37]. The reaction occurs in weekly basic solution and is thought to involve a peroxycarboximidic acid [RC(〓NH)OOH], which is too reactive to be isolated. In the absence of a suitable reducing agent, [RC(〓NH)OOH] will oxidize hydrogen peroxide, the Radziszewski reaction [38] outlined in Figure 21. But in the presence of an olefin, the Radziszewski reaction may be eliminated and epoxidation effected [36].
Synthesis of the epoxides of (40).
Synthesis of peroxycarboximidic acid.
For example, the epoxidations of (44) and (45) proceeded smoothly with benzonitrile and hydrogen peroxide to (46) and (47), respectively (Figure 22), whereas (44) was found to undergo Baeyer-Villiger cleavage with peracetic acid [41]. The reaction of N-phenoxycarbonyl-nor-tropidine (40) with benzonitrile and hydrogen peroxide in weakly basic solution gave the expected 2β,3β-epoxide (48). By the use of a large excess of reagents, a yield of 38% was achieved but could not be increased [39].
Oxidation of some unreactive olefines.
As mentioned earlier, molecules that contained tropane structure, for example, tropane (1), ecgonine (2), tropinone (3), and cocaine (4) or one of its fragments, show central stimulating effects [40, 41, 42, 43, 44, 45], using them as anticholinergic agents [46, 47].
Much of the modification designs involved isomeric studies [48]. Most of the modifications came to the tropane moiety, the bridge nitrogen (N8) [49], or modification at the C2 position [50]. Many processes for synthesizing anhydroecgonine derivatives without using cocaine as a starting material have been reported in literature. For example, it was shown by Grundmann and Ottman [51] as well as Okano and Osamu [52] that the reaction of ethyl cycloheptatriene-7-carboxylate (49) with methylamine gave anhydroecgonine ethyl ester (50) (Figure 23). Conversion of the corresponding carboxylic acid to tropane-2-one has been accomplished by Bell and Archer [53] in a four-step sequence involving conversion to the carboxamide and Hofmann degradation with sodium hypochlorite.
Synthesis of anhydroecgonine ethyl ester (50).
Because (49) was not readily available, Hobson et al. [54] as well as Okano and Itoh [55] developed a relatively inexpensive route starting with corresponding cyano-derivatives which is readily accessible by reaction of tropylium fluoroborate (51) with sodium cyanide to give (52). The nitrile (52) was reacted with methylamine in t-butanol to give the 2-cyano tropidine (53) in high yield (see Figure 24).
Synthesis of the acetonitrile (52) and it’s conversion to (18).
In our work on the 1,3,5-cycloheptatriene-2-ylphosphorus derivatives (54) and (55) (Figure 25), little success was achieved in obtaining isolable products from reactions with nitrogen nucleophiles, except in those cases, for example, pyrrole2-aldehyde, where the presence of aldehyde group enabled the intermediate ylide to be trapped [56].
7-phosphonium and phosphine oxide of cycloheptatriene.
Investigation of the behavior of the 2-(p-toluenesulphonyl) analog in this type of reaction turned out to be more fruitful and provided a useful entry to 2-substituted tropanes, and in particular the rather difficultly accessible ketone, tropan-2-one. 7-(p-Toluenesulphonyl)-1,3,5-cycloheptatriene (56) was found to react smoothly with primary amines in dry acetonitrile under reflux to give adducts of general structure (57) in good yields, thus greatly improving the accessibility of compounds of this type [57]. When (56) was isomerized to (56a) in acetnitrile using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst, and the latter was treated with methylamine in refluxing ethanolic solution, 2-(p-toluenesulphonyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene (57a) was obtained as a pale yellow oil in a yield of 80% (Figure 26).
Synthesis of 2-(p-toluenesulphonyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene (57a).
Its mass spectrum showed a molecular ion peak at m/e 277, and the IR spectrum showed a band at 1600 cm−1 characterizing the double bond. Identification of this compound was confirmed by the 1H-NMR spectrum, which showed signals at δ 3.15 and 3.45 due to the bridgehead protons, H1 and H5; a 1-H multiplet at 6.82 as well as upfield protons between 1.2 and 2.8 ppm (see Structure 57, a = Me).
Similarly the sulfone (56a) was refluxed with an excess of n-butylamine in acetonitrile; TLC examination showed the formation of only one product. Isolation and recrystallization from hexane afforded white crystals of 2-(p-toluenesulphonyl)-8-n-butyl-8-azabicyclo[3.2.1]oct-2-ene (57b), mp, 119–121°C (85%.). Mass (m/z 319) and IR and NMR spectra confirmed that the compound was (57b). Another example of this reaction involving addition of sec-butylamine to the sulfone (56b) also proved successful under similar conditions. 2-(p-tolylsulphonyl)-8-sec-butyl-8-azabicyclo[3.2.1]oct-2-ene (57c) was obtained in 41% yield as a colorless oil which partially crystalized on standing. TLC analysis of this product showed two inseparable spots for the diastereoisomers of (58) and (59) (Figure 27). The NMR spectral data included a multiplet at δ 0.6–2.20 as expected for upfield protons of (57c) accompanied by signals at 3.35, 3.60, and 6.85 ppm due to two bridgehead protons and one olefinic proton, respectively. The elemental analysis and mass spectrum (molecular ion at m/z 319) confirmed the structure. Also, the reaction of the sulfone (56a) with excess of cyclohexylamine in refluxing acetonitrile also gave a solid product in 75% yield 2-(p-toluenesulphonyl)-8-cyclohexyl-8-azabicyclo[3.2.1]oct-2-ene (57d). Its IR and NMR spectra were similar with those structures of (57a–c), and the structure was confirmed by the mass spectrum, which showed a molecular ion peak at m/z 345.
The diastereomers (58) and (59).
In the case of the reaction of (56a) with benzylamine, a slightly different result was obtained. The product was obtained as needles, mp 172°C, and elemental analysis, mass spectroscopy, and spectral data confirmed the structure (60) (Figure 28).
Synthesis of compound (60).
The mechanism for the formation of compounds (57a–d) and (60) presumably involves in the first step of the Michael addition of the amine to C1 of the sulfone (56a) to give intermediate compound (61). Further base-catalyzed isomerization gives the compound (62), followed by intramolecular Michael addition which would lead to the compounds (63a–d) and (60) (Figure 29). In the case of the compound (63a–d), further isomerization to the conjugated sulfone took place which was presumably facilitated by the presence of the strong bases, methylamine (pKa 10.659), n-butylamine (pKa 10.77), s-butylamine (pKa 10.83), and cyclohexylamine (pKa 10.66). The formation of the kinetically controlled product (60) in the case of the benzylamine reaction was presumably due to the weaker basicity of benzylamine (pKa 9.35) which does not promote further isomerization. The same product was also obtained using acetonitrile as a solvent for the reaction. Cycloheptatriene was also obtained in the reaction mixture, presumably formed by slow decomposition of the sulfone (56a).
Synthesis of 2-(p-toluenesulphonyl)-8-azabicyclo[3.2.1]oct-2-ene (57a–d).
The total absence of 2-(p-toluenesulphonyl)-8-t-butyl-8-azabicyclo[3.2.1]oct-2-ene (65) in the products indicated that there was no nucleophilic attack on C1 of the sulfone (56a) presumably because of steric bulk of the t-butyl substituent (Figure 30).
Show the formation of compound (64) and absence of compound (65).
Attempts to react the sulfone (56a) with ammonia were unsuccessful; a solution of the sulfone (58a) in dry acetonitrile was refluxed and ammonia bubbled through for 24 hours. The only product to be isolated was a small quantity of what appeared to be, from its spectral properties, a pure toluene-p-sulphonamide.
The tropane alkaloids made a great contribution to the history of medicine. Intensive research on chemistry and pharmacology of tropane alkaloids led to a fast development of pharmaceutical industries, particularly drugs that have anticholinergic effects. Since the first one-pot synthesis of tropane-3-one by Robinsons in 1917, several routes for synthesizing semisynthetic and synthetic tropane derivatives were published in literature. Chemical synthetic routes from different disciplines and field of research combined in this chapter, in an attempt to illustrate how through continual research, facilitate and develop synthetic chemistry of tropane derivatives. However, the synthesis of the famous tropane derivative, anhydroecgonine from 7-(p-toluenesulfonyl)-1,3,5-cycloheptatriene and amines, would provide alternative chemical procedure to people working in this field. This procedure has been shown to be simple, inexpensive research, and provide inspiration in the search for more tropane derivatives.
For the last decades, the demand for renewable energy has been increasing intensively due to the crude-oil crisis and the alert of global warming. Among the alternatives for fossil fuels to generate heat, biomass is an abundant neutral carbon source, of which its conversion to heat does not break the balance of the atmosphere’s air contents [1]. Combustion of biomass has been the most direct and simple process to produce energy. However, the traditional combustion of biomass, such as wood, charcoal, straw, husks, etc., often leads to the emission of smoke, dust, fumes, volatile compounds and toxic gases due to incomplete reactions and fine particles dragged out of the system by the flue gas [2]. Although several combustion methods were invented to increase efficiency and reduce emission of pollutants, such as fixed bed rocket type, and fluidized bed technology, the direct combustion of solid fuels is still one of the major causes of the industrial air pollutant in the world [3].
\nIn contrast, gasification of biomass can minimize the emission of pollutants. Syngas produced from gasification of biomass can be optionally purified before being combusted. Ultimately, the combustion of gaseous fuels inherently has higher efficiency than that of solid matters. That is because the oxidation of a solid object in oxygen/air is gradually happening from its outer surface into the inner layers, which can be described as a heterogeneous process, while a combustive gas like syngas can be burned at a very high mass transfer rate in a homogeneous process. A comparison is presented in Table 1.
\n\n | Combustion of syngas from gasification of biomass | \nDirect combustion of solid biomass | \n
---|---|---|
Type of reactions | \nHomogeneous | \nHeterogeneous | \n
Uniformity | \nVery high | \nNone | \n
Process nature | \nSimple | \nComplex | \n
Mass transfer rate | \nAlmost instant | \nSlow, depending on the solid surface – oxygen/air contact | \n
Combustion of syngas vs. combustion of solid biomass.
The gasification phenomenon of carbonaceous materials was possibly observed in the human history as very early as the invention of fire. Gasification was found as the ignition and combustion of smoke released from smoldering coal, wood, straw, grass, or other organic substances in the lack of oxygen. In 1792, the first industrial gasification system to generate electricity was reported [4]. Gasification is a thermal decomposition process of solid or liquid substances to syngas in the presence of gasification agents through a series of chemical reactions mentioned in the following sections. This technology can help converting variable low-energy-density fuels to combustive gases. It attracts significant interests in both academic and industrial fields. Figure 1 shows a very strong flame torch produced by gasification of oil-extracted cashew nut shell.
\nGasification of oil-extracted cashew nut shell at Laboratory of Biofuel and Biomass Research, Ho chi Minh City University of Technology (HCMUT).
Gasification is an advanced technology to convert biomass to syngas fuel under different atmospheres (oxygen/air, steam, H2, CO2). The product syngas can also be used as precursors to synthesize valuable chemicals via Fischer-Tropsch (F-T) reactions [5]. Table 2 highlights some key differences between gasification and direct combustion of biomass.
\n\n | Gasification of biomass | \nDirect combustion of biomass | \n
---|---|---|
Input feedstock | \nLow-energy-density and wet biomass is still feasible | \nThe biomass fuel must have acceptable moisture content and relatively flammable to guarantee a sustainable operation. | \n
Output flame | \nSmokeless, free of dust and toxic gases if the syngas is purified. | \nSmoky and dusty with fly ash. | \n
Impact to the heat exchangers’ surface | \nMinimized | \nSilica fume, dusty aerosol, and corrosive gases can shorten the lifetime of equipment. | \n
Applicability for internal combustion engines | \nYes | \nNo | \n
Equipment design complexity | \nComplex | \nSimple | \n
Heat receiver arrangement | \nMobile | \nFixed to the burner | \n
Side product | \nChar, ash (solids), tar, bio-oil, wood vinegar (liquids) | \nAsh | \n
A brief comparison between biomass gasification and combustion.
The combustion of a solid fuel is a thermal and oxidation decomposition with the involvement of oxygen in air. Generally, for biomass, it can be simply expressed as:
\nThis process can be observed with two visual phenomena: first, thermal decomposition on the outer surface of the solid phase to release volatile and combustive components, which join thermal reactions in the gas phase secondly, as the formation of flames [6]. Differing from direct combustion, gasification limits the process at the first step to produce syngas. Conventionally, oxygen/air is used as gasification agent in this case. However, other gasification agents also can be employed to enhance the conversion efficiency as presented followings.
\nIn this context, to simplify the theory, biomass can be formulated with its main general composition CaHbOc due to the much lower contents of other elements, such as N, S, P, and halogens. The involvement of inorganic compounds is not considered.
\nThe thermal decomposition of biomass in insufficient presence of oxygen/air, known as incomplete combustion, is the most conventional gasification. Logically, the whole process can be described below as rearranged from theory [7].
\nDrying: firstly, once entering the reactor, the biomass is dried due to heat.
\nCombustion: secondly, a part of the solid biomass, which was ignited and in contact with locally excess oxygen/air, is combusted to generate heat as the energy source for later reactions to occur.
\nPyrolysis: heat from the combustion zone is transferred via radiation, conduction, and convective hot streams to the surrounding biomass where oxygen/air is not sufficient or absent. Due to the heat, pyrolysis occurs to form CO2, CO, CH4, C2H4, H2O, char (C), and other organic solids and liquids as primary tar (2).
\nReduction: after the above two steps, hot reactants react in situ with the biomass and with each other via a series of reactions.
\nThe main weakness of gasification by oxygen/air is due to a large portion of inert nitrogen in the agent (79–80%), which makes the resulted syngas diluted. It can be roughly estimated that syngas from this type of gasification mainly contains around 30–60% of nitrogen and 10–15% of CO2 since its heating value is typically between 4 and 6 MJ/m3 (for comparison, HHV of H2 = 12.76 MJ/m3, CO = 12.63 MJ/m3, CH4 39.76 MJ/m3 and CH4 is commonly much less than CO and H2) [7, 8, 9]. Low quality syngas is the main disadvantage of this technique for applications which require high temperature and steady operation, such as internal combustion engine, metallurgy, and melting glass industries.
\nAir-based gasification processes are sensitive and complex, which are influenced by a number of factors, such as biomass composition and particle geometry, gasification agent composition and flow rate, equipment design, etc. Among these, the ratio of actual air-fuel ratio to the stoichiometric air-fuel ratio (ER) is used as a parameter to calculate and to simulate the process [10].
\nGasification ER is theoretically usually from 0.19 to 0.43, and a range of 0.25–0.29 was studied to be considered as the optimum ER in gasification of some popular biomass [11].
\nTo obtain more concentrated syngas, nitrogen must be limited from the gasification agent in air-based systems while sufficient oxygen is still guaranteed for combustion to generate heat [12]. This method does not change the nature of the gasification process since nitrogen is an inert gas not involved in the reactions. Several techniques were introduced to remove nitrogen, thus increase oxygen content in the input air stream, such as pressure swing adsorption (PSA) [13], temperature swing adsorption [14], carbon membranes [15], etc. Oxygen concentration in studies on gasification with oxygen- enriched air is found limited by less than 50%, and no study on 100% oxygen gasification, possibly because of a high risk of explosion [16, 17, 18].
\n\nFigure 2 shows the visual change in an air-based syngas flame (wood pellet as feedstock) when oxygen concentration in the gasifying agent increased from that of normal air to 30%. With normal air, the syngas flame is thinner with smoke, while oxygen-enriched air makes the flame stronger, thicker, and less smoke. The flame temperature was measured as 874 and 933°C, respectively.
\nExperimental gasification of wood pellet (a) showing the flame of syngas when using (b) normal air (21% vol. as O2) and (c) oxygen-enriched air (30% vol. as O2)
Water gas (3) and water gas shift (6) reactions are the reasons steam can be introduced to oxygen/air gasification or wet biomass is accepted, of which moisture is more tolerated than that in direct combustion. Higher generation yields of H2 and CO are obtained so the final syngas mixture gets higher heating value. However, these two reactions are endothermic while the vaporization enthalpy of water has a large value (at atmospheric pressure that is 40.65 kJ/mol) so saturated steam or water can make the pyrolysis zone lose heat, drop temperature, leading to lower conversion yield. Lower quantity becomes a contrast to higher quality of syngas formation in this case. Subsequently, the process even gets faded if sufficient heat is not guaranteed. To achieve both quantity and quality of syngas, heat should be redeemed by using superheated steam instead of saturated steam or water in wet biomass so that the gasification temperature is maintained above 750–800°C [19].
\nThe ratio of steam to carbon content of the biomass fuel (SCR) is used as a crucial operating parameter in biomass gasification with steam feeding [20]:
\nSteam flow rate (kg/s) to biomass (kg/s) ratio (S/B) is also used like SCR [21]. Steam feeding makes the ratio of hydrogen to carbon in the whole reaction mixture increase, which was found to yield more H2, and increase the heating value of the syngas, while tar content decreases significantly [22]. This technique is positively meaningful in biomass gasification because it does not only increase the quality of the syngas but also reduce tar-clogging problems to sustain the process.
\nNot many studies on gasification by hydrogen and carbon dioxide were found although these two agents are reactants in methanation (4) and Boudouard (7) reactions.
\nMethanation reaction can be increased when more H2 exists in the reaction zone of a gasifier. Since methanation is exothermic, hydrogen can be mixed with air in air-based gasification or can be used as the only gasification agents without slagging problems in the gasifiers like conventional oxygen/air gasification. Pure hydrogen gasification is expected to be able to run at lower temperature and milder conditions because less heat is generated from methanation reaction (ΔH = −87.5 kJ/mol) than from combustion step in air-based gasification [23], which may lead to the absence of oils and tars [24]. However, catalysts are needed because the reaction rates are very low [25]. Otherwise, hydrogen gasification should be carried out in high H2 pressure, which rises several safety concerns.
\nCO2 is a Boudouard reactant, as well as it can react with H2 in the mixture via reverse water gas shift reaction. Hot flue gas is a popular product in industry, which includes steam, CO2, and heat from direct combustion of fuel, thus can be considered as a gasification agent [26]. This technique is available if a combustion process is combined with gasification because air-based gasification already has its combustion zone. CO2 utilization and enhancement of CO formation can be the purposes of CO2-gasification [27].
\nThe reactions in gasification can proceed with higher yields and less energy input if appropriate catalysts are employed. Catalysts can facilitate the process by reducing slagging problems, by which in severe cases, gasifiers need to be shut down for maintenance. Together with slagging of low-melting-point inorganic compounds, tar and soot formation also interrupts the operation because matters can be vaporized at high temperature, then condense at cooler zones and clog the systems. Catalysis helps limit the formation of such undesired side-products or decompose them to workable substances by cracking reactions. The mechanism of tar catalytic cracking can be assumed as follows [28]:
Organic and hydrocarbon compounds are dissociated from the biomass and absorbed on the catalytic sites.
Catalytic dehydrogenation reactions happen.
Water is hydroxylated to OH radicals, which oxidize the hydrocarbon fragments.
Syngas, CH4, and lighter hydrocarbons are formed then.
In contrast, catalytic gasification has some disadvantages, such as material costs and fading catalyst performance over reaction time. Theoretically, catalysts can be recovered after the process. But in fact, they are easily poisoned and contaminated by variable products, which are formed from the complex interactions in gasification.
\nAlkali metal salts seem to be the earliest catalysts to be examined for gasification [29]. Alkali elements were studied to catalyze gasification of char and biomass, and they were proved to reduce the formation of tar and soot [30, 31]. The employment of catalysts is preferred for entrained-flow gasifiers, which will be discussed later [32].
\nNatural minerals, precious metal and synthetic catalysts are also studied for their application in biomass gasification, as well as coal and syngas conversion [33, 34, 35].
\nPlasma, which can be produced by an electric arc discharged to a gas, is a very hot and highly ionized gaseous mixture. The initial gas interacts with the electric arc to become dissociated into electrons and ions at temperatures often exceeding thousands of Celsius degree. When biomass and a non-oxidizing gasifying agent are fed into a plasma reactor, the gasification can proceed at high temperatures without combustion to generate heat as in conventional process. Therefore, plasma gasification can convert organic substances to syngas that preserve all its chemical and heat energy, while converts inorganic mineral ash to inert vitrified glass or slag. As a result, contamination and dilution of syngas are minimized and the process control is easy to yield expected syngas composition [36, 37].
\nMicrowave was also used to generate plasma in plasma gasification [38]. However, microwave plasma system is not easy to scale up for industrial purposes like electric arc type.
\nWith the principle of supplying intensive heat for endothermic reactions, plasma gasification was used to produce hydrogen with steam injection as discussed in Section 2.3 [20]. Carbon dioxide gasification was studied with a various biomass feedstock to show input plasma energy was lowest while syngas formation yield was highest [39]. Experimental results showed that steam or catalysts added to plasma gasification can significantly reduce the formation of tars [40].
\nGasification is a complicated process, which is influenced by many factors, among which equipment design plays a very important role. Popular types of gasifiers are listed and briefly discussed as bellows.
\nThere are three ways of arrangement for biomass and gasifying agents entering to react with each other in the reactors: updraft, downdraft, and cross draft as illustrated in Figure 2a–c.
Updraft gasifiers (Figure 3a): in this type of reactor, biomass is fed downward from the top and gasifying agents is fed upward from the bottom in a counter flow arrangement. Ash is collected at the bottom of the equipment with air-lock design. The biggest weakness of updraft gasifiers is the accumulation of tar, moisture, and soot on the top of the reactors, which becomes hard clogging blocks inside the equipment. Figure 4 is the actual photo of a very thick and hard layer of tar and soot attached to the inner wall on the top of an updraft biomass gasification reactor (the photos were taken at the Laboratory of Biofuel and Biomass Research, Ho Chi Minh City University of Technology, HCMUT). This counter flow process also makes syngas from updraft gasifiers carries much contamination. In contrast, the operation of updraft gasifiers is the easiest among the three types of fix-bed gasifiers above. Its design is also simple and available for multi-feed stock purpose.
Downdraft gasifiers (Figure 3b): a narrow throat at the combustion zone is the typical design of this type of equipment. Since syngas is obtained at the bottom of the reactor, biomass and gasifying agents move in a co-current direction and get in contact for combustion at the device throttle. The flow rate of the gasifying agent gets maximum at this position due to the decreasing cross-sectional area of the orifice. As a result of this structure, the combustion increased sharply at the throttle while the amount of feeding agents is still. Downdraft gasifiers have higher conversion yield than that of their updraft models [41]. Syngas from downdraft gasifiers have much less tar and incomplete decomposed substances because they have to pass the combustion zone before exit with the syngas. However, downdraft gasifiers cannot be scaled up easily due to difficulties in controlling the movement of solid fuels through the throttle. Another difficulty in designing and fabricating downdraft gasifiers is “bridging problems” for feedstock with low densities [42]. The downward flow of the solid fuel is dictated by gravity while the pyrolysis zone is right above the narrow throat. The melting and adhesivity of lignin in biomass, as well as the local condensation of volatile substances, also facilitate the formation of stiff domes above the device throat, blocking the coming feedstock. It was observed that a rice husk downdraft gasifier kept stop working within some minutes of operation due to this problem and it was not an easy job to remove the bridging dome of “melting” rice husk inside the equipment (Figure 5).
Crossdraft gasifiers (Figure 3c): as an intermediate between downdraft and updraft design, crossdraft gasifiers has the simplest design when biomass is fed from the top, gasifying agent from the rear side, and syngas is withdrawn from the other rear side of the reactor. Thanks to this arrangement, the pyrolysis zone is separated from reduction zone, where syngas is obtained, and between them is the combustion zone to reduce tar and soot. Bridging problem is not a concern in this case, and scaling up is feasible.
Fix-bed gasifier types. (a) Updraft gasifier. (b) Downdraft gasifier. (c) Crossdraft gasifier.
(a) an updraft gasifier converting rice husk to syngas, (b) the inside wall of the top opening is clogged with a thick layer of condensed tar and soot.
Fixing a downdraft gasifier after a bridging problem happened.
Fluidization is an advance technique for solid fuel combustion. It is also applied for gasification. Inert materials (sand, dolomite, crushed stone, etc.) are employed to hold fluidization. The gasifying agents enter the reactor from the bottom upward to the top at velocities of 1–3 m/s through the biomass + inert material bed. Gasification reactions occur inside the bed then the resulted gases drag the particle before going up like “bubbling”. This technique provides the mixture a uniformity for heat exchange. Cyclones are installed to collected solid particles and return them to the reactors. With high gasification efficiency, fluidized bed gasifiers are known for tar and char reduction [43].
\nThe operating temperature of fluidized-bed gasifiers is limited to the melting point of the inert medium. The gasifying agents also play a role as fluidization fluids so the input flow rate must be high enough. Therefore, gasification agents in fluidized bed gasifiers are usually rather than only oxygen/air, which need to be at a limited mass ratio to the biomass [44, 45].
\nEntrained flow gasifiers are applied for biomass with small particle sizes so that the specific contact area with gasifying agents is large enough for suitable reaction rate. Simply described as illustrated in Figure 6a, the solid and the gas agents are fed co-currently to the reactor in the same downward direction. The agent surrounds the solid particles and react to convert the biomass to syngas. At the end of the falling routine to the bottom of the reactor of the feed, only ash and slag are expected to be remained solid collected in cyclone systems while syngas is passing through. The operation is carried out at high temperature and in high pressure. The extremely turbulent flow of the aerosol mixture causes rapid conversion and allows high throughput [46].
\n(a) Entrained flow gasifier, (b) rotary drum gasifier.
To reach uniformity of the biomass during gasification without combustion (using gasifying agents rather than oxygen/air), mechanical mixing can be applied as rotary kiln type reactor (Figure 6b). In this rotating cylinder, biomass is well mixed in contact with gasifying agents. Differing from fluidized bed and entrained flow equipment, the gasifying agents’ flow rates can be at any value in rotary drum gasifiers.
\nGasification is a big subject in biomass and chemical engineering. Among the renewable technologies converting biomass to fuels and energy with environmental preservation concern, gasification is superior over combustion with variable feasible application. Gasification process includes many reactions, which make it complex and sensitive to many factors. The diversity in the thermochemistry of gasification gives researchers and engineers a big space for creativity in R&D. This context introduced some brief theory and technical discussion on gasification technology with a humble hope to contribute to that vision.
\nThis research was funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2018-20-02. We acknowledge the support of time and facilities from Ho Chi Minh University of Technology (HCMUT), VNU-HCMUT for this study. We also acknowledge the technical support and consultancy from Tin Thanh Group for Laboratory of Biofuel and Biomass Research in the last 5 years of this study.
\nUnsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/303368/lin-huang",hash:"",query:{},params:{id:"303368",slug:"lin-huang"},fullPath:"/profiles/303368/lin-huang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()