Large hydropower plants (HPPs) are categorized as critically and strategically important infrastructure facilities in industrialized countries. Therefore, the issues of ensuring HPPs safety are of paramount importance. In this chapter, the basic aspects of the safety analysis of HPPs, calculation and experimental substantiation of the strength, and resource and reliability of the main equipment are discussed. The scientific and technical measures to ensure safety of HPPs are presented. As a defining measure of safety, it is proposed to ensure the protection of HPPs from severe accidents and disasters according to risk criteria. The main provisions of the risk assessment are presented on the basis of a sequential analysis of loads, features of stress-strain states, characteristics of mechanical properties, and limit states of hydraulic equipment of HPPs. The issues of calculation and experimental evaluation of hydro turbine’s resource, which limit the safety of HPPs, are considered. The features of technical diagnosis of hydraulic turbines are considered; characteristic defects and damages are described. The main provisions of the estimated residual life of hydro turbines are presented. The results of the risk estimates of HPPs and hydro turbine resource are given.
Part of the book: Probability, Combinatorics and Control
The chapter presents the results of research carried out in Mechanical Engineering Research Institute of the Russian Academy of Sciences that were focused on validation and application of design diagrams, methods and systems for measuring stresses under the modes of Tokamak instillation cooling and management of electromagnetic fields during startups. The examples of tensometric systems and results of measurements of stresses under cryogenic temperatures and strong magnetic fields as well as results of analysis of the states of stresses and strains of structurally heterogeneous components of load-bearing and conductive structures are presented. Operation conditions and limit states of Tokamak components are considered. Results of research summarized in the chapter demonstrate the correctness of the adopted design solutions, which result in a relatively low level of local stresses in the load-bearing components of the thermonuclear installations.
Part of the book: Nuclear Materials