CO2-foam yields improved sweep efficiency in enhanced oil recovery (EOR) applications over that of polymers to avoid potential polymer-induced formation damage. In addition to carbon sequestration in underground formations, CO2 foam has low water content, which also reduces formation damage in water-sensitive formations and allows for fast cleanup. However, foam stability diminishes in harsh environments such as those with high salinity and temperature and when in contact with crude oil. This chapter highlights the different foam-generation mechanisms and the deterioration effect of crude oil on CO2-foam stability. More specifically, this chapter investigates using nanoparticles and viscosifiers to improve foam stability. Further, the effects of different nanoparticles, including aluminum oxide, copper oxide, and low-cost nanoparticles such as silicon dioxide, will be demonstrated. Field applications of viscoelastic surfactants and polymers in foam systems are also reviewed. The controlling factor for these different systems is the foam stability and improved oil recovery.
Part of the book: Foams