Dynamic array chips commercially available and their principal characteristics.
\r\n\tThis book intends to provide the reader with a comprehensive overview of the current state-of-the-art novel imaging techniques by focusing on the most important evidence-based developments in this area.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"d9159ce31733bf78cc2a79b18c225994",bookSignature:"Dr. Gabriel Cismaru",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",keywords:"Hypertrophic Cardiomyopathy, Dilated Cardiomyopathy, Restrictive Cardiomyopathy, Transesophageal Echocardiography, Intracardiac Echocardiography, 3-Dimensional Echocardiography, Adult Congenital Heart Disease, Tetralogy of Fallot, Transposition of the Great Vessels, Coronary Artery Disease, Risk Stratification, Revascularization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 21st 2022",dateEndSecondStepPublish:"May 19th 2022",dateEndThirdStepPublish:"July 18th 2022",dateEndFourthStepPublish:"October 6th 2022",dateEndFifthStepPublish:"December 5th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Cismaru Gabriel is an Assistant Professor at the University of Medicine and Pharmacy Cluj-Napoca, certified in Cardiology. After completing his certification in cardiology, Dr. Cismaru began his electrophysiology fellowship at the Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu. He has authored or co-authored peer-reviewed articles and book chapters in the field of cardiac pacing, defibrillation, electrophysiological study, and catheter ablation.",coeditorOneBiosketch:"Raluca Tomoaia is an MD, Ph.D. in novel techniques in Echocardiography at the University of Medicine and Pharmacy in Cluj-Napoca, Romania., assistant professor, and a researcher in echocardiography and cardiovascular imaging.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",middleName:null,surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru",profilePictureURL:"https://mts.intechopen.com/storage/users/191888/images/system/191888.png",biography:"Dr. Cismaru Gabriel is an assistant professor at the Cluj-Napoca University of Medicine and Pharmacy, Romania, where he has been qualified in cardiology since 2011. He obtained his Ph.D. in medicine with a research thesis on electrophysiology and pro-arrhythmic drugs in 2016. Dr. Cismaru began his electrophysiology fellowship at the Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, France, after finishing his cardiology certification with stages in Clermont-Ferrand and Dinan, France. He began working at the Rehabilitation Hospital\\'s Electrophysiology Laboratory in Cluj-Napoca in 2011. He is an experienced operator who can implant pacemakers, CRTs, and ICDs, as well as perform catheter ablation of supraventricular and ventricular arrhythmias such as ventricular tachycardia and ventricular fibrillation. He has been qualified in pediatric cardiology since 2022, and he regularly performs device implantation and catheter ablation in children. Dr. Cismaru has authored or co-authored peer-reviewed publications and book chapters on cardiac pacing, defibrillation, electrophysiological studies, and catheter ablation.",institutionString:"Iuliu Hațieganu University of Medicine and Pharmacy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"5970",title:"Bedside Procedures",subtitle:null,isOpenForSubmission:!1,hash:"ba56d3036ac823a7155f40e4a02c030d",slug:"bedside-procedures",bookSignature:"Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/5970.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9064",title:"Epidemiology and Treatment of Atrial Fibrillation",subtitle:null,isOpenForSubmission:!1,hash:"1cd6bf2b3181eb82446347fbe478a2bc",slug:"epidemiology-and-treatment-of-atrial-fibrillation",bookSignature:"Gabriel Cismaru and Keith Andrew Chan",coverURL:"https://cdn.intechopen.com/books/images_new/9064.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52927",title:"High-Throughput Platforms in Real-Time PCR and Applications",doi:"10.5772/65760",slug:"high-throughput-platforms-in-real-time-pcr-and-applications",body:'\nIn the decade of the nineties, real-time PCR became popular and meant an important step in molecular biology because of the great advantages over conventional PCR biology and its quantitative abilities. This revolution in PCR methods was achieved, thanks to the use of intercalating fluorophores, specific labeling probes with fluorescence emission, as well as equipment with the ability to detect this fluorescence during the reaction [1]. In this way, measurement of gene expression, absolute quantification of pathogens, and genotyping analysis became routine analysis in life science research.
\nUntil now, the limiting factor for real-time PCR compared to other molecular techniques was the number of tests that could be performed simultaneously. For example, hybridization techniques using microarrays, as those designed by Illumina® and Affimetrix®, allow the analysis of thousands of genetic markers in one single array [2, 3]. The realization of this type of screening by real-time PCR in standard formats (384 and 96 microwell plate) is infeasible due to both operational and economic reasons. In this context, in the few last years, some companies started to develop real-time PCR methods using a smaller reaction volume. As a beginning, some options for sample miniaturization such as the TaqMan® array microfluidic cards designed by Applied Biosystems® or the arrays designed by Qiagen® became available in the market. These formats use small volume that minimizes sample and reagent consumption. Their use is nowadays very popular in the field of gene expression, where it is possible to find predesigned array cards for certain diseases and metabolic pathways [4, 5]. They have also applications in other fields as microRNA screening or detection of foodborne pathogens [6, 7]. However, this improvement in the number of assays and samples that can be analyzed at the same time is still far away from the capabilities of microarray techniques.
\nThe development of real-time high-throughput platforms was a breakthrough that changed the perception about real-time PCR and their possibilities. From the very beginning, the use of nanoliter reaction volumes and the possibility of custom designs converted this technology into an attractive tool for research purposes. Thus, this nanoliter-scale PCR became very common in fields such as medicine and pharmacogenomics research, allowing the inclusion of large number of assays and samples in one run. All the previous features have positioned real-time PCR in direct competition with microarrays and next-generation sequencing, also because it is a more sensitive and specific technique.
\nCurrently, there are three commercially available high-throughput real-time PCR platforms: Dynamic Array™ chip (Fluidigm®, South San Francisco, CA, USA) TaqMan® OpenArray® (Applied Biosystems®, Carlsbad, CA, USA), and SmartChip (Wafergen Bio-systems Inc., Fremont, CA, USA). The operating principle of the three high-throughput platforms is the use of a nano-scale approach with thousands of reactions in a single run, reducing the sample and reagents consumption to the minimum. However, there are very important differences depending on the platform used.
\nMicrofluidic Dynamic Array™ with the integrated fluidic circuit (IFC) along with Biomark™ System from Fluidigm was the first real-time high-throughput platform available in the market [8]. The design of Dynamic Array™ is based on an integrated network of channels, chambers and valves that automatically combine the reactions. Thus, the dynamic plate is formed mainly by three components. On the one side, there are separate sample inlets, one for each sample. On the other side, there are separate primer-probe inlets, one for each probe. The IFC is placed in the middle, and it is here where the reaction chambers are located. This mechanism uses manual pipetting to load samples and primers-probes, and avoids the use of robotic liquid-handling to set up microwell plates. However, this kind of plates needs another instrument (IFC controller) controlled by a software to pressure load the assay components in the wells of the IFC in a process of 55 min. These wells, called reaction chambers, are formed by two containment valves and one interface valve. Thus, pressure is applied to the fluids contained in sample and detector inlets simultaneously. In this way, the fluids are transported into reaction chamber and fluid lines, respectively. The interface valve prevents sample and detector fluids from mixing. Then, the two containment valves are closed and interface valve is opened, pushing the detector fluid into the reaction chamber for mixing with the sample. Once the components are properly mixed, the interface valve is closed again and the chip is ready for cycling [9]. The real-time PCR cycling is performed in the BiomarkTM System. At the end of each cycle, the chip is imaged and at the end of the whole process, the software generates PCR curves and a heat map, where each square represents a reaction chamber and the color indicates the CT value.
\nIFC | \n48.48 Dynamic Array IFC | \n96.96 Dynamic Array IFC | \n192.24 Dynamic Array IFC | \nFLEXsix IFC | \n
---|---|---|---|---|
Application | \nGenotyping/gene expression | \nGenotyping/gene expression | \nGenotyping/gene expression | \nGenotyping/gene expression | \n
Pipetting steps | \n96 | \n192 | \n216 | \nVariable | \n
Assay inlets | \n48 | \n96 | \n24 | \n6×12 | \n
Sample inlets | \n48 | \n96 | \n192 | \n6×12 | \n
Reactions chambers | \n2304 | \n9616 | \n4608 | \n864 | \n
Reaction volume (nl) | \n9 | \n7 | \n8 | \n9 | \n
Dynamic array chips commercially available and their principal characteristics.
The company has a web tool [10] to customize assays for genotyping and gene expression with the specific conditions in which works, Dynamic Array™. There are different designs of Dynamic Array™ chips (Table 1) with reaction volumes ranging from 7 to 9 nl, depending on the array [11]. Of all the available nanoliter-scale platforms, Dynamic Array™ uses the smallest reaction volumes, while the other platforms use volumes of 33 and 100 nl. FLEXsix IFC is the model with the least number of reaction chambers (864). However, it can be considered as a model to select targets and to optimize assay. It has 6 partitions that allow 12 performing samples and 12 assays per sample in independent runs. The next designs in terms of number of chambers are 48.48 Dynamic Array™ and 96.96 Dynamic Array™ that analyze 48 and 96 samples and assays per sample, respectively. These three models can be used both for genotyping and gene expression assays. The last model was called 192.24 Dynamic Array™ and it allows performing 24 assays per sample and 192 samples. As an example of their great processing capability and taking into account the whole workflow, the 96.96 Dynamic Array™ enables 9216 reactions in less than 4 h and it is capable to generate 36,000 data points per person and day. Despite the clear potential of these four designs available to the customer, Dynamic Array™ systems lack intermediate formats or even bigger dynamic chips that would allow the realization of a greater number of assays per sample.
\nOne of the main advantages of Dynamic Array™ platforms compared to their direct competitors is the flexibility derived from the inexistence of preprinted assays. Dynamic Array™ has the possibility to choose the analyses that are going to be performed in each run. Although this flexibility is a clear advantage, the platform has problems of compatibility with TaqMan® assays. While in OpenArray® platform the same company designs and preprints the assays, in Dynamic Array™ another company provides the primers and probes, resulting in the subsequent problems of compatibility. These problems have been observed already in some intercomparative studies. For instance, Fedick et al. [12] used Dynamic Array™ and OpenArray® platforms for genotyping members of the Ashkenazi Jewish community. They observed problems of compatibility with the design of TaqMan® probes for genotypic analysis with Dynamic Array™. This incompatibility reduced the sensibility and the specificity of the assay in comparison with OpenArray®. Also, Farr et al. [13] detected problems of compatibility between RT primers and TaqMan® assays when Dynamic Array™ was employed for microRNA screening. These problems of compatibility could be solved simply by implementing a meticulous design of custom primers, which are adapted to Dynamic Array™ conditions.
\nTaqMan® OpenArray® (Applied Biosystems) was the second high-throughput platforms released in the market. In the year 2006, Morrison et al. [14] published the Biotrove Inc (MA, USA) design of a through-hole array. It was composed of 3072 holes of 33 nl reaction volume in 48 groups of 64 holes each one. These plates have a hydrophobic exterior surface and hydrophilic interior (the inside surface of the 33 nl holes). This intelligent design allows fluid deposited on the hydrophobic surface to move into the hydrophobic holes. These arrays require the use of the OpenArray® NT autoloader for loading plates and the OpenArray® NT cycler for running the array [15]. In 2009, this technology was acquired by Applied Biosystems®, which now is a part of Thermo Fisher Scientific (MA, USA). For this reason, presently the OpenArray® technology works with OpenArray® AccuFill™ System for loading samples and the QuantStudioTM 12K Flex real-time PCR system that allows running four OpenArray® plates at the same time. The main applications described for this instrument up to now are gene expression, genotyping, microRNA screening, or drug metabolism analysis.
\nThe first difference with the Dynamic Array™ is that in the OpenArray® design, the primers and probes are preloaded in the holes by the company. As a result, the user only needs to load the samples and the PCR mix onto the plate. However, the primers and probes cannot be changed while with Dynamic Array™ it is possible to choose which primers are used in the reaction if we have a library of them. On the other hand, the number of plate designs available for the customer with OpenArray® technology is higher.
\nThe first step in an experiment with OpenArray® is to decide the right plate design that is convenient for the number of samples and assays per sample we want to perform. The division of the plate in 48 subarrays of 64 holes each allows variable designs, which are different for gene expression and genotyping assays (Table 2). The customers place the order for the desired design through an application on the web page of Thermo Fisher Scientific. It is possible to find millions of predesign TaqMan® assays in the database of the company, all of them successfully tested by the manufacturer. In addition to them, the costumer can order his custom assays by loading the target sequence in the web page and the company would design then the primers and the probes according to the real-time PCR conditions in which OpenArray® technology works. It is also possible to obtain some predesigned OpenArray® plates commercially available for specific genotyping and gene expression purposes. For example, there are OpenArray® plates for human identification and for expression of inflammation, cell-stem, or cancer-related genes [16]. Also, there is an OpenArray® plate for screening of microRNA in human samples [17].
\nFormat | \nGene expression | \nGenotyping | \n|||
---|---|---|---|---|---|
Number of assays | \nNumber of samples | \nFormat | \nNumber of assays | \nNumber of samples | \n|
18 | \n18 × 3* | \n48 | \n16 | \n16 | \n144 | \n
56 | \n56 | \n48 | \n32 | \n32 | \n96 | \n
112 | \n112 | \n24 | \n64 | \n64 | \n48 | \n
168 | \n168 | \n16 | \n128 | \n128 | \n24 | \n
224 | \n224 | \n12 | \n192 | \n192 | \n16 | \n
\n | \n | \n | 256 | \n256 | \n12 | \n
OpenArray® formats for genotyping and gene expression available for the costumers.
* In format 18×3 the assays are performed in triplicate.
The two most widely used approaches to generate fluorescence in real-time PCRs are SYBR® Green and labeled probes. SYBR® Green is a chemical reagent that is introduced into the secondary structure of the DNA double helix. Consequently, the more the PCR products formed the more the fluorescence emitted. This molecule is commonly used in gene expression, mainly due to their affordable price. SYBR® Green allows the obtainment of a larger number of tests at a relatively low price. With regard to labeled probes, these nucleotide sequences were designed with the purpose of increasing the specificity of quantitative PCR. These probes bind to the middle of the target sequence, which is going to be amplified. They are labeled in the 5′ end of their structure with a fluorophore that will be released when the target section is amplified, resulting in fluorescence emission during amplification. Labeled probes are usually preferred in genotyping assays because using two labeled probes with two different fluorophores in the same reaction is possible to differentiate the two alleles. In the early development of OpenArray®, most of the experiments were performed using SYBR® Green [14, 15, 18] instead of TaqMan® Probes. However, nowadays this technology works mostly with TaqMan® probes both for genotyping and gene expression, because they increase the specificity of the assays and data processing is easier.
\nA characteristic trait of OpenArray® plates is that they need to be loaded with the help of OpenArray® AccuFill™ System, while Dynamic ArraysTM are loaded manually. This does not mean a saving in equipment, because Dynamic ArraysTM needs another apparatus to transfer the samples and the primers to the reaction chambers. Moreover, this transfer process takes 55 min, while loading plates with OpenArray® AccuFill™ System only takes a few minutes. With OpenArray® AccuFill™ the process is very simple. First, the samples are mixed with the Master Mix in a 384-well plate. The order of the samples on this plate depends of the OpenArray® format that is going to be used. Afterward, the tip system of the OpenArray® AccuFill™ equipment transfers each sample to the corresponding subarray, showing a specific movement according the chosen array format. The sample is deposited in the hydrophobic surfaces of the array and the liquid is naturally transferred to the hydrophilic 33 nl holes. Once the array is filled, it has to be properly sealed and it is ready for the real-time PCR analysis. One of the great advantages of the OpenArray® system is that is possible to run four plates at the same time. Since the whole real-time PCR process takes about 4 h, in just one run 12,288 data points can be obtained.
\nThe huge amount of data originated during an OpenArray® experiment resulted in the need for specific software that would enable to handle the results. For this, there are two options to process OpenArray® data. One is the software that controls the equipment and the other option is using the analytical platform available on the net. Thermo Fisher Scientific has created a Cloud where the user can upload the experiment files and analyze them with no need of installing anything on the computer. The Cloud also offers the possibility of sharing the files with another person, so that several people from different sites can work on the same files.
\nTaqMan® OpenArray® plates have a characteristic that may be considered as an advantage and a disadvantage at the same time, the preprinted primers. When custom plates are ordered, the company designs the primers and probes for the target sequence according the OpenArray® working conditions, and preprints them in each hole of the plate. The advantage is that the company performs quality control assays, but the problem is that the minimum order in the custom mode is 10 plates per order. Thus, if the researchers are not satisfied with the results obtained for some assays or even if they want to change the design, they have to order another 10 plates, with the subsequent economic costs.
\nIn 2010, the last high-throughput platform was released to the market under the commercial name of SmartChip real-time PCR system (WaferGen Biosystems, CA, USA). This technology is based on a chip of 5184 individual wells. Within the three available technologies described until now, this is the one that uses the largest volume of reaction: 100 nl per reaction [95]. SmartChip has some characteristics that make it stand out from Dynamic Array™ and OpenArray®. A clear advantage of SmartChip systems is that they allow profiling of more than 1000 genes in a single run and in quadruplicate. These platforms would therefore enable the user to perform a screening of genes closer to the amplitude of microarrays technologies than those obtained with the other two systems. However, the number of samples that can be analyzed in this case is only one per run. In fact, the company describes the SmartChip technology in three basic steps: (1) discovery: analyzing hundreds to thousands of genes, (2) validation: analyzing tens to hundreds of genes and (3) screening: analyzing tens of genes as informative genes of a disease signature. In addition to the top model >1000 genes format of SmartChip, the company offers also customized formats for specific hypothesis-based purposes. These formats permit the inclusion of 384 to 12 samples in a single chip (Table 3).
\nAssay configuration | \nSamples analyzed at the same time | \n
---|---|
1243 | \n1 (in quadruplicate) | \n
12 | \n384 | \n
24 | \n216 | \n
36 | \n144 | \n
48 | \n108 | \n
54 | \n96 | \n
72 | \n72 | \n
80 | \n64 | \n
96 | \n54 | \n
120 | \n42 | \n
144 | \n36 | \n
216 | \n24 | \n
248 | \n20 | \n
296 | \n16 | \n
384 | \n12 | \n
Possible configuration of SmartChip panel for custom analysis.
The company offers three ready-to-use predesigned panels: the SmartChip Human Oncology Panel with 968 gene-specific assays in quadruplicate, the SmartChip Human microRNA Panel with 778 microRNA-specific assays in quadruplicate, and a SmartChip Bacterial Vaginosis Panel that includes 19 pathogens common in woman vaginosis. For custom assays, it is necessary to send the sequences to the company service. With this information, they design the primers according to the specific conditions of the SmartChip real-time PCR and preload them into the chip. Until now, this technology has been applied mainly in gene expression studies, working only with SYBR® Green chemistry.
\nThe SmartChip complete system is composed of a cycler and a dispenser, with the corresponding required software. For loading or dispensing the samples on the chip, the user has two options. The SmartChip nanodispenser, to dispense only one sample in the entire chip, and designed specifically for the >1000 panels, and the SmartChip multisample nanodispenser, created for loading up to 384 samples on a single chip. In both options, the loading time is less than 10 min. Afterward, the chips are run in a SmartChip cycler, in a process that lasts 2 h. The obtained data would be analyzed with the SmartChip qPCR software.
\nOne of the most promising applications of high-throughput real-time PCR in science is genotyping. This technique is based on the analysis of single nucleotide polymorphisms (SNPs) of the DNA. SNPs are single base pairs in a specific position of genomic DNA where different sequence alternatives, the alleles, exist in normal individuals in the population and the minor allele has an abundance of 1% at least [19]. The DNA is composed of four different nucleotides: adenine, guanine, thymine, and cytosine. Thus, in theory the SNPs could be tetra-allelic but in practice, this is a rare situation and normally SNPs are bi-allelic. As such, this type of genetic polymorphism is very common in genomic DNA of mammals. For example, around 1.4 million of single-nucleotide polymorphisms have been identified in the initial sequencing of the human genome, of which 60,000 are located in the coding region of genes [20]. The importance of SNPs is huge because these nucleotide modifications can be silent but they can also be responsible for the predisposition to certain diseases or be the direct cause of them. For instance, there are some studies that have related the presence of certain SNPs in individuals with diabetes, obesity, hypertension, or even cancer [21–24].
\nThe development of next-generation sequencing (NGS) and microarrays have allowed the discovery and analysis of hundreds of thousands of SNPs [25]. However, broad screening approach has also a few drawbacks. For example, to study the presence of certain SNPs associated with a disease in a population the number of SNPs that are going to be analyzed is as important as the number of samples that can be processed simultaneously. This is exactly where real-time PCR gains importance over other technologies. In this context, there are two common techniques to detect single nucleotide polymorphisms with real-time PCR. The first option is using SYBR® Green and melting curve analysis. This method is based on detecting small differences in PCR melting (dissociation) curves after real-time PCR cycles. These differences in the dissociation curve allow to detect the differences in a single nucleotide [26]. The other option is based on the use of probes, applying two probes with different 5′-end labeling in the same reaction. Thereby, if both the fluorophores are detected it means that the sample is a heterozygote for the target DNA region. On the contrary, if the equipment only detects one of the fluorophores the sample is a homozygote. The major problem of selecting real-time PCR for genotyping analysis is the high costs involved in analyzing a wide range of samples and SNPs, mainly due to prices of probes and master mix. High-throughput real-time PCR platforms made PCR an ideal tool to analyze SNPs, thanks to their nanoscale working capacity and the consequent saving of reagents and samples. One of the research areas that have more directly benefited from this technology is human medicine. The previous fact is based on the possibility of including a large number of samples and assays in one day of work. This can be translated into the tracking of a large number of SNPs per sample, in order to assess their influence on the development of certain diseases.
\nIn 2011, Chan et al. [27] evaluated the use of the Fluidigm 48.48 Dynamic Array biochip for genotyping purposes in clinical setting, using peripheral blood and buccal wash samples, obtaining promising results. PCR has found its place also in cancer research and it has been widely used already. In a recent study, Henríquez-Hernández et al. [28] compared the classical method of PCR restriction fragment length polymorphism (RFLP) and the high-throughput automated assay Biotrove OpenArray(®) NT cycler, using them for genotyping 118 patients with cancer. Their results suggest that the modern PCR technology is more viable and reproducible than the traditional RFLP method. They concluded that OpenArray® technology can be considered as a robust, simple handling, and user-friendly tool for genotyping purposes in the field of oncology. Henríquez-Hernández et al. [29] also used the potential of this tool to evaluate the influence of the SNPs present in a population with prostate cancer in radiation-induction toxicity. In a different study, Henríquez-Hernández [30] evaluated the influence in prostate cancer of genetic variations in genes involved in testosterone metabolism and found one polymorphism characteristic of Spanish patients. Another example is the research performed by Julin et al. [31] using TaqMan® OpenArray® genotyping assay to correlate the leukocyte telomere length and the overall risk of aggressive prostate cancer. In a similar approach, Zhao et al. [32] used genotyping assay with OpenArray® technology to evaluate the influence of SNPs of 16 antioxidant genes in the increased risk of glioma.
\nApart from oncology, this technology has demonstrated its applicability in other fields of medicine. For instance, some authors have reported the influence of SNPs in the risk of developing Type 2 diabetes [33], their relationship with male fertility, or even the existence of a link between polymorphisms and smoking in male fertility [34, 35]. In a very recent work of Araujo and coworkers [36], the association of 39 genes and the etiology of nonsyndromic cleft lip and palate in Brazilian population was evaluated. In the field of dermatology, Villarreal Martínez et al. [37] found an association between six SNPs and the risk of developing psoriasis. Apart from the clear role of high-throughput real-time PCR in experimental science, another possibility of this technique in human medicine is its application in molecular diagnostic testing in a hypothesis-based manner. For instance, Arrojo Martins et al. [38] used OpenArray® plates for screening mutations involved in nonsyndromic deafness. Dionisio Tavares Niewiadonski et al. [39] applied the same approach for genetic testing of blood donors to assess the genotype frequencies of nucleotide-polymorphisms (SNPs) associated with venous thrombosis, hyperhomocysteinemia and hereditary hemochromatosis. High-throughput platforms have also managed to find their way in pharmacogenomics research. They are very useful in this kind of studies because of the possibility of testing a wide range of SNPs with implications in drug metabolism in a fast and cheap way. In this sense, Iskakova et al. [40] studied SNPs involved in the absorption, distribution, metabolism, and excretion of multiple drugs in Kazakhs. Also, it makes possible the development of personalized treatments according to individual genetic characteristics.
\nAnother promising application of this nanoliter-scale PCR in combination with SNPs is individual identification and paternity test. Until a few years ago, short tandem repeats (STRs) were the most common genetic markers used for individual identification, paternity, and kinship testing [41]. STR consists of a unit of 2–13 nucleotides repeated hundreds of times in a row on the DNA strand. STR analysis measures the exact number of repeating units. This fact makes STRs more informative than SNPs in genetic analysis because SNPs remain only in a nucleotide variation [42]. However, this lack of information can be solved by simply including more SNPs in the assay. As an indicative example, a number of 2–2.25 SNPs give the same information than 1 STRs [43]. In comparison to STR assays, high-throughput real-time platforms make feasible the use of SNPs for individual and paternity analysis, both for humans and animals, because of its relatively affordable price, the number of samples that can be analyzed in a run and the easier analysis of the obtained results. In a similar context, Pomeroy et al. [44] developed an OpenArray® to be used for forensic human DNA applications, with only seven SNPs for individual identification. In the same year, Wang et al. [45] showed the possibilities of other nanoliter-scale platform, the Fluidigm 48.48 Dynamic array, for genotyping purposes in human. In an interesting work by Kerr et al. [46], OpenArray® panel with 32 SNPs was used to create a pedigree of the Scottish by the analysis of 10,000 blood samples. It is also possible to find commercial arrays for human identification. In this sense, Thermo Fisher Scientific has predesigned OpenArray® for human individual identification with 32 and 64 SNPs.
\nIndividual identification is also important in food safety to ensure traceability according to Commission Regulation (EC) 178/2002 [47]. Molecular genetic analysis and more precisely SNPs are a useful tool for this purpose. Capoferri et al. [48] used 16 SNPs to verify traceability of the meat production chain with successful results. However, this study used a 96-well plate real-time PCR assay with the consequent high consumption of reagents and had the limitation of not being capable of analyzing a large number of samples at the same time. High-throughput real-time PCR platforms solved these problems, as demonstrated by Fernández et al. [49] and Pozzi et al. [50] who developed a OpenArray® panel with 32 SNPs that allow individual and cattle rustling identification. For an analytical target of 32 SNPs, this nanoscale technology permits to analyze 96 samples per array. Besides, QuantStudio™ 12 K flex is capable of running four OpenArray® plates at the same time, in a process of only 4 h. Thus, in a working day of 8 h, 768 samples can be analyzed. This number reflects the enormous possibilities of high-through real-time PCR.
\nMany other areas of life science research, such as animal and plant sciences, can benefit as well from the diverse advantages of nanoliter-scale platforms. Recently, Catanese et al. [51] developed a panel of 96 SNPs with the aim of genotyping anchovy populations. It is noteworthy that they selected these best 96 markers from a panel of 424 SNPs using an OpenArray® platform, and then they selected Fluidigm 96.96 Dynamic Array™ for routine analysis due to economic reasons. One of the important points in agriculture is the breeding of crops with certain characteristics of productive interest. In different studies, a panel of 192 SNPs was used for the study of genetic diversity in sugar beet, to study the vigor of the genotypes, and to assess the resistance of these plants to pathogens [52–55].
\nTo sum up, the existing literature clearly indicates the great potential of high-throughput real-time platforms for genotyping. In the future, it could become routine technique, for example, in assessing individual patients in order to test their predisposition to certain diseases through the use of predetermined SNP panels. These panels would allow an early change of habits, reducing the possibility of suffering from certain diseases such as Type 2 diabetes or obesity. In this way, nutrigenetics has become an important research field, studying how the different genetic variants of people influence their metabolism of nutrients, diet, and the diseases associated therewith [96]. The development and commercialization of SNP panels for which their influence in nutrition-related diseases has been demonstrated would be a big step forward in personalized nutrition.
\nTranscriptomics, in its many forms, refers to the study of the expression profiles of genes through the complete set of RNA transcripts (transcriptome). This revolutionary ``omic´´ technology comprises different techniques as microarrays, RNA sequencing, and real-time PCR. Until now, only microarrays and RNA-NGS allowed genome-wide surveys. However, these two methods have some drawbacks. Microarrays can only detect sequences homologous to the one that is on the array, and RNA-NGS is costly and the analysis of results required highly specialized technicians. Also, RNA-NGS is perfect for blind studies but not sufficiently adequate for targeted analysis. Real-time PCR is a highly quantitative and sensitive technique suitable for different transcriptomics aims. However, 384- and 96-well plates only allow the analysis of a small number of transcripts and samples at the same time. In this context, high-throughput real-time PCR platforms represented a step forward and placed real-time PCR closer to microarrays and RNA-NGS.
\nThe most classic part of transcriptomics is the study of messenger RNA (mRNA). It has great interest in life sciences because mRNA is the intermediate step between the genes and the proteins. In this sense, the analysis of the modifications in gene expression levels through mRNA is an important tool which gives us an idea of the influence of internal and external factors in gene expression. For the quantification of mRNA levels by real-time PCR, a previous conversion of mRNA to cDNA, the template of PCR, is needed. This quantification could absolute or relative to a control gene. Although probes are more specific than SYBR® Green, this last chemistry is normally the option chosen for gene expression, mainly due to economic reasons. The first studies evaluating the possibilities of high-throughput real time PCR platforms were performed for gene expression assays by Morrison et al. [14], who evaluated the possibilities of OpenArray® technology. Although nowadays OpenArray® technology works with TaqMan® probes, the first study used SYBR® Green chemistry. These researchers reported already the need of increasing sample concentration through volume miniaturization, in order to maintain a constant number of target molecules in the reaction. In 2008, Spurgeon et al. [9] evaluated the 48.48 Dynamic Array™ chip for gene expression purposes. Thanks to their studies, a preamplification step of cDNA samples was added for these dynamic platforms before real-time PCR analysis, with the aim of maintaining a high level of target molecules in the reaction. However, this preamplification reaction means that a new step needs to be included in the experimental high-throughput workflow, increasing the total processing time and costs.
\nAs in the case of genotyping applications, in transcriptomics human medicine was the first field benefited with the development of nanoliter-scale real-time PCR. In 2012, Chen et al. [56] used a SmartChip real-time PCR platform to evaluate gene expression in colon cancer, while Javelaud et al. [57] used OpenArray® technology to evaluate the expression of hundreds of genes in melanoma cell-lines. An interesting application was carried out by Li et al. [58] using OpenArray® to quantify gene expression from degraded RNA of formalin-fixed paraffin-embedded tumors. They concluded that this platform could be optimized for gene expression in this kind of preserved samples, opening an interesting avenue of research in cancer. In breast cancer, Song et al. [59] evaluated the expression of 1243 mRNA in breast tissue using SmartChip, showing the potential of this technology to analyze the transcriptome in a similar level of microarrays. However, the SmartChip of 1243 only allows the analysis of one sample in quadruplicate (Table 3). The results obtained with OpenArray® plates led the team of Ciarloni et al. [60] to validate a panel of 29 genes with interest in colorectal cancer, starting with an initial panel of 667 candidate genes. In a similar way, Kim et al. [61] validated a panel of eight promising genes in patients with metastatic renal cell carcinoma from an initial panel of 424 genes. Other examples of the application of high-throughput platforms in medicine studies include the work from Patel et al. [62], who employed an OpenArray® panel of 631 genes to evaluate gene expression in human embryonic and induced pluripotent stem cells. Koh et al. [63] employed Fluidigm 48.48 Dynamic Array™ for monitoring the tissue-specific global gene expression in humans thought circulating cell-free RNA in the blood. Thus, this real-time method could be employed for transcriptome analysis of humans and evaluate their global health without the need for invasive tissue sampling.
\nThe work carried out by Forreryd et al. in 2014 [64] deserves special mention. They assessed different high-throughput gene expression platforms to predict skin sensitization without the use of animals. The study used Fluidigm® 96.96 Dynamic Array™ and OpenArray® with nCounter®. The OpenArray® system demonstrated the easier protocol and the less time required for analysis, obtaining the results in 3 h, in contrast to the 7 h of Fluidigm® 96.96 Dynamic Array™ and the 22 h of nCounter®. However, Fluidigm® 96.96 Dynamic Array™ had a superior sensitivity due to the additional cDNA preamplification step implemented prior to PCR and it was also the cheapest option. Likewise, the authors suggested the importance of selecting appropriate reference genes because one of the two reference genes employed in the study did not amplified well. The final authors’ conclusions reflected the great potential of nonarray-based platforms for reducing assay costs and increasing sample throughput. Finally, the results of this comparative study highlight the importance of establishing clear priorities in terms of sensibility, analytical time, and costs when acquiring a high-throughput platform.
\nBesides medicine, other research fields have also benefited from the capacities of high-throughput real-time PCR. For instance, de Boer et al. [65] used Fluidigm 48.48 Dynamic Array™ to evaluate the potential of gene expression as a biomarker of chemical contamination, using a species of arthropod often employed for ecotoxicological testing. They concluded that the combination of these analytical platforms and multivariate analysis could be a valuable tool in ecotoxicology, combining high throughput capacity with analytical sensitivity. In a similar approach, Harty et al. [66] employed a Fluidigm 96.96 Dynamic Array™ to evaluate expression profiles of adhesion G protein coupled receptor in zebrafish and their possibilities as models in human medicine. In another animal model, Tosches et al. [97] employed a Fluidigm 48.48 Dynamic Array™ to evaluate the pathway of melatonin using a zooplankton. These platforms also found their applicability in animal production as demonstrated by Robic et al. [67], who evaluated the influence of an SNP in the transcripts of quantitative trait loci (QTL), responsible for the accumulation of androsterone in boar fat. In aquaculture, Bonacic et al. [68] employed OpenArray® plates to evaluate gene expression in lipid metabolism with diets rich on omega-3 and omega-6 in fish. Other applications include immunological studies and virology. The work from Rosa et al. [69] reported the usefulness of Fluidigm 96.96 Dynamic Array™ to evaluate different transcriptional patterns in the cattle tick
The discovery of microRNAs (miRNAs) has changed the previous concepts of gene expression regulation. These small noncoding RNA molecules with a length between 21 and 25 nucleotides and they are found in plants, animals, and some viruses [71]. In human, miRNA are found in plasma, urine, cerebrospinal fluid, and saliva and have an important function as post-transcriptional regulators of gene expression. Their different levels have been associated with a wide range of human diseases [72] and have potential as biomarkers [73]. There are many technologies for the measurement of miRNAs such as microarrays, NGS, and real-time PCR, being the last one and the most sensitive and reproducible method. Also, the releasing of high-throughput real-time PCR platforms have allowed a reduction of costs and minimization of the time required for detection of broad miRNA signatures.
\nSome studies have demonstrated the applicability of nanoliter-scale PCR in the analysis of microRNA. Jang et al. [74] made an interplatform comparative study using conventional real-time PCR, microarrays and Fluidigm 48.48/96.96 Dynamic Array™, concluding that these nanoscale platforms could be used to develop cost-effective and customized assays, with rapid turnaround for profiling and validating of miRNA expression. Farr et al. [13] performed a similar study comparing the usefulness of high-throughput platforms for validation of a circulation microRNA signature in diabetic retinopathy. An interesting point of this work is the direct comparison of the two principal high-throughput real-time PCR platforms commercially available: OpenArray® and Dynamic Array™. Authors found that OpenArray® system was the most reproducible platform with less inter- and intrarun variations and had a more user-friendly software for further analyses. One of the main problems of Dynamic Array™ is the replicate variability, caused by their low-volume assay. OpenArray® use the double of the volume used in Dynamic Array™, and in this sense researchers found that variability increased in parallel with volume reductions.
\nThis technology was rapidly introduced in human medicine because of their potential uses in this field. Keller et al. [75] evaluated the expression profiles of 863 microRNAs in 454 blood samples using SmartChip real-time PCR system and found a disease association with microRNAs profiles. Their potential as biomarkers was shown by Mooney et al. [76], who found minimal variations in miRNA profiles of healthy volunteers according to sex and sample timing using OpenArray® plates. Given their value as biological markers, the field of oncology research soon adopted this methodology to screen the microRNA profiles of this disease. Thus, Hudson et al. [77] used the commercially available TaqMan® OpenArray® Human MicroRNA Panel and found overexpression of miR-10a and miR-375 in medullary thyroid carcinoma. Using the same panel, others researchers achieve great results for lung cancer detection [78], for rectal cancer [79], and brain metastasis in mutant lung cancers [80]. With Fluidigm 96.96 Dynamic Array™, Kara et al. [81] discovered the downregulation of 18 miRNAs in patients with colorectal cancer. Research on other human diseases has also used miRNA molecules as biomarkers. The microRNA profiles have been related to human late-onset Fuchs\' dystrophy [82], Alzheimer [83] or Crohn disease [84]. It is remarkable that most of these studies used the TaqMan® OpenArray® Human microRNA Panel.
\nThe results of the studies cited before show the great importance of miRNA in human diseases and how their variation could be a good biomarker for diagnostic purposes. Most of these studies used the TaqMan® OpenArray® Human microRNA Panel for the screening of microRNA, showing its potential. However, this panel only allows the analysis of three samples simultaneously, eliminating one of the mains advantages of high-throughput real-time PCR platforms. So, the next step would be the validation of panels with fewer microRNA targets focused on specific diseases, giving the possibility of introducing more samples at the same time. Apart from diagnostic of diseases, microRNA also has potential in other fields. Benson et al. [85] observed that rifampin treatment modifies the microRNA profiles. Thus, it is possible that the administration of determinate substances causes a variation of miRNA profile in humans allowing their use as a new-generation anti-doping biomarkers [86]. This knowledge can be transferred to food safety and by employing miRNA as biomarkers in the administration of banned substances in animal production, thus developing, for instance, a panel of miRNA for each drug [71].
\nOne of the great applications of high-throughput real-time PCR platforms is the detection of pathogen for medical and food safety purposes. The development of real-time PCR was a major breakthrough in microbiological analyses. The classical microbiology used large incubation times with the need of multistep procedures for the detection of some bacteria. Real-time PCR avoids the waiting time caused for this incubation. Likewise, real-time PCR allows quantification of genes with great importance, such as resistance or virulence genes.
\nThe introduction of the technology described in this chapter allows performing a large number of assays in a large number of samples. These achievements have a great importance in hospital and food safety microbiology labs. In 2008, Stedtfeld et al. [18] developed an OpenArray® plate to detect human pathogens based on the detection and quantification of virulence factors of these pathogens. Another step forward in microbiological analysis was the OpenArray® panel developed by Gonzalez et al. [87], which allow the identification, including virulotype, and subtypes of O157 and non-O157 enterohemorrhagic
In the work of Ishi et al. [89], Dynamic Array™ platform and TaqMan® Probes were used for the simultaneous quantification of food and waterborne pathogens as
On certain occasions, instead of detecting pathogenic microorganism, it is interesting to detect virulence and resistance genes. With regard to this, Looft et al. [91] used OpenArray® to evaluate the change in resistance genes in swine intestinal microbiome in pigs fed with feed supplemented with antibiotics. Tseng et al. [92] evaluated the virulence gene content of Shiga Toxin-Producing
The development of high-throughput real-time PCR platforms was a big step in real-time PCR. There was an important development from the 384 reactions that could be performed at the same time in conventional systems to the 12,288 reactions that can be performed in one run in nanoliter-scale platforms. However, this nanoliter real-time PCR has yet some drawbacks in comparison to other techniques. While in NGS it is possible to analyze unknown sequences, with real-time it is necessary to know beforehand the target sequence to design the primers and the probes. While in microarray technology it is possible to analyze thousands of sequences at the same time, the highest target with these nanoliter platforms is 1200 different sequences. However high-throughput real-time PCR platforms have great advantages, achieving operational improvements that the other platforms are not capable of reaching. They have a great facility for processing large number of samples, the sample consumption is less than in other platforms and the time necessary to get the results is at most 7 h with easy protocols. Also, the analysis of the results is relatively easy and the price is relatively cheap. But without any doubt the great advantage of these platforms is their specificity and their sensibility, which makes them the gold standard in quantification analysis. Although, fast mode is common in real-time PCR, high-throughput platforms do not work in this mode. Therefore, the introduction of fast mode would be another big step because it would increase the number of assays that can be performed in one day. Another clear challenge is to increase the number of assays and samples that can be analyzed at the same time. Even though one platform can perform 1200 assays in one run, this is only for one sample. Being capable of performing this number of assays for a large number of samples would place real-time PCR at the same level than others platforms for genotyping and transcriptomics analyses. The future of these platforms goes through the design of plates for routine applications in medicine, nutrition, or food safety. However, in food safety and microbiology this technique has been under used until now. Thus, the development of plates that could analyze the microbiome of multiple types of samples could be a great advance approaching this technique to NGS for microbiome analysis.
\nEver since the coronavirus disease (COVID-19) emerged, there has been an onset in development of multiple vaccine candidates across the globe. On the one hand, scientists are developing specific vaccines, while on the other hand, existing vaccines are getting explored for repositioning. The latter offers to reduce the overall cost and time.
The novel coronavirus SARS-CoV-2 disease was reported in Wuhan, and the underlying causative agent was found to belong to the family
The disease has been progressing for a while now. Although there is a cut-throat race among nations to launch their vaccine candidates, there is a lot underway that is meant to prove each candidate’s safety, efficacy, and superiority over the other. The vaccine candidates are in various stages of development. Whereas a vaccine usually takes years to reach a market, vaccine development has increased in speed in recent times. In such moments of immense vigor to be ahead in the race, there are two nonspecific vaccine candidates, Bacillus Calmette-Guérin (BCG) and Measles, Mumps, and Rubella (MMR) vaccine, which appear promising.
The popular BCG and MMR vaccines confer broad immunity against diseases not limited to tuberculosis (TB) and measles, mumps, and rubella. Substantial clinical and nonclinical evidence proves their nonspecific nature alongside their safety and efficacy. With such time constraints, they could stand a chance to be candidates to combat COVID-19. The study thus compares and comprehends the practicality of the two vaccine candidates, giving them the basis of global clinical evidence, underlying mechanisms of immunity conferment, and their current prospects to test whether they stand a chance in combating COVID-19.
The Bacillus Calmette-Guérin (BCG) is a renowned vaccine known to confer prevention and cross-protection against
BCG vaccination has broad protective effects that are not specific to
In 1927, Swedish children who were administered the BCG vaccine at birth showed a mortality rate almost threefold lower than the unvaccinated children [10]. On similar grounds, a BCG vaccination scar and a positive tuberculin reaction conferred better survival during early childhood in an area with high mortality in West Africa [11]. The long-lasting effect of BCG was recognized in a study based in Spain, wherein the hospitalizations associated with respiratory infections other than TB in 0–14-year-old children were found to be substantially lower in BCG-vaccinated children. This protection in 14-year-olds confirmed the enduring broad protective effect of BCG [12]. Two separate randomized human clinical trials are being conducted to test the prospect and likeliness of its conferment of protection against COVID-19. These are in progress in Holland [1, 13] and Australia [1, 14]. In these studies, health workers are being administered either the BCG vaccine or a placebo saline injection. A small study in Indonesia found that vaccination of adults in the age group of 60–75 years with BCG prevented acute upper respiratory tract infections by an increase in IFN-γ levels. The study involved the administration of the BCG vaccine once every month for 3 months. The placebo group received solvent for the BCG vaccine [15].
There is a possibility that the innate immune response to vaccination depends on the strain of BCG and the route of administration. Even short-span protection may help individuals at high risk, such as front-line workers, until there is the availability of a specific vaccine. Most Asian countries have active universal BCG vaccination programs. However, with no direct evidence from clinical trials, it is not yet advisable to recommend the use of BCG to prevent COVID-19.
A report found the presence of a strong correlation between the BCG index and COVID-19 mortality in European countries. The index is an estimation of the degree of universal BCG vaccination deployment in a given country. With every 10% increase in this index, there was a 10.4% reduction in mortality associated with COVID-19 [16].
Clinical and laboratory experimental evidence suggests prevention against viral infections in humans [17]. Trained immunity and long-lasting protection from the respiratory tract\'s viral infections are offered by BCG vaccination, which eventually becomes a basis for its potential protective effect against COVID-19 [16].
Prevention of vaccinia virus infection is conferred via an enhancement in interferon-gamma production (IFN-γ) from CD4+ cells in BCG-vaccinated mice [18], which is attributed to adaptive immunity. There is a rise in levels of pro-inflammatory cytokines such as Interleukin-1β (IL-1β) involved in immunity against viruses [19]. Interleukin-2 (IL-2), TNF-α (tumor necrosis factor), and IFN-γ (interferon- γ) are released because of the activation of CD4+ T cells [20].
T-helper cells are activated once BCG gets internalized by antigen-presenting cells. MHC class II molecules expressed on the surface of APCs and recognized by the CD4+ T cells via the T-cell receptor (TCR) bring about this activation. This interaction between MHC II molecules and TCR is governed by the binding of co-stimulatory molecules (CD28) to B7–1 on the T cells, and this binding causes an upregulation of adhesion molecules such as LFA-1 (lymphocytes function associated antigens-1). The LFA-1 binds to the macrophages via ICAM-1 (intracellular adhesion molecule-1) [21].
There is evidence for the conferment of immunity against listeria and influenza in murine models [22, 23]. Various controlled trials have shown that BCG vaccination reduces the severity of infections by several viruses with structural similarity to SARS-CoV-2 [1].
In 2015, a placebo-controlled randomized trial revealed that the immunogenicity of the H1N1 vaccine was augmented in healthy adults because of BCG vaccination [24].
At present, three active ongoing advancing clinical trials are examining whether the BCG vaccination prevents SARS-CoV-2 infection in healthcare workers [1].
Currently, the World Health Organization (WHO) does not recommend using the BCG vaccine to cope with COVID-19 as there is no firm evidence suggesting prevention of the SARS-CoV-2 infection [25]. Whether the BCG vaccine administered decades ago in childhood will prevent or treat COVID-19 now is debatable [1]. There is a possibility that the BCG vaccine may upregulate the immune system, aggravating the severity of COVID-19 in a few patients. Its supply is already low, and a false sense of security might mislead the population, eventually compromising the fulfillment of the needs of infants for protection against tuberculosis in high-risk zones [26, 27].
Japan, China, Korea, India, and the Russian Federation have continued to conduct childhood BCG vaccination. Compared with the countries with no mandatory mass BCG vaccination, the per capita death rate associated with COVID-19 in the countries mentioned above is lower. Japan, Brazil, and Russia incorporate BCG vaccines containing original strains compared with the European countries where the vaccine contains modified strains [28].
A team is conducting a study at the Max Planck Institute for Infection Biology in Germany to test whether VPM1002, a recombinant BCG vaccine strain, can protect healthcare workers or older patients from COVID-19 [28, 29, 30].
The cause-and-effect relationship between the BCG vaccine and COVID-19 is yet to be proven with concrete evidence. There is a limitation associated with the above understandings. In low-income countries where there could be reduced testing capabilities, substantial under-reporting of the number of cases and deaths may undermine the possibility of getting an exact correlation between COVID-19-related mortality and BCG [31]. Although it appears as if the countries without mandatory mass BCG vaccination policies [32], such as the United States and Italy, have higher mortality rates, there may be a dependence of mortality rate associated with COVID-19 [16] on factors such as temperature, percentage of population 65 years or older in a particular region, GDP, population density, and its variation from state to state.
There is a lack of mandatory vaccination programs in countries such as the United States, Canada, Italy, and the Netherlands [32]. The vaccine is administered at birth and offers protection against tuberculosis for 10 years [5].
The Measles, Mumps, and Rubella (MMR) vaccine is a combination vaccine used to confer immunity against measles, mumps, and rubella infections [33]. This live attenuated multi-dose vaccine [34] possesses various combinations of strains of the viruses mentioned earlier to immunize the patient against MMR infections [35]. The first dose of the vaccine needs to be given between 12 and 15 months of age, and the second dose between 4 and 6 years of age [34]. The MMR vaccination program in the United States has proven to be successful in bringing down measles, mumps, and rubella [33]. The vaccine is contraindicated in pregnancy [35].
It has been recapitulated by Miller [36] that ephemeral protection is provided by the MMR vaccine against heterologous viral infections [37]. A study of 11,004 Italian children was carried out to analyze the effectiveness of MMR vaccinations in terms of the need for hospitalizations for targeted and nontargeted infections. About 2,302 (20.9%) children had not been immunized with the MMR vaccine, 5,392 (49%) had received one dose of the vaccine, and 3,310 (30.1%) had received both doses. The study showed lowered hospitalizations (414 in all) for children suffering from all sorts of infectious diseases. About 262 hospitalizations among nonvaccinated and 82 and 70 hospitalizations among single-dose and double-dose recipients, respectively, were reported. Only 809 hospitalizations out of 11,004 children battling respiratory diseases were reported [38]. To benefit healthcare workers, airport staff, and foreign domestic helpers, Hong Kong instituted the MMR vaccination program in 2019 and continued it in 2020. This program brought down COVID-19-associated deaths and led to zero deaths during the 7 weeks ending on May 3, 2020. In 2019, 7.2 million out of 20.26 million people in Madagascar were immunized with the MMR vaccine, and as of May 4, 2020, no deaths were reported of patients suffering from COVID-19 [39].
It is mandatory for every man from South Korea between 18 and 28 years of age to join the South Korean military due to the country’s new vaccination policy formed by the 2012 Military Healthcare Services Act. Every recruit compulsorily receives two doses of MMR vaccine apart from childhood immunizations, and maximum immunity can be witnessed among these individuals. South Korea also vaccinated its entire population post measles outbreak in 2001–2002. South Korea has shown an unusually low incidence of deaths due to COVID-19 as compared with other countries with a similar timeline of initial infection [39, 40].
A study of 2,135 pediatric patients with COVID-19 in China reveals that over 90% of the patients displayed mild or moderate symptoms or were asymptomatic [41]. As per the data dated March 18, 2020, the Korean Center for Disease Control and Prevention states that only 1.03% of the total 8,413 COVID-19 cases included children as patients. These data expound on the benefit of MMR vaccination in producing innate immunity, making children less prone to COVID-19 [42]. Immunization with the MMR vaccine successfully curbs pulmonary inflammation and sepsis, which is one of the prominent causes of COVID-19 mortality and confers protection to children from COVID-19 by making them less susceptible to this horrid disease [43].
Until April 30, 2020, 1,102 people on the U.S.S Roosevelt had tested positive for COVID-19, wherein only one death and seven hospitalizations were reported. This could be attributed to the fact that all recruits are provided MMR vaccinations by the U.S. military before their admission. The hospitalization rate for Navy recruits was about 20 times lower than that for the usual population of the same age group. Another example to substantiate the correlation between MMR vaccination and the COVID-19 death rate is the lack of sufficient MMR vaccination in Italy, which has proven controversial and inconsistent [44], leading to a vast measles outbreak in 2017 that also justifies a higher death rate due to COVID-19 [39].
Pediatric patients in China older than 1 year manifested mild symptoms, whereas those of a year or less exhibited severe symptoms [45]. Introducing a dose of MMR after a year post-birth explains the study’s result in China [46].
According to Roser, up until May 14, 2020, 4,477,573 cases and 299,958 deaths worldwide due to COVID-19 were reported, while only 2.2% of the cases involved children between 0 and 17 years of age [37]. It has also been reiterated by Verdoni that the course of COVID-19 involving respiratory problems is benign [47]. These pieces of evidence lean toward the possibility of boosted immunity by MMR vaccine, offering protection against COVID-19.
In North Korea, Turkmenistan, Cook Islands, Marshall Islands, Solomon Islands, and Tuvalu, many adults between the ages 29–45 receiving MMR immunizations reported zero or near-zero deaths from COVID-19 [39].
Using epidemiological parameters such as the fraction of undocumented infections and their contagiousness previously estimated from US county-level data between February 21, 2020 and March 13, 2020, [48], an SEIR model has been put up priming large populations in the United States and China to estimate spread and growth of the virus [49, 50]. Priming has reduced the infection period and chance of complications by 33%, and after the priming agent was administered slightly before the infection rate peaked, the rate of hospitalizations reduced to 25%.
In order to prevent the immune pathology in severe COVID-19 cases, some suggest that the immune system could be primed with live attenuated viruses in vaccines such as MMR, which could trigger trained innate immunity [50].
S-glycoprotein is an immunogenic protein encoded by SARS-CoV-2 that plays a pivotal role in binding to the ACE2 receptor on the epithelial cells of the respiratory system [51]. Since MMR immunization confers broad immunity against viral infections, it has been postulated that there might be similarities between antigenic epitopes of surface proteins of the live attenuated viruses used in the MMR vaccine and the S-glycoprotein. Thus, the antibodies produced by MMR vaccination could cross-react with antigenic epitopes of the S-glycoprotein and could also provide cross-protection against COVID-19 [42].
A homology search was carried out for the chain A amino acid sequence of SAR-COV-2 S-glycoprotein against the proteomic sequences of live attenuated viruses in MMR vaccines. Fusion (F1) glycoprotein of the measles virus and E-glycoprotein of the rubella virus shared similarities in 30 amino acid residues with the S-glycoprotein. More experimental data are required in this area [42].
Lymphopenia and a decrease in cytotoxic CD8+ T cells are exhibited in patients suffering from COVID-19 [52]. Upon routine childhood immunization, secretion of many cytokines such as IL-2, IL-12, and IFN gets induced post CD4+ T helper 1 cell stimulation, which then provokes maturation of CD8+ T cells. This also elevates cytotoxicity of NK cells, destroying cells infected with coronavirus [45].
Pattern recognition receptors (PPRS) recognize viral components such as viral nucleic acids and proteins, eliciting innate immune response [53, 54]. A response to the respiratory infection due to coronavirus has been elicited by endosomal toll-like receptors 3, 7, and 8 and intracellular cytosolic PRRS. The above key sensors trigger a downstream signaling cascade, leading to the induction of IFN secretion, which activates thousands of IFN-stimulated genes, generating an antiviral response and eventually protecting the patient from harm immunopathology [50].
The benefits of the MMR vaccine, coupled with its FDA approval, ease of administration, cost-effectiveness, and availability, indicate an advantage to vaccinating the population to spare mortality associated with COVID-19 to a certain extent [55].
A randomized clinical trial with MMR vaccine for healthcare workers and first responders has been proposed to be performed in New Orleans to corroborate the data [43].
The MMR vaccination triggers innate immunity by inducing IFN secretion and escalating cytotoxicity of NK cells [45]. However, treatment with therapeutic interferons is costly. It leads to undesirable side effects, while vaccine-induced IFNS and NK cells are more robust, efficient, and potent, suggesting the use of MMR vaccination, which confers antibody-mediated cross-protection for prevention or amelioration of SARS-CoV-2 infection [55, 56].
The SARS-CoV-2 virus has an incubation period of approximately 5 days and up to 14 days and longer [57, 58] and is thought to evade the innate immune system causing delay or suppression of antiviral responses [50]. Priming the individual with MMR vaccine before the infection would trigger a broad innate immune response, which would prevent immune system evasion by the virus and prepare a susceptible individual to counter the viral attack [50].
Even though COVID-19 is affecting individuals of all age groups, it is evident that children, who are being less commonly affected by the disease and show mild symptoms, are associated with a low COVID-19-death rate and can recover faster compared with other age groups owing to the routine MMR vaccination that boosts immunity and confers cross-protection [59]. Commonalities shared by MMR viruses and SARS-CoV-2 in terms of primary replication in the upper respiratory tract [55], structural and functional similarities between them, cross-protection offered by MMR vaccine, and age-related declining immunogenicity of measles vaccine suggest the use of MMR vaccine for prophylaxis or to avoid severe complications in COVID-19-positive individuals and eventually limit COVID-19 death rates [60].
Countries such as Australia and Belgium lack mandatory vaccination programs [61]. The vaccine offers protection against measles, mumps, and rubella for 10–12 years [59]. The first dose is administered between 12 and 15 months of age, while the second dose is administered between 4 and 6 years of age [34].
Currently, WHO has not yet recommended putting MMR vaccination in use for the ongoing pandemic because of the lack of concrete evidence about the cause-and-effect relationship between the MMR vaccine and SARS-CoV-2. Sufficient evidence of the efficacy of the vaccine against this disease will pave the way to begin the mass production of the vaccine to fight the pandemic.
There is a tremendous spike in the number of cases of COVID-19 across the globe, which calls for an emergency and fruitful strategy that would cause a flattening of the curve while saving the lives of vulnerable populations or people with comorbidities who are more susceptible to this disease. While there is a call for research aiming to develop specific vaccines, vaccine repositioning has not taken a backseat. With vaccines such as BCG and MMR showing considerable evidence for their inherent ability to resist various infections, alongside their well-established safety and efficacy for their target infections, there is great promise for a new development to combat the existing pandemic [4, 5, 12, 33, 38].
The broad protective effect of both BCG and MMR vaccines has been clinically proven. Their effect lasts nearly 10 years. BCG vaccination has been impactful in reducing mortality associated with various diseases as per studies conducted across Sweden and West Africa. Its long-lasting effect was observed in a study based in Spain, whereas protection against upper respiratory infections was depicted in a study based in Indonesia involving citizens above the age of 60. Two randomized clinical trials are in progress in Holland and Australia to study BCG’s effects on COVID-19. A link between COVID-19-related mortality and the BCG index has been observed, where an increase in the index has shown a decrease in mortality in European countries [16]. Most Asian countries such as Japan, China, Korea, India, and the Russian Federation have continued to conduct childhood BCG vaccination compared with countries such as the United States, Canada, Italy, and the Netherlands. Compared with the countries with no mandatory mass BCG vaccination, the per capita death rate associated with COVID-19 in the countries mentioned above is lower [28]. Many of these countries incorporate BCG vaccines containing original strains compared with the European countries. Currently, a study in Germany is assessing the effects of a modified strain of BCG against COVID-19.
Few countries such as Australia and Belgium lack a mandatory MMR vaccination program. A study in Italy showed a reduction in the hospitalization of children associated with respiratory diseases because of MMR vaccination [38]. MMR vaccination programs for front-line workers in Hong Kong, Madagascar, the South Korean military, the U.S. military, adults of North Korea, Turkmenistan, Cook Islands, Marshall Islands, Solomon Islands, and Tuvalu have brought down COVID-19-associated deaths in such regions. Most of the vaccinated children in China were asymptomatic or showed mild/moderate symptoms of COVID-19. A randomized clinical trial with MMR vaccine for healthcare workers and first responders has been proposed in New Orleans. The MMR vaccine plays a key role in limiting pulmonary inflammation, a key factor in SARS-CoV-2 mortality [43]. It has reduced the impact of COVID-19 because of the structural similarity between glycoproteins of COVID-19 virus and measles and rubella viruses. The SARS-CoV-2 virus has an incubation period of approximately 5 days and up to 14 days. So, priming the individual with MMR vaccine before infection can trigger a broad innate immune response, preventing immune system invasion by the virus and preparing a susceptible individual to counter the viral attack.
The BCG vaccine can confer trained immunity against many viral infections. Therapeutic interferons are expensive. Both BCG and MMR vaccines trigger the production of IFN and various cytokines, lessening the need for interferon administration [55, 56].
For the time being, MMR appears to show more human data for COVID-19 protection than BCG [39, 42]. With no concrete evidence of BCG- or MMR-conferred protection against COVID-19, WHO refrains from advising the use of such vaccines to cope with it, especially to avoid unforeseen consequences that may include upregulation of the immune system contributing to exacerbation of one’s condition. Also, a surge in its sudden demand may cause a shortage of its supplies and an inability to meet the needs of infants and newborns.
The BCG and MMR vaccines require randomized clinical trials before they can be considered for repositioning against COVID-19. However, past evidence of the vaccines’ ability to support to confer cross-protection against multiple viral infections can become a basis for their candidature for prospective clinical trials. Overall, the vaccines may shorten the duration of infection, minimize the harmful pathology, reduce the hospitalization rates, and help flatten the curve, helping to curb the spread of the disease. More research needs to be done to assess the risks and adverse effects of this method, especially for the elderly and people with comorbidities prone to severe complications due to COVID-19. Until there is evidence stating a direct cause-and-effect relationship between COVID-19 and BCG/MMR vaccine, the world will have to wait.
Authors are very much thankful to Dr. Paraag Gide, Principal, Hyderabad (Sindh) National Collegiate Board’s Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, for his continuous support, guidance, and encouragement.
The author(s) declare that there is no conflict of interest regarding publication of this article.
None.
The data supporting the findings of the article will be made available from the corresponding author [Dr. Harshal Ashok Pawar] upon reasonable request.
COVID-19 | Coronavirus disease 2019 |
BCG | Bacillus Calmétte Guerin |
MMR | Measles, Mumps, and Rubella |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
RNA | Ribonucleic acid |
S | Spike |
M | Membrane |
N | Nucleotide |
E | Envelope |
TB | Tuberculosis |
IFN- γ | Interferon- γ |
CD4+ | Cluster of differentiation 4 |
1IL-1β | Interleukin-1β |
IL-2 | Interleukin-2 |
TNF-α | Tumor necrosis factor- α |
MHC | Major histocompatibility complex |
APCs | Antigen-presenting cells |
TCR | T-cell receptor |
CD28 | Cluster of differentiation 28 |
B7-1 | Binding protein |
LFA-1 | Lymphocytes function associated antigen-1 |
ICAM-1 | Intercellular adhesion molecule-1 |
H1N1 | Swine flu |
WHO | World Health Organization |
U.S. | United States |
GDP | Gross Domestic Product |
U.S.S | United States Ship |
SEIR | Susceptible-Exposed-Infectious-Recovered |
ACE2 | Angiotensin-converting enzyme 2 |
F1 | Fusion |
CD8+ | Cluster of differentiation 8 |
NK | Natural Killer Cells |
PPRS | Pattern Recognition Receptors |
FDA | Food and Drug Administration |
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22423},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33699}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"221",title:"Astrophysics",slug:"astrophysics",parent:{id:"20",title:"Physics",slug:"physics"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:42,numberOfWosCitations:17,numberOfCrossrefCitations:18,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"221",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7357",title:"New Ideas Concerning Black Holes and the Universe",subtitle:null,isOpenForSubmission:!1,hash:"0c081ffdc6173f4c7d7d2d47231f61b9",slug:"new-ideas-concerning-black-holes-and-the-universe",bookSignature:"Eugene Tatum",coverURL:"https://cdn.intechopen.com/books/images_new/7357.jpg",editedByType:"Edited by",editors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Terry Tatum",slug:"eugene-terry-tatum",fullName:"Eugene Terry Tatum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6768",title:"Cosmic Rays",subtitle:null,isOpenForSubmission:!1,hash:"1578350f18d0bc3abfbcf62278630739",slug:"cosmic-rays",bookSignature:"Zbigniew Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/6768.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5918",title:"Trends in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6fbfd7e2f33ac06d54517d3b52005231",slug:"trends-in-modern-cosmology",bookSignature:"Abraao Jesse Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/5918.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",middleName:"Jesse",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"54849",doi:"10.5772/68113",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1806,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"We assume that dark energy and dark matter filling up the whole cosmic space behave as a special superfluid, here named “superfluid quantum space.” We analyze the relationship between intrinsic pressure of SQS (dark energy's repulsive force) and gravity, described as an inflow of dark energy into massive particles, causing a negative pressure gradient around massive bodies. Since no superfluid has exact zero viscosity, we analyze the consequences of SQS’s viscosity on light propagation, and we show that a static Universe could be possible, by solving a modified Navier-Stokes equation. Indeed, Hubble’s law may actually refer to tired light, though described as energy loss due to SQS’s nonzero viscosity instead of Compton scattering, bypassing known historical problems concerning tired light. We see that SQS’s viscosity may also account for the Pioneer anomaly. Our evaluation gives a magnitude of the anomalous acceleration aP = −HΛc = −8.785°10−10 ms−2. Here, HΛ is the Hubble parameter loaded by the cosmological constant Λ. Furthermore, the vorticity equation stemming from the modified Navier-Stokes equation gives a solution for flat profile of the orbital speed of spiral galaxies and discloses what one might call a breathing of galaxies due to energy exchange between the galactic vortex and dark energy.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"60002",doi:"10.5772/intechopen.75426",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:1396,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Secondary cosmic muons provide a powerful probe to explore various aspects of the world around us. Various physical processes have been employed over the last years for such applications. Muon absorption was used to probe the interior of natural and man-made structures, from the Egypt pyramids to big volcanoes, contributing to interdisciplinary studies. Multiple scattering was employed to reconstruct the location of scattering centres, producing 2D and 3D images of the interior of hidden volumes (muon tomography). Additional possibilities of cosmic muons have been exploited even for the alignment of large civil structures and in the study of their stability. All these applications benefit from the development of advanced detection techniques and improvement in software algorithms. This contribution surveys the state of the art of these applications, with special emphasis on their possibilities and limitations.",book:{id:"6768",slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"54705",doi:"10.5772/68116",title:"The Impact of Baryons on the Large-Scale Structure of the Universe",slug:"the-impact-of-baryons-on-the-large-scale-structure-of-the-universe",totalDownloads:1472,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Numerical simulations play an important role in current astronomy researches. Previous dark-matter-only simulations have represented the large-scale structure of the Universe. However, nowadays, hydro-dynamical simulations with baryonic models, which can directly present realistic galaxies, may twist these results from dark-matter-only simulations. In this chapter, we mainly focus on these three statistical methods: power spectrum, two-point correlation function and halo mass function, which are normally used to characterize the large-scale structure of the Universe. We review how these baryon processes influence the cosmology structures from very large scale to quasi-linear and non-linear scales by comparing dark-matter-only simulations with their hydro-dynamical counterparts. At last, we make a brief discussion on the impacts coming from different baryon models and simulation codes.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Weiguang Cui and Youcai Zhang",authors:[{id:"199688",title:"Dr.",name:"Weiguang",middleName:null,surname:"Cui",slug:"weiguang-cui",fullName:"Weiguang Cui"},{id:"205491",title:"Dr.",name:"Youcai",middleName:null,surname:"Zhang",slug:"youcai-zhang",fullName:"Youcai Zhang"}]},{id:"54580",doi:"10.5772/67976",title:"The Importance of Cosmology in Culture: Contexts and Consequences",slug:"the-importance-of-cosmology-in-culture-contexts-and-consequences",totalDownloads:3309,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Scientific cosmology is the study of the universe through astronomy and physics. However, cosmology also has a significant cultural impact. People construct anthropological cosmologies (notions about the way the world works), drawing in scientific theories in order to construct models for activities in disciplines, such as politics and psychology. In addition, the arts (literature, film and painting, for example) comment on cosmological ideas and use them to develop plot lines and content. This chapter illustrates examples of such work, arguing that scientific cosmology should be understood as a significant cultural influence.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Nicholas Campion",authors:[{id:"200410",title:"Dr.",name:"Nicholas",middleName:null,surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion"}]},{id:"60664",doi:"10.5772/intechopen.75877",title:"Galactic Cosmic Rays from 1 MeV to 1 GeV as Measured by Voyager beyond the Heliopause",slug:"galactic-cosmic-rays-from-1-mev-to-1-gev-as-measured-by-voyager-beyond-the-heliopause",totalDownloads:1241,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Voyager 1 has now been beyond the heliopause for over 5 years since its seminal crossing of this boundary in August of 2012. During its epic 40 year journey of ~122 AU out to this boundary and beyond this spacecraft has passed through several regions of the heliosphere including the heliosheath of extent ~30 AU just inside the heliopause (HP), where extremely large and variable intensities of protons, helium and oxygen nuclei as well as electrons between 1 and 100 MeV were observed. Then, suddenly these particles completely vanished and new and completely different spectra of particles between 1 MeV up to ~1 GeV and beyond, instantly recognizable as those for galactic cosmic rays were observed. These spectra and intensities at all energies have remained constant to within ±1% for 5 years corresponding to 20 AU beyond the HP.",book:{id:"6768",slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"William R. Webber",authors:[{id:"114311",title:"Prof.",name:"William R",middleName:null,surname:"Webber",slug:"william-r-webber",fullName:"William R Webber"}]}],mostDownloadedChaptersLast30Days:[{id:"54580",title:"The Importance of Cosmology in Culture: Contexts and Consequences",slug:"the-importance-of-cosmology-in-culture-contexts-and-consequences",totalDownloads:3316,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Scientific cosmology is the study of the universe through astronomy and physics. However, cosmology also has a significant cultural impact. People construct anthropological cosmologies (notions about the way the world works), drawing in scientific theories in order to construct models for activities in disciplines, such as politics and psychology. In addition, the arts (literature, film and painting, for example) comment on cosmological ideas and use them to develop plot lines and content. This chapter illustrates examples of such work, arguing that scientific cosmology should be understood as a significant cultural influence.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Nicholas Campion",authors:[{id:"200410",title:"Dr.",name:"Nicholas",middleName:null,surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion"}]},{id:"55416",title:"Constraining the Parameters of a Model for Cold Dark Matter",slug:"constraining-the-parameters-of-a-model-for-cold-dark-matter",totalDownloads:1292,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter aims at reviewing how modeling cold dark matter as weakly interacting massive particles (WIMPs) gets increasingly constrained as models have to face stringent cosmological and phenomenological experimental results as well as internal theoretical requirements like those coming from a renormalization-group analysis. The review is based on the work done on a two-singlet extension of the Standard Model of elementary particles. We conclude that the model stays viable in physically meaningful regions that soon will be probed by direct-detection experiments.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Abdessamad Abada and Salah Nasri",authors:[{id:"54894",title:"Prof.",name:"Salah",middleName:null,surname:"Nasri",slug:"salah-nasri",fullName:"Salah Nasri"},{id:"61340",title:"Dr.",name:"Abdessamad",middleName:null,surname:"Abada",slug:"abdessamad-abada",fullName:"Abdessamad Abada"}]},{id:"69434",title:"Applications of the Abelian Vortex Model to Cosmic Strings and the Universe Evolution",slug:"applications-of-the-abelian-vortex-model-to-cosmic-strings-and-the-universe-evolution",totalDownloads:794,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Due to the wide range of applications and effects of the Abelian vortex model of Nielsen and Olesen in the many areas of physics, ranging from condensed matter to astrophysical effects, some work in the literature is necessary to approach this topic in a succinct form that the undergraduate student in both physics and related areas has the possibility to know and understand. The mechanisms associated with this vortex model indicate him as a strong candidate for the source for the topological defects proposed by Vilenkin.",book:{id:"7357",slug:"new-ideas-concerning-black-holes-and-the-universe",title:"New Ideas Concerning Black Holes and the Universe",fullTitle:"New Ideas Concerning Black Holes and the Universe"},signatures:"Mikael Souto Maior de Sousa and Anderson Alves de Lima",authors:[{id:"274390",title:"Dr.",name:"Mikael Souto",middleName:null,surname:"Maior De Sousa",slug:"mikael-souto-maior-de-sousa",fullName:"Mikael Souto Maior De Sousa"},{id:"284103",title:"Dr.",name:"Anderson",middleName:null,surname:"Alves De Lima",slug:"anderson-alves-de-lima",fullName:"Anderson Alves De Lima"}]},{id:"54849",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1813,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"We assume that dark energy and dark matter filling up the whole cosmic space behave as a special superfluid, here named “superfluid quantum space.” We analyze the relationship between intrinsic pressure of SQS (dark energy's repulsive force) and gravity, described as an inflow of dark energy into massive particles, causing a negative pressure gradient around massive bodies. Since no superfluid has exact zero viscosity, we analyze the consequences of SQS’s viscosity on light propagation, and we show that a static Universe could be possible, by solving a modified Navier-Stokes equation. Indeed, Hubble’s law may actually refer to tired light, though described as energy loss due to SQS’s nonzero viscosity instead of Compton scattering, bypassing known historical problems concerning tired light. We see that SQS’s viscosity may also account for the Pioneer anomaly. Our evaluation gives a magnitude of the anomalous acceleration aP = −HΛc = −8.785°10−10 ms−2. Here, HΛ is the Hubble parameter loaded by the cosmological constant Λ. Furthermore, the vorticity equation stemming from the modified Navier-Stokes equation gives a solution for flat profile of the orbital speed of spiral galaxies and discloses what one might call a breathing of galaxies due to energy exchange between the galactic vortex and dark energy.",book:{id:"5918",slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"60002",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:1400,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Secondary cosmic muons provide a powerful probe to explore various aspects of the world around us. Various physical processes have been employed over the last years for such applications. Muon absorption was used to probe the interior of natural and man-made structures, from the Egypt pyramids to big volcanoes, contributing to interdisciplinary studies. Multiple scattering was employed to reconstruct the location of scattering centres, producing 2D and 3D images of the interior of hidden volumes (muon tomography). Additional possibilities of cosmic muons have been exploited even for the alignment of large civil structures and in the study of their stability. All these applications benefit from the development of advanced detection techniques and improvement in software algorithms. This contribution surveys the state of the art of these applications, with special emphasis on their possibilities and limitations.",book:{id:"6768",slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]}],onlineFirstChaptersFilter:{topicId:"221",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Rosa María Martínez-Espinosa is a Full Professor of Biochemistry and Molecular Biology at the University of Alicante, Spain, and has been the vice president of International Relations and Development Cooperation at this university since 2010. She created the research group in applied biochemistry in 2017 (https://web.ua.es/en/appbiochem/), and from 1999 to the present has made more than 200 contributions to Spanish and international conferences. Furthermore, she has around seventy-five scientific publications in indexed journals, eighty book chapters, and one patent to her credit. Her research work focuses on microbial metabolism (particularly on extremophile microorganisms), purification and characterization of enzymes with potential industrial and biotechnological applications, protocol optimization for genetically manipulating microorganisms, gene regulation characterization, carotenoid (pigment) production, and design and development of contaminated water and soil bioremediation processes by means of microorganisms. This research has received competitive public grants from the European Commission, the Spanish Ministry of Economy and Competitiveness, the Valencia Region Government, and the University of Alicante.",institutionString:"University of Alicante",institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:4,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:18,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:14,paginationItems:[{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",slug:"potassium-in-human-health",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Jie Tang",hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",volumeInSeries:12,fullTitle:"Potassium in Human Health",editors:[{id:"181267",title:"Dr.",name:"Jie",middleName:null,surname:"Tang",slug:"jie-tang",fullName:"Jie Tang",profilePictureURL:"https://mts.intechopen.com/storage/users/181267/images/system/181267.png",institutionString:"Brown University",institution:{name:"Brown University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Manash K. Paul",hash:"eb5407fcf93baff7bca3fae5640153a2",volumeInSeries:13,fullTitle:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",slug:"autonomic-nervous-system-special-interest-topics",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Theodoros Aslanidis and Christos Nouris",hash:"48ac242dc6c5073b2590a509c44628e2",volumeInSeries:14,fullTitle:"Autonomic Nervous System - Special Interest Topics",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis",profilePictureURL:"https://mts.intechopen.com/storage/users/200252/images/system/200252.png",institutionString:"Saint Paul General Hospital of Thessaloniki",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:4},{group:"subseries",caption:"Cell Physiology",value:11,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:4},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human Activity, Pollutants, Reduced Risks, Population Growth, Waste Disposal, Remediation, Clean Environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"83117",title:"Endothelial Secretome",doi:"10.5772/intechopen.106550",signatures:"Luiza Rusu",slug:"endothelial-secretome",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Luiza",surname:"Rusu"}],book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"78064",title:"The Salivary Secretome",doi:"10.5772/intechopen.98278",signatures:"Luís Perpétuo, Rita Ferreira, Sofia Guedes, Francisco Amado and Rui Vitorino",slug:"the-salivary-secretome",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"65334",title:"Introductory Chapter: Some Important Aspects of Root Canal Treatment",doi:"10.5772/intechopen.83653",signatures:"Ana Luiza de Carvalho Felippini",slug:"introductory-chapter-some-important-aspects-of-root-canal-treatment",totalDownloads:852,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ana Luiza",surname:"De Carvalho Felippini"}],book:{title:"Root Canal",coverURL:"https://cdn.intechopen.com/books/images_new/7133.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:5,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:126,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:13,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"10",title:"Animal Physiology",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development"},{id:"11",title:"Cell Physiology",scope:"\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology"},{id:"12",title:"Human Physiology",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions"},{id:"13",title:"Plant Physiology",scope:"Plant Physiology explores fundamental processes in plants, and it includes subtopics such as plant nutrition, plant hormone, photosynthesis, respiration, and plant stress. In recent years, emerging technologies such as multi-omics, high-throughput technologies, and genome editing tools could assist plant physiologists in unraveling molecular mechanisms in specific critical pathways. The global picture of physiological processes in plants needs to be investigated continually to increase our knowledge, and the resulting technologies will benefit sustainable agriculture.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",keywords:"Plant Nutrition, Plant Hormone, Photosynthesis, Respiration, Plant Stress, Multi-omics, High-throughput Technology, Genome Editing"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:126,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},subseries:[{id:"3",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"