Ficus, a genus of plant family Moraceae, includes about 850 species. Most of the species of Ficus are used as a source of nutrition for humans. The roots, aerial roots, stem, bark, leaves, latex, fruit, and pulp of the Ficus plants are medicinally important due to the presence of a variety of bioactive phytochemical compounds, such as polyphenols, phenolic acids, triterpenoids, flavonoids, flavonols, anthocyanins, carotenoids, glycosides, polysaccharides, reducing compounds, and vitamins K, E, and C. Most of these phytochemical compounds possess strong antioxidant potential in terms of metal chelating, metal reducing, lipid reducing, and free radical scavenging capacities, which may be helpful in reducing the oxidative stress in the biological systems. On account of their high phytochemical content and strong antioxidant potential, these plants show several biological activities including antimicrobial, antidiabetic, anti-obesity, hepatoprotective, cardioprotective, and renal-protective, and anticancer activities. These plants have been found to be effective in the treatment of diabetes, stomachache, piles, skin diseases, inflammation, and cancer.
Part of the book: Modern Fruit Industry
Starch is a naturally occurring glucose homo-polysaccharide of nutritional, pharmaceutical, and industrial importance. The complex polymeric structure and poor solubility of native starch in water limits their importance at pharmaceutical and industrial level. The structure, reactivity, and functionality of the native starch can be modified by physical, chemical, enzymatic, and biotechnological methods. Various physical modifications techniques, including the thermal, radio-thermal, freezing and thawing, annealing, high-pressure, ultrasonic, and pulsed electric field treatment, and chemical modifications, including oxidation, etherification, esterification, cationization, cross-linking, and graft polymerization, have been found to change the surface properties, polarity and linearity of the molecular chains, the degree of substitution, the polymeric, granular, and crystalline structure, amylose to amylopectin ratio, solubility, viscosity, pasting, gelatinization, swelling, water absorption, and emulsifying properties of starch. The structural changes have resulted in the improvement of thermal and freeze-thaw stability, viscosity, solubility, water binding capacity, swelling power, gelling ability, and enzymatic digestibility of starch. The exposure of reactive functional groups after physical or chemical modification modifies the reactivity of starch toward water, oil, acids, enzymes, and other chemical species. These modification techniques have led to some revolutionary changes in reactivity, functionality, and application of starch in various fields.
Part of the book: Chemical Properties of Starch