Baby’s instinctive behaviors during bonding and ‘skin-to-skin care’ after delivery.
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55999",title:"Neonatal Care in the First Hour of Life",doi:"10.5772/intechopen.69600",slug:"neonatal-care-in-the-first-hour-of-life",body:'The transition to extrauterine life is a remarkable physiological event that involves a series of modifications that depend on the degree of maturation in late gestation, the process of delivery itself and establishment of independent physiological processes for regulating homeostasis after placenta lost its function. These processes are establishment for respiration, change from parallel to serial circulation, oral feeding, thermoregulation and glucose homeostasis [1]. Respiratory and cardiovascular changes occur simultaneously and are mutually dependent. The triggers of initial first breath are complex and not fully understood yet. Many factors play role in the initiation of breathing, and some of them derive already during the birthing process [2].
We must admit that these are great and demanding changes that need to occur in a short period. However, it is not the purpose of this chapter to describe the processes that occur in the body of the newborn. The main purpose is to remind the readers how to support these natural processes and not disturb them with unnecessary interventions.
When we speak of mature healthy newborn, midwives have to be alert to observe possible complications; however, the newborn in this case does not need any special interventions. On the contrary, the most precious ingredient for the baby in this immediate postpartum period is time. Midwife has to permit natural processes to occur spontaneously and not force them.
The smooth physiological transition can be promoted already by enabling natural processes of the first and second stages of labor; however, we can claim that physiological third stage is even more directly connected to the newborn. Expectant (physiological) third stage of labor is connected to many advantages; because of the delayed cord clamping, baby gets more red blood cells and hematopoietic stem cells and 30% of additional blood volume that is important for respiratory function. At birth, this blood moves into the infant’s lung; the cardiac output to the lung changes from 8–10% in utero to 45% in the immediate newborn period and demands an increased blood volume. An adequate red cell volume is necessary for oxygen delivery and consequently effective tissue functioning, normal pH and circulator integrity.
Right after the birth, remarkable changes in respiration and circulation are occurring in the newborn body. Therefore, midwife has to give the baby time for these adjustments. First minute after the birth of the baby, midwife has to observe and wait, and not overstimulate the baby and manipulate with him/her in order to provide the preconditions for these major and dramatical physiological changes. The decision for procedures of stabilization are suggested to be done after the 1st minute Apgar estimation.
When there is no need for resuscitation, the best place for the baby is by her mother. Separating mother and baby can have harmful effect on breastfeeding and their relationship [3]. Skin-to-skin prevents heat loss. Ludington-Hoe et al. [4] confirmed that mother and baby can synchronize body temperatures, when skin-to-skin is practiced; the energy saved can be used to stabilize heart and respiration rates. With kangaroo method also the initiation of breastfeeding is eased. Evidence suggests that the baby, when undisturbed, usually takes about 45–55 min to find the way to its mother’s breast, using the primal reflexes [5]. With the birth environment that provides warmth, safety and intimacy, the baby is able to make essential physiological adaptations. Midwives need to follow these physiological transitional processes.
World Health Organization and United Nations Children’s Fund [6] say that all mothers and babies should be kept together after the birth and should be encouraged to practice skin-to-skin in the first hour after delivery, even if mothers do not intend to breastfeed. This opportunity should be offered to all, also mothers and babies after cesarean section or vacuum extraction.
World Health Organization and United Nations Children’s Fund [6] recommended that all healthy mothers and babies, regardless of feeding preference and method of birth, have uninterrupted skin-to-skin care beginning immediately after birth for at least an hour, and until after the first feeding. All other procedures of initial newborn care can wait until the end of the fourth stage of labor (3 h after the birth), when the woman and the baby are to be discharged to the postpartum ward [7]. As Gunn et al. [8, p. 765] acknowledge ‘in a situation where both, mother and a child are healthy and well, any actions on the part of the midwife should be made unobtrusively and with fully informed consent of the parents.’ More importance should be given to the establishment of mother-infant bond, since contact with mother and baby in the hours after the birth not only fosters attachment, but at the same time fosters child’s development [8].
The first hour after birth, it is extremely sensitive and important for the stabilization of vital functions (breathing, saturation, blood pressure, thermoregulation, blood sugar stability, the newborn must establish pulmonary and cardiac function, etc.) in both mother and child, as well as the process of attachment between them and father. That is why the first hour after birth some call the golden hour [9].
Family bonding and baby’s first breastfeed is very important act after delivery. If mother or baby needs some help or medical advice during first breastfeed, then medical staff should help them at this essential time of birth, for both vaginal and cesarean births. If the mother has general anesthesia, we can put a newborn immediately after birth on father’s chest. This increases the effectiveness of breastfeeding, the process of attachment between mother and child, and reduces stress in their child [10].
At the moment of birth time, a mother needs a quiet, dim lighting, warmth and calm environment. She is still in labor. Her uterus needs to contract down. With smooth first hour after birth and mother’s skin-to-skin contact to a newborn, we allow the newborn to pass through nine instinctive phases in their behavior. These phases are innate and naturally given to every newborn (Table 1).
Phase | Naming | Baby’s instinctive behaviors—explanation |
---|---|---|
1 | Crying during the birth | Because of lungs expansion, baby starts crying |
2 | Relaxation | Baby shows relasxed hands without mouth movements |
3 | Awakening | Baby shows some movements with hands, heads and shoulders |
4 | Baby’ activity | Baby shows mouthing, suckling and way of movements |
5 | Baby’s rest | Phase without baby’s activities |
6 | Baby’s crawling | Baby’s recognizing the breast and nipple |
7 | Recognizing with familiarization | Baby familiarizes the nipple and breast. He also licks, touches and massages it |
8 | Sucking nipples | Baby is attached and is sucking the nipples |
9 | Baby’s sleeping | Baby’s restful sleep |
Baby’s instinctive behaviors during bonding and ‘skin-to-skin care’ after delivery.
The first stage is the birth cry. This distinctive cry occurs immediately after birth as the baby’s lungs expand. The second stage is the relaxation stage. During the relaxation stage, the newborn exhibits no mouth movements and the hands are relaxed. This stage usually begins when the birth cry has stopped. The baby is skin-to-skin with the mother and covered with a warm, dry towel or blanket. The third stage is the awakening stage. During this stage, the newborn exhibits small thrusts of movement in the head and shoulders. This stage usually begins about a few minutes after birth. The newborn in the awakening stage may exhibit head movements, open his eyes, show some mouth activity and might move his shoulders. The fourth stage is the activity stage. The newborn begins to make increased mouthing and sucking movements as the rooting reflex becomes more obvious. This stage usually begins about 8 min after birth. At any stage of the phase, the baby may rest. He may have periods of resting between periods of activity throughout the first hour or so after birth. The sixth stage is the crawling stage. The baby approaches the breast during this stage with short periods of action that result in reaching the breast and nipple. This stage usually begins about 35 min after birth. The seventh stage is called familiarization. During this stage, the newborn becomes acquainted with the mother by licking the nipple and touching and massaging her breast. This stage usually begins around 45 minutes after birth and could last for 20 minutes or more. The eighth stage is suckling. During this stage, the newborn takes the nipple, self-attaches and suckles. This early experience of learning to breastfeed usually begins about an hour after birth. It may take more time with skin-to-skin for the baby to complete the stages and begin suckling, especially for mothers who gave birth by cesarean section. The final stage is sleep. The baby and sometimes the mother fall into a restful sleep. Babies usually fall asleep about 1½–2 h after birth [11].
Continuous skin contact between newborn and mother should not affect on the work of the professional staff in the birth hospital. For example, procedures as it is control postpartum bleeding or disruption of the umbilical cord should be carried out without separation of the mother and newborn. If the birth was spontaneous and the child is not under the influences of medicines, keeping mother and newborn together beyond the moment of birth enables the child to be in a state of openness and vigilance and the most susceptible to the first impressions of the outside world. In the opinion of many eminent scientists of the child to design a basic response patterns, intimacy and sociality, which are matrix for all life [9, 12], one of the major challenges in the birth hospital is how best to combine a midwifery care and those medical procedures that are not necessary, to right form the birth as a family intimate and privacy event, if, of course, the child and maternal health would allow this [9, 11, 13]. Preventing separation except for compelling medical indications is an essential safe and healthy birth practice and an ethical responsibility of health-care professionals [14].
During the first hour after birth, many of hormones are releasing: dopamine, oxytocin, prolactin and estrogen. All these hormones initiate maternal instincts. Skin-to-skin contact allows that the mother and child are more relaxed and connected to each other. Whatever promotes the attachment between mother and child: touching, dermal contact, frequent eye contact and so on also promotes the development of a child’s brain. Skin contact activates the amygdala, which is a part of the limbic system in the brain that regulates emotional learning, memory processing and detection appetite. This part of the brain is the most developed in just the first two months of a child’s life. Oxytocin receptors in a woman’s brain increase during pregnancy. When baby is born, mother is more responsive to this hormone that promotes maternal behavior. Oxytocin is produced in large amounts when breastfeeding and holding babies are close skin-to-skin. Initial attachment has a positive effect on the formation of self-esteem of both parents, because the parents more quickly identify the child’s needs and can respond on it. From the child’s perspective, the separation from his mother is life-threatening. Keeping mothers and babies together beyond the moment of birth protects the child against the negative consequences of segregation. The frequency of crying and the quantity of stress hormones are lower if child is in skin contact with his mother. In this way, the mother’s body heat is also transmitted to the newborn, who is better able to regulate self body temperature and respiration [15]. Skin-to-skin contact heightens response, stimulates behaviors that help to meet the newborn’s basic biological needs, activates neuroprotective mechanisms and enables early neurobehavioral self-regulation. Skin-to-skin care reduced maternal physiologic stress and depressive feelings after hospital discharge, which may help to empower women in their role as mothers [16].
Blackburn [17] sees hormones as a chemical messengers which either in the body fluids or in blood excert a physiological effect on other cells in other places in the body. The hormones interplay in labor and birth is often compared to an orchestra where every instrument knows exactly how to play perfect notes to create a beautiful melody. If the melody is played well, it sets the stage also in a more immediate way for the postpartum process for both the mother and her baby, because all the different hormones released by mother and fetus during the first and second stages of labor are not yet eliminated during the hour following birth.
One of such hormones is already mentioned oxytocin, which is relatively well studied in relationship to behaviors after birth [18] but still not fully understood [19]. As Phillips [18] notices, it has been shown to increase relaxation, attraction, facial recognition and maternal care-giving behaviors which are all necessary to ensure infant survival. Odent [19] recognizes that oxytocin is never released in isolation. It is always part of a complex hormonal balance in our metaphor part of an orchestra. That means that in the hour following birth, in physiological conditions, the high peak of oxytocin is associated with a high level of prolactin, which is also known as the ‘motherhood hormone.’ It is known to affect mothering behavior in animals. In humans, oxytocin induces a state of calm and reduces stress [20]. Love and affection between the mother and a child is enhanced, and bonding is optimal. These pleasant moments stimulate the secretion of oxytocin, and also prolactin, and skin-to-skin contact between mother and baby after delivery helps both breastfeeding and emotional bonding [6]. Odent [9] sees this as the most typical situation for inducing love of babies. Oxytocin and prolactin complement each other and are released in response to stimulation by the baby’s sucking at the breast. When a baby suckles at the breast, sensory impulses pass from the nipple to the brain. In response, the anterior lobe of the pituitary gland secretes prolactin and the posterior lobe secretes oxytocin [21]. If a mother is in severe pain or emotionally upset, the oxytocin reflex may become inhibited, and her milk may suddenly stop flowing well. In animals also prolactin is responsible for mothering behaviors [18]. During the first few weeks, the more a baby suckles and stimulates the nipple, the more prolactin is produced, and the more milk is produced. This effect is particularly important at the time when lactation is becoming established, right after the birth.
Oxytocin is responsible for increasingly strong and effective contractions during the labor. And when, during the labor, levels of oxytocin rise, endorphins (sometimes called natural opiates) are released. Beta-endorphin is secreted by the pituitary gland in times of pain and stress. It activates the mesocorticolimbic dopamine reward system and produces pleasure in association with sex, birth and breastfeeding. It is known by now that after birth, both mother and a baby are saturated with natural opiates if the birth is physiological. They reinforce the mother-infant bond and contribute to ecstatic feelings for both [21]. Endorphins also help make the transition to extrauterine life easier for the baby, facilitating relaxation and calm [18].
As the baby descends during the labor, in fact close to the actual birth also catecholamines are released. Sometimes they are called ‘fight or flight’ hormones: epinephrine (adrenaline) and norepinephrine (noradrenaline).They are secreted from the adrenal gland above the kidney in response to stresses such as fright, anxiety, hunger or cold, as well as excitement, when they activate the sympathetic nervous system for fight or flight. During birth, when women are scared or have difficulty coping with pain, they can be overproduced and can inhibit production of oxytocin. However, normal values ensure mother is alert when baby is born; also, baby is alert, with eyes wide opened and trying to make eye contact with mother [19].
To our current knowledge, many different hormones can influence several types of behavior, but for the purpose of getting to know the behavioral effects of different hormones involved in the birth process, four most important ones were described. It is known by now that all the different hormones released by the mother and by the baby during labor and delivery are not eliminated immediately. By knowing that, we realize it is essential to promote best practices already in labor processes.
Maternal attachment and bonding does not start at birth; from psychological point of view, the system has been prepared during the whole pregnancy, when mother imagines her baby and when the baby gets to know the odor, voice and smell of mother [22]. However, after the birth, she encounters him/her for the first time and therefore this time is so crucial for the establishment of the relationship between the baby and the mother/parent. The space for this intimate process must be given to the family and as Gunn et al. [8, p. 765] write: ‘the midwife should never undermine the role of the mother who is transitioning into her new role.’
When left undisturbed, mothers demonstrate ‘species-specific behavior’ [23]. Mother explores her baby with her fingertips, then strokes the child and even then cuddles him/her into her arms, facing her. She establishes eye contact, talks to her baby and then introduces him/her to partner [8]. She progresses through three major steps:
Her first preoccupation is the survival of the baby.
Then, she needs to know that everything is fine with the baby.
Once reassured that the baby is healthy, mother wants to make the baby her own. She seeks physical resemblance.
These steps are crucial for every new mother; however, this is not yet a relationship [24]; attachment is much more complex and takes more time to be established. The initial emotional connection that mother establishes with her newborn baby is called bonding [25]. It was believed that bonding is one-way relationship (from parents toward child), under the strong influence of important maternal and infant oxytocin that promotes empathy. Other neurotransmitters such as opioids and dopamine also play role in the bonding process [26, 27, 28]. It can be therefore concluded that bonding is eased when the birth process is natural and all these hormones are expressed. Within the context of the results of latest research, the experts began to question whether bonding is really a one-way relationship. Feldman et al. [29] found synchronic levels of oxytocin in infants and mothers who interacted with them. These high levels of oxytocin in baby help her/him to adapt to extrauterine life [16]. Despite the fact that babies communicate nonverbal, they respond to parents.
Also, the baby responds facially to mother’s voice, especially in the case of physiological birth, right after the birth, when the baby is in a quiet alert state, aware of the surrounding and uses all his/her senses. The baby has competencies to develop ties with parents [24]. Besides voice, his/her strongest sense is scent, necessary to find the mother’s breast. After the first feed, baby usually gets to sleep that can last even 6 h [30].
All these (nonverbal, mostly facial) responses of the baby evoke interaction with parents that sets grounds for developing a bond among them. They were acknowledged already by Bowlby [31]. He proposed that there is an attachment system that is biologically based and promotes survival. He claimed that infants have specific behaviors that attract proximity of the caregiver in order to survive or to be emotionally connected, so-called proximity-seeking behavior. Repetitions of such interactions by the caregiver lead to ‘internal working model’ or internal representation of the attachment relationship [32].
The infant, despite that he/she is not verbal yet, generates these affective, sensorimotor activities from parents. He cannot self-regulate yet, but can learn this capacity through parental care-giving behaviors and his own ability to self-regulate [32]. It is therefore of crucial importance that woman is relaxed and in touch with her own feelings.
Reid and Freer [33] wrote that maternal role develops smoothly when mothers’ self-esteem in mothering abilities is enhanced. Midwife can strengthen her perception with different interventions. If they make parents aware of babies’ behavioral and autonomic cues, they can be more confident in caring for their newborn, taking into account the child’s individual tolerance (for habituation to noise, light, etc.) [34].
Benefits of skin-to-skin for attachment, breastfeeding and thermoregulation are well known, and new insights, however, revealed even other advantages. Colonization of the baby with the mother’s microbiome occurs first during vaginal delivery, later on with her skin microbes, and during initial breastfeeding, also the newborn gut is colonized with microbes that built normal gastrointestinal flora.
When newborn transits to a life outside a womb, it must adapt to many new circumstances. One is metabolic transition, which is not as dramatic as, for example, changes in cardiopulmonary systems, but equally complex and essential for survival. As Colson [35] notices cardiopulmonary, immune and thermal adaptations are well documented, but most texts fail to describe the normal physiological metabolic transition from fetus to neonate.
Just after birth, as soon as the umbilical cord ceases to pulsate, placental circulation stops. This means that the constant supply of maternal nutrition especially glucose transferred via the placenta stops. Before the birth, no significant production of glucose has been demonstrated [36]. In utero insulin is being used as a growth hormone instead of being a metabolic regulator. Colson [35] explains that the processes of lipogenesis (formation and storage of fat in the form of adipose tissue) and glycogenesis (formation and storage of glucose in the form of glycogen in the liver, cardiac muscle and brain) are replaced by the metabolic pathways of neonatal life. These are glycogenolysis (breakdown of glycogen), lipolysis (breakdown of fats), gluconeogenesis (endogenous glucose production) and ketogenesis (formation of ketone bodies).These pathways imply a metabolic switch at birth from glucose to fat and therefore a diet initially lower in carbohydrate and high in fats. It is true that while neonatal blood glucose levels immediately fall in almost all healthy infants, it must adapt to intermittent feeding, digestion and intestinal absorption of nutrients (adapted from Colson, p. 13). The fetus prepares for his transition mainly by storing glycogen, producing catecholamines and depositing brown and white fat [37]. After the birth, hepatic glycogen stores are mobilized and hepatic synthesis of glucose from noncarbohydrate substrates enuses. This substrate enters the citric acid cycle and produces adenosine triphosphate, which serves as the energy source for the brain [37]. These events actually allow baby to gradually mobilize glucose to meet energy requirements. So-called transient neonatal hypoglycemia is a process of normal adaptation to extrauterine life, and it is important that we realize that in first 3–4 h healthy newborn could have low blood glucose levels.
Colson [35] exposes several practices that stand behind understanding of the normal metabolic physiology:
Metabolic transition is not generally taught in midwifery and medical curricula as part of normal postnatal adaptation from fetus to neonate. Descriptions of metabolic changes are absent or sparse. When present, they are usually rooted in pathology.
Research has shown that patterns of metabolic adaptation are different according to whether the baby is breastfed or has artificial feeds and this is largely ignored in midwifery and pediatric assessment. Mixed feeding is common in the first three days postnatal even when the mother wants to breastfeed exclusively.
Furthermore, in the early postnatal days, current breastfeeding definitions disregard dose. A baby is considered to be breastfed when receiving any amount of mother’s milk, however small. Not knowing whether the baby is exclusively breastfed blurs the understanding of those clinical characteristics associated with a baby who is wholly breastfed.
Mothers are often encouraged to swaddle their babies from birth and to keep them in the cot unless they are actively feeding. This practice assumes that the continuity of maternal nutrition ends at birth as in bottle-feeding. Immediate swaddling also accentuates the discontinuity of postnatal transition, as mothers are physically separated from their babies even when they are in the same room. The early physical separation negates the continuity and postnatal effectiveness of the maternal body to maintain a homeostatic neutral/thermal environment from fetus to neonate. Keeping babies in the cot in between feeds instead of holding them during the first three days postpartum may have a negative effect upon early nurturing and breastfeeding.
Maternal choice rather than physiology provides the framework that underpins midwifery assessment. When there are breastfeeding problems in the first three days postnatal, a bottle-feeding solution is often offered. For example, when the baby demands breastfed and is unsettled, it is often believed that mother’s early colostral milk is insufficient. Mothers are often told that they can give the baby a bottle if they want. The irony is that maternal choice then appears to motivate supplementation. One often sees written in the notes ‘baby unsettled, mother requested bottle’ (Colson, p. 12).
In order to optimize metabolic adaptation, babies and mothers must be kept closely together after birth. Health workers must encourage mothers to maintain close body contact with their babies as often as they want in an undisturbed environment [38].
The human body is colonized by a vast number of microbes, collectively referred to as the human microbiota. The average human has over 100 trillion microbes in and on their body, and many of the latest discoveries are challenging previously held ideas about good and bad bacteria. Funkhouser and Bordenstein [39] say that the human microbiota comprises only 1–3% of an individual’s total body mass, outnumbering human cells 10 to 1 and adding over 8 million genes to our set of 22,000. At the beginning of the twentieth century, French pediatrician Henry Tissier said that human infants develop within a sterile environment and acquire their initial bacterial inoculum while traveling through the maternal birth canal but now the sterile womb hypothesis remains dogma. The intrauterine environment during healthy pregnancy has been presumed to be free of, although recent evidence of microbes presents in the amniotic fluid, umbilical cord blood, fetal membranes and placenta of healthy term pregnancies after both vaginal and C-section delivery has challenged this belief [40]. It is known by now that human infants are colonized with maternal vaginal and fecal microbes as they exit the birth. The way how is known to have long-term consequences on mothers and child health. This is especially important considering immune-mediated diseases. For example, children born via C-section are significantly more likely to develop allergic rhinitis, asthma, celiac disease, type 1 diabetes and inflammatory bowel disease [40].
Besides mode of delivery, breastfeeding also provides a route of maternal microbial transmission. Breast milk was considered sterile at first, but in colostrum collected aseptically already harbors hundreds of bacterial species [39].
To ensure the best maternal transmission of beneficial microbes, Reed [41] has made following suggestions:
Baby should be naked on mothers chest immediately following birth for at least an hour and a lot in following frost days.
Avoid bathing baby for at least 24 h after birth [42]. Use own linen from home for baby if in hospital.
Minimize the handling of baby.
Exclusively breastfeeding. If not, probiotics should be considered.
Probiotics may also be beneficial for babies suffering from colic.
The complex symbiosis between humans and microbes is important for our health, and breastfeeding benefits the health and well-being of infants. Maternal transmission is also a key factor in shaping the structure of the microbiome in animal species over evolutionary time, since microbes that promote host fitness, especially in females, will simultaneously increase their odds of being transferred to the next generation; therefore, it is essential to create optimal conditions to achieve the transmission.
Breastfeeding has many advantages for the child, mother and the environment. The smooth first hour after birth and mother’s skin-to-skin contact to newborn have positive impact on the effectiveness and duration of breastfeeding. Shorter intervals between birth and the start of skin-to-skin care and longer times spent skin-to-skin after birth improved breastfeeding exclusivity and duration. In the first month, woman has to breastfeed as often as the newborn wants or even more. With this the production of milk is assured. Many females are meeting with problem of too small amount of milk. The most frequent reasons are too little ingested liquid and disorderly diet. The problem can also be tiredness, increased amount of stress and rare short passing feeds. Relaxed and satisfied mother, who lives in a pleasant and tranquil environment, will have much better conditions for smooth milk lactation. The production and amount of milk is determining by the law of demand and offer. Birth environment and each health professional in their professional action may be more or less supportive impact on the ability and confidence of women to be born, breastfeeding and care for the baby, and baby’s ability to effectively breastfeed. Full breastfeeding can of course be established successfully after a cesarean section also. The beginning of the milk secretion can be delayed after caesarean section, however, there is no rule. It is important to know that a child for successful feeds need to have a search reflexes, reflexes of swallow and sucking reflex which is instinctive. The way of the childbirth does not have influence per this. It is true that the first feed is postponed as a mother is put to sleep during an intervention. Clinical staff has to help her to add a child only after a certain time, when a mother is wake and she is aware of herself and surroundings. There are qualified professionals working in various medical institutions that hold a specific and additional knowledge about lactation and breastfeeding. With breastfeeding, the ‘good bacteria’ from the mother’s body with a calm environment create good conditions for the development and strengthening of the child’s immune system. The WHO and UNICEF are recommending three important breastfeeding activities: (1) early breastfeeding and skin-to-skin contact with mother just after the birth; (2) exclusive breastfeeding to baby’s age of 6 months without other food or liquids and (3) continued breastfeeding to baby’s age of 2 years or even more. Meantime, the child can get complementary foods like soft foods and liquids, etc. [45, 46, 47]. Early breastfeeding and skin-to-skin contact immediately after birth keep a baby warm and have positive influence on their immune system. Despite that breastmilk is the best food with antibodies for baby’s development, it also has effects on mother’s ability of continuing exclusive breastfeeding. Mothers who breastfeed also have a (1) early initiation of breastfeeding—place newborns skin-to-skin with their mother immediately after birth, and support mothers to initiate breastfeeding within the baby’s first hour of life; (2) exclusive breastfeeding—provide only breastmilk to infants from birth until 6 months of age, with no other food or liquids (including water); (3) continued breastfeeding—breastfeeding until age 2 or longer, in addition to adequate and safe solid, semisolid or soft foods (also called complementary foods) [45, 46, 47]. Immediate skin-to-skin contact and starting breastfeeding early keeps a baby warm, builds his or her immune system, promotes bonding, boosts a mother’s milk supply and increases the chances that she will be able to continue exclusive breastfeeding. Breastmilk is more than just food for babies—it is also a potent medicine for disease prevention that is tailored to the needs of each child. The ‘first milk’—or colostrum—is rich in antibodies to protect babies from disease and death, lower risk of developing breast and ovarian cancers. Breastfeeding can also delay motherʼs ovulation [13, 47].
One of the important factor that contributes to good establishment of breastfeeding is adding of the newborn to the mother’s chest as soon as possible after birth, advisably to first half an hour or at least in hour after childbirth. If mother needs an advice or help during this time, it is very important that she gets it. First of feeds is introducing the first food and the first immunization to a child which further encourages the production of colostrum. Baby’s sucking reflex is expressed the most during the first hour after a birth. It is awaken during skin-to-skin contact and care. If the mother is breastfeeding the newborn immediately after birth, the hormonal balance during pregnancy is established for a long time, which very favorable impacts on motherʼs overall health being. In addition, under the influence of the hormone oxytocin, which is secreted, while a newborn stimulates motherʼs nipples, the uterus intensively cramps and quickly returns to its original size. And this reduces the likelihood of severe bleeding after childbirth. Oxytocin, which increases significantly during skin-to-skin care, promotes newborn attachment, reduces maternal and newborn stress and helps the newborn transition to postnatal life. With breastfeeding in first hour, the child also has a stable heart rhythm without bradycardia. The possibility of apnea is reduced by 75%, since the depth of each breath becomes more stable [9, 13, 48].
Colonization by mother’s bacteria and first lactation colostrum, which creates an optimal intestinal flora, is an optimal protection of the child immunity from possible allergies which might otherwise can be developed later in child life. Breastmilk is more than just food—it is also a potent medicine. It protects the child against disease, regulates the child’s immune system and helps child to digest the food [47]. This process helps to program the healthy development of the infant’s gut microbiome for life. There is evidence, for example, that breastmilk can help to counteract an infant’s genetic predisposition for obesity and other chronic diseases. So the first hour after birth is a critical period with irreversible consequences from the point of bacteriological view [12, 48]. More on that can be found in impacts on infant microbiome assembly chapter.
Mother’s breasts are natural thermoregulator to maintain the body temperature of a child. They regulate the temperature of a child. If the child is cold, the breast temperature increases, or if the child is warm, the breast temperature falls. Mother’s breasts are also natural thermoregulator for child’s respiratory and heart rates [8, 10, 48].
An undisturbed first hour with skin-to-skin also reduces the risk of hypoglycemia (see chapter about metabolic adaptation). Newborn babies can produce glucose from their body stores of energy until they are breastfeeding well and are more likely to do so when they remain skin-to-skin with their mothers. Breastfeeding extended period of natural immunity against mumps, measles and polio. Colostrum has a laxative effect and helps to facilitate the elimination of the first child’s stool. It is extremely easy to digest and does not cause constipation. The child has also less troubling with abdominal cramps. As long as the child is breastfed, it is protected against many infections, because breast milk receipt of child antibodies that protect against diseases that can overcome its mother. The child is also protected against ear infections, diarrhea, gastrointestinal infections and diseases of the respiratory tract. For breastfed infant, it is less likely to be diagnosed with meningitis and childhood diabetes. An active intake (compared with passive swallowing bottle) promotes the proper development of the jaw, the mouth muscles and cheek bones, resulting in a very favorable impact on the development of children’s speech.
First hour following birth for mature newborn is without doubt the most critical hour in life of human beings. During this time, a lot of changes happen. When woman gives birth, all the hard work she does generate changes in the chemistry in the brains. It makes women want to nurture her child. These hormones also cause the uterus to contract, shrink and stop bleeding.
Based on decades of evidence, the World Health Organization and United Nations Children’s Fund [6] recommended that all healthy mothers and babies, regardless of feeding preference and method of birth, have uninterrupted skin-to-skin care beginning immediately after birth, lasting for at least an hour.
There is still a lot of unnecessary interventions in the first hour after birth in many maternity hospitals. Routine procedures are being carried out starting from early cord clamping to vitamin K injection, eye prophylaxis antibiotic ointment, navel prophylaxis, foot and hand printing, weighing, measurements and bathing and others. All health-care providers should know that immediate skin-to-skin contact is the best way for a newborn and mother to bond. Healthy newborns should be placed in ‘skin-to-skin’ contact with the mother until the first round of breastfeeding is established. Skin-to-skin care means placing dried, unclothed newborns on their mother’s bare chest, with warmed light blankets or towels covering the newborn’s back. Women who have a planned or unplanned C-section would not be in the ideal position for intimate bonding right away. Baby could be taken to a warming table for a quick assessment first. Authors [18] claim that there is no reason why stable mothers should not have the experience of skin-to-skin contact after cesarean births, to collect the same short- and long-term benefits of it. Even from psychological point of view, it helps them mourn the loss of a normal vaginal birth.
The first hour should be focused on baby’s first breastfeed and mother-baby and family bonding. The manner in which a new baby is welcomed into the world during the first hours after birth may have short- and long-term consequences.
Stress corrosion cracking (SCC) in chemical, petrochemical, and power plant industries is an insidious form of corrosion, which causes a lot of financial losses and human damages [1, 2, 3, 4, 5]. This phenomenon is associated with a combination of tensile stress, environment, and some metallurgical conditions as described in Figure 1.
The essential requirements for SCC.
During stress corrosion cracking, the metal or alloy is virtually unattacked over most of its surface, while fine and branch cracks progress through the bulk of material [6]. It is shown in Figure 2. This cracking phenomenon has serious consequences since it can occur under stresses much lower than design stresses and lead the equipment and structures to premature failures [7, 8, 9, 10, 11].
Crack development in carbon steel exposed to nitrate solution.
Stress corrosion cracking starts from corrosion sites at the material surfaces and progresses into a brittle manner. The process of cracking is not strictly a mechanical process, as the corrosivity of the environment strongly affects the fracture mode. Both intergranular and transgranular stress corrosion cracking are observed. Intergranular cracking proceeds along grain boundaries, while transgranular cracking advances without apparent preference for boundaries [12]. An example of stress corrosion cracking in which the crack has progressed in both intergranular and transgranular paths is shown in Figure 3. The development mode of cracking depends on the composition and microstructure of the material and environment.
Intergranular and transgranular stress corrosion cracking of the AISI 316L stainless steel at polythionic acid environment [8].
In this chapter, the conditions for the occurrence of SCC are first introduced. Then, the stress corrosion cracking mechanism for various materials in conditions that are susceptible is discussed in detail. The design of industrial structures and components is usually based on tensile properties, which have many disadvantages. So, the science of fracture mechanics applies in the situations prone to SCC because of the inevitability of manufacturing and service defects in materials and for considering the role of such imperfections. Methods of prevention based on corrosion science and empirical data are presented. Finally, practical examples are given to better understand the issue.
Not all metal-environment combinations are susceptible to cracking. In other words, the environment for occurrences of SCC for each metal or alloys is specific. Also, the resources of stress for each case of failure may be different.
Austenitic stainless steels suffer from SCC in chlorides, caustic, and polythionic acid. When austenitic stainless steels with sufficient carbon content (more than 0.03 wt.%) are heated in the range of 415–850°C, their microstructure becomes susceptible to precipitation of chromium carbides (M23C6) along grain boundaries known as sensitization [9, 12, 13]. Formation of Cr-rich carbides along grain boundaries may drastically deplete free chromium content in the area adjacent to the grain boundaries and render them susceptible to rapid preferential dissolution. Sensitized steels are most susceptible; the stress corrosion cracking of nonsensitized steels is also observed [14, 15]. Dissolution of grain boundaries in some corrosive environments aside from tensile stress led these types of materials to SCC.
Seasonal cracking of brass in the rainy season in an ammoniacal environment is another classical example of SCC. This was first identified on the brass cartridge used by the British Army in India. Since it is usually identified during the rainy season, it is also called seasonal cracking [12]. Alpha brass is an alloy of Cu-Zn. It can crack either intergranularly or transgranularly in nontarnishing ammonia solutions, depending on its zinc content [16, 17, 18]. Transgranular stress corrosion cracking, TGSCC, is observed in alloys with 20 or 30% Zn but not in alloys with 0.5 or 10% Zn [19, 20]. Stress corrosion cracking of Cu-Zn and Cu-A1 alloys in cuprous ammonia solutions can only occur when the parting limits for dealloying are exceeded. The parting limits are about 14 and 18 a/o for Cu-A1 and Cu-Zn, respectively [21]. Cu-A1 and Cu-Ga alloys have shown similar behaviors [19, 22].
Aluminum and all its alloys can fail by cracking along grain boundaries when simultaneously exposed to specific environments and stresses of sufficient magnitude [23, 24]. Of eight series of aluminum alloys, 2xxx, 5xxx, and 7xxx aluminum alloys are susceptible to SCC. Among them, 7xxx series aluminum alloys have a specific application in aerospace, military, and structural industries due to superior mechanical properties. In these high-strength 7xxx aluminum alloys, SCC plays a vital factor of consideration, as these failures are catastrophic during the service [25].
Carbon and low alloy steels have shown SCC in a wide range of environments that tend to form a protective passive or oxide film [26, 27, 28, 29, 30]. The environments that would passivate carbon steels have been found to cause SCC, including strong caustic solutions, phosphates, nitrates, carbonates, ethanol, and high-temperature water. The problems are important for both economic and safety reasons, due to the extensive use of carbon steels [31]. For example, nitrate cracking in an ammonium nitrate plant caused by catastrophic failures and a lot of financial losses. Caustic cracking of steam-generating boilers made of low alloy steels was a serious problem, which led an ammonia plant to repeated emergency shutdowns.
Stress corrosion cracking may be a problem whenever certain high-strength titanium alloys are exposed to aqueous and certain solvent environments [32, 33, 34, 35, 36]. For the first time, SCC of titanium was reported by Kiefer and Harple who describe the cracking phenomena with commercially pure titanium in red fuming nitric acid [37]. Hot salt cracking of titanium alloys was reported in turbine blades that operate at high temperature in the mid-1950s. The subject became very active in the early 1960s because of the SCC problem connected to these alloys in a transportation program [38].The first known report of stress corrosion cracking of titanium alloys in room temperature aqueous environments was that of Brown. He found that titanium alloys, 8% aluminum–1% molybdenum–1% vanadium alloy (Ti, 8–1–1), were susceptible to SCC in seawater [38].
Another requirement for SCC to occur is a corrosive environment. The environments for SCC are specific because not all environments promote SCC. For those alloys that develop a protective film, an aggressive ion is required to promote SCC. The aggressive media to passive layer of stainless steels are chlorides, caustic, and polythionic acid. The austenitic stainless steel series 300 is more susceptible in an environment containing chlorides. Chlorides will not cause SCC unless an aqueous phase is present. It appears that stress corrosion cracking in austenitic stainless steels in the presence of chlorides proceeds transgranularly and usually occurs at temperature above 70°C
Metal | Environment |
---|---|
Al alloys | NaCl-H2O2 solutions |
NaCl solutions | |
Seawater | |
Copper alloys | Ammonia vapor and solutions |
Amines | |
Water or water vapor | |
Gold alloys | FeCl3 solutions |
Acetic acid-salt solutions | |
Inconel | Caustic soda solutions |
Lead | Lead acetate solutions |
Magnesium alloys | NaCl-Na2CrO4 solutions |
Rural and coastal atmospheres | |
Seawater | |
Distilled water | |
Nickel | Fused caustic soda |
Steels | NaOH solutions |
NaOH-Na2SiO4 solutions | |
Calcium, ammonium, and sodium nitrite solutions | |
Mixed acids (H2SO4-HNO3) | |
Acidic H2S solutions | |
Seawater | |
Carbonate-bicarbonate solutions | |
Stainless steels | Acidic chloride solutions |
NaCl-H2O2 solutions | |
Seawater | |
H2S | |
NaOH-H2S solutions | |
Condensing steam from chloride waters | |
Titanium alloys | Red fuming nitric acid |
Seawater | |
Methanol-HCl |
The stress in the form of tensile (not compressive) plays a key role in the SCC fracture processes. In fact, SCC would never have occurred in the absence of stress. The required tensile stresses may be in the form of directly applied stresses, thermal, in the form of residual stresses, or a combination of all [8, 50]:
For SCC to occur alone by applied stress, it must have a very high magnitude. The welding and mechanical residual stresses are the main sources of stress attributed to the stress corrosion cracking. The welding residual stress is produced as a result of nonuniform temperature changes during welding operation and can be calculated from thermal strain vectors.
The thermal strain vector,
in which
The operational thermal stress can also be calculated from Eq. 2. Mechanical workings such as cold deformation and forming, machining, and grinding are the other sources, which introduce residual stresses [8, 51].
Extensive investigations have been devoted to find mechanisms of SCC for different materials and environments. An SCC failure illustrates the combined effects of mechanical, physical, and chemical/electrochemical factors causing the separation of metal bonds at the crack tip, thereby advancing the crack. Three mechanisms for SCC have been proposed through the investigations [52]:
This model supposes that there are pre-existing paths in an alloy that is susceptible to anodic dissolution. Because of precipitation or solute segregation of impurities like sulfur, phosphorus, and chromium carbides, the electrochemical properties of the matrix and segregates are changed. The area adjacent to the grain boundaries is depleted from one or more alloying elements, and so under such conditions, localized galvanic cells are created (Figure 4). Since precipitation or segregation is generally anodic to the matrix of the grains, dissolution under an anodic reaction occurs and provides active path for localized corrosions [53]. Also, the removal of the protective film at the pre-existing crack tips by plastic deformation would facilitate the onset of localized corrosion.
Galvanic cell mechanism [52].
This mechanism has been extensively studied in stress corrosion cracking of alpha brass in ammoniacal environment and also proposed for caustic cracking of boiler steel. The model is based on the idea of a strain-induced rupture of the protective film, and so plastic strains play a main role in failure processes [52, 55]. The theory assumes the existence of a passivation film on a metal surface. The passivation film protects the underlying metal against corrosive agents. The passivation film is ruptured by plastic strain due to mechanical workings. After the film is ruptured, the bare metal is exposed to the corrosive environment. The processes of disruptive strain (disruption of protective film) and film formation (due to repassivation) have occurred and alternate with each other. The crack propagates when the rate of rupture of oxide film is higher than the rate of repassivation of the film [52]. The mechanism is shown in Figure 5.
Strain-generated active path mechanisms. (A) Film rupture model and (B) slip-step dissolution model [52].
This model is based on the effects of environmental species on interatomic bond strength. The theoretical fracture stress required to separate two layers of atoms of spacing b is given by [56].
where E is the Young modulus, γ is the surface energy, and b is the spacing between atoms.
This theory implies that if surface energy is reduced, then
The design of steel structure and component based on tensile properties has many disadvantages that do not take into account the role of imperfections. Fracture mechanic introduces another material characteristic, namely, fracture toughness, KIC, which considered the role of cracks and imperfection in the form of cracks in designs. In its simplest form [57].
where
According to this equation, fracture occurs when stress intensity factor,
Effects of corrosive environment on fracture toughness [12].
Since the exact mechanism of SCC has not been completely understood, prevention methods are either general or empirical in nature. Appropriate strategy should be done in order to minimize this problem to ensure not only the safety of human life but also the safety of cost. The following general methods are recommended to overcome the SCC problems [12, 52, 58, 59]:
Lowering the tensile stress in the welded component using post weld heat treatment. The post weld heat treatment reduced or eliminated residual stress on surface and through the bulk of material. Plan and low alloy steels may be a stress relief at 1100–1200°F. The range of residual stress relief temperature for austenitic stainless steels is from 1500 to 1700°F. Reduction of tensile stresses by shot peening is also recommended. Shot peening introduces surface compressive stresses.
Eliminating aggressive agents from the environment by, for example, degasification, demineralization, or distillation.
Changing the alloy is one possible solution if neither the environment nor stress can be changed. For example, it is a common practice to use Inconel (raising the nickel content) when typ. 304 stainless steel is not satisfactory.
Applying cathodic protection: impressed current cathodic protection system has been successfully used to prevent SCC of steels.
Adding inhibitors to the system if feasible: high concentrations of phosphate have been successfully used.
Coatings are sometimes used, and they depend on keeping the environment away from the metal.
After only 3 years’ service of a circulation water heater (heat exchanger), it has been shown to sever leakage and has led a methanol plant to emergency shutdown. An on-site investigation revealed extensive cracking initiated at weld area and through the tube sheet holes as it is shown in Figure 7.
Failed area (a) cracks extending in the weld joint of tube sheet to plugs and (b) branched cracks in the surface of the tube sheet and through the holes [8].
The circulation water heater is a vertical U-type heat exchanger made of austenitic stainless steels. The equipment used to decline reforms gas temperature in a methanol plant. The hot reformed gas at approximately 385°C entered the tubes and is cooled down to 168°C by exchanging the heat with processed water in the shell. The gases that flow through the tubes are mainly CO2, CO, H2, CH4, and N2 and at a pressure of 3.9 MPa. At the shell cooling process, water flows with about 6 MPa pressure.
Deposits had formed on top of the tube sheet due to shutdown errors. AISI 316L materials overheated in service because of the insulation role of the deposits. Material sensitization occurs since overheating. The presence of sulfur in the process gas aside from moisture formed polythionic acid during shutdowns. Residual stress produced by heavy machining and welding aside from operational thermal stress provided tensile stress, which is needed for SCC. Stress corrosion cracking is induced by polythionic acid. Concentrated water with other aggressive agents such as caustic and chlorides leaked through the cracks aid the failures.
Cleaning of the shell by demineralized water after each shut down in order to prevent the forming of insulating deposits above the tube sheet
Reduction of sulfur in feeding gas
Reduction of caustic and chlorides in processed water
Carryover of caustic soda (NaOH) in the steam path caused catastrophic failure of superheater stainless steel tubes in a gas-fired heater and led to an unexpected shutdown after just 5 months of continuous service following the start of production. The failure areas are shown in Figure 8. Three types of cracks are identified in various regions of the tube: circumferential cracks adjacent to the seam weld, circumferential cracks at the ribbon of the seam weld, and longitudinal cracks on the U-bend. The path of cracks was complex on the surface or in the bulk metal; all had nucleated from inside the tubes. A visual inspection revealed a white deposit, high in sodium, around the cracks on the surface of the tubes.
(a and b) Circumferential cracks adjacent to the seam weld, (c and d) circumferential cracks at the ribbon of seam weld, and (e) longitudinal cracks on the U-bend [9].
The superheater tube material was made of AISI 304H austenitic stainless steel material.
The gas-fired steam heater (FH) generates high-pressure (HP) steam for turbines for the processing of methanol. Demineralized water for the boiler and subsequent steam path is prepared in the water treatment unit. Caustic soda is injected to demineralized water for pH control. The water is transferred to the preheat exchangers, is converted to saturated high-pressure steam at 325°C and 119 MPa, and is sent to the FH. Through the FH tubes, saturated steam converted to supersaturate steam at a temperature of 505°C and pressure of 119 MPa.
The main cause of crack initiation was the increase of pH due to the rise of caustic concentration in condensed drops. Sensitized austenite grains caused by chromium carbide depletion adjacent to the grain boundaries were attacked by concentrated caustic in the HAZ metal and U-bend area and led the heater to the caustic SCC failure.
Using A335 Grade P9, a low alloy steel tube shows higher resistance to SCC than AISI 304H stainless steel
Proper discharge of the tubes during shutdowns to prevent the formation of the concentrated deposits of caustic through the tubes
After a general overhaul of a thermal power plant in Serbia in November 2014, failure of hundreds of brass condenser tubes occurred during the hydrostatic test. Also, it was noted that some backing plates had fallen off from the tubes before this test. Fracture is observed only in condenser tubes of brass, as can be seen in Figure 9.
Failure of brass condenser tubes near joining location with backing plate.
The failed tube material of the condenser was made of brass CuZn28Sn1 (admiralty brass). The cooling water (roughly filtered river water) flows through the tubes, while the hot steam flows around the tubes.
Analysis of fracture surfaces using scanning electron microscopy (SEM) has shown the brittle transgranular fracture due to the occurrence of SCC. The condenser tubes are made of brass CuZn28Sn1. Ammonia and other nitrogen compounds in the cooling water through the tubes were found. These compounds are specific agents that cause stress corrosion cracking (SCC) in brass. In the joining region of condenser tubes to backing plates, there are residual tensile stresses. During the floods in May 2014, there was an increase in the concentration of ammonia and other nitrogen compounds in the river cooling water flowing through the condenser tubes. Failure of brass condenser tubes occurred due to SCC, because the necessary conditions for the SCC occurrence were fulfilled.
The risk of SCC in brass condenser tubes can be reduced if specific substances responsible for SCC occurrence are removed, as much as possible. This can be achieved by cleaning and drying the tubes immediately after the operation delay of the power plant.
Another way to reduce the risk of SCC occurrence in condenser tubes is the replacement of existing tubes (made of brass CuZn28Sn1, very susceptible to SCC) with tubes made of alloys of greater resistance to SCC, such as copper-nickel alloys or Bi-brass alloys [61].
Stress corrosion cracking is one of the main causes of unforeseen and dangerous destruction of industrial plants. The sensitized material, certain environments, and stress are three factors necessary for the occurrence of these types of failures. The environment prone to the cracking for each metal or alloy is specific because not all environments promote the SCC. Austenitic stainless steels suffer from SCC in chlorides, caustic, and polythionic acid. Copper alloys corrode in ammonia-containing environments. Well-known specific environments for the stress corrosion cracking in Al alloys include water vapor, aqueous solutions, organic liquids, and liquid metals. The SCC of Ti alloys in aqueous chloride and methanolic chloride environments has been widely reported. The tensile stress plays a key role in the stress corrosion cracking phenomenon. The required tensile stresses may be in the form of directly applied stresses, thermal, in the form of residual stresses, or a combination of all.
If one of these three components does not exist, this type of corrosion will not occur. Therefore, the solving methods should be based on the elimination of one of these three factors. Corrosive environment modification, the stress in the form of compression, and using proper material are three general proposed methods of prevention.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"754",title:"Optical Engineering",slug:"optical-engineering",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:22,numberOfAuthorsAndEditors:677,numberOfWosCitations:1213,numberOfCrossrefCitations:566,numberOfDimensionsCitations:1187,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5074",title:"Some Advanced Functionalities of Optical Amplifiers",subtitle:null,isOpenForSubmission:!1,hash:"7c7a6a4771c3ed374faf640de9d0ba50",slug:"some-advanced-functionalities-of-optical-amplifiers",bookSignature:"Sisir Kumar Garai",coverURL:"https://cdn.intechopen.com/books/images_new/5074.jpg",editedByType:"Edited by",editors:[{id:"113477",title:"Dr.",name:"Sisir",middleName:"Kumar",surname:"Garai",slug:"sisir-garai",fullName:"Sisir Garai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4607",title:"Optoelectronics",subtitle:"Materials and Devices",isOpenForSubmission:!1,hash:"0e72724ec0d3faf1ec705cb92fa03c32",slug:"optoelectronics-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/4607.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",middleName:"L.",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4506",title:"Advances in Optical Fiber Technology",subtitle:"Fundamental Optical Phenomena and Applications",isOpenForSubmission:!1,hash:"9db9536cfa0ac3a32647a40c763b0b2d",slug:"advances-in-optical-fiber-technology-fundamental-optical-phenomena-and-applications",bookSignature:"Moh Yasin, Hamzah Arof and Sulaiman Wadi Harun",coverURL:"https://cdn.intechopen.com/books/images_new/4506.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",middleName:null,surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4494",title:"Advances in Optical Communication",subtitle:null,isOpenForSubmission:!1,hash:"8cd5ba4d56db55598d255b1d4f9e9519",slug:"advances-in-optical-communication",bookSignature:"Narottam Das",coverURL:"https://cdn.intechopen.com/books/images_new/4494.jpg",editedByType:"Edited by",editors:[{id:"15357",title:"Dr.",name:"Narottam",middleName:null,surname:"Das",slug:"narottam-das",fullName:"Narottam Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3849",title:"Optical Sensors",subtitle:"New Developments and Practical Applications",isOpenForSubmission:!1,hash:"951a7c0782d0f39b6aeef2c4a7b89846",slug:"optical-sensors-new-developments-and-practical-applications",bookSignature:"Mohamad Yasin, Sulaiman Wadi Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/3849.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",middleName:null,surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3360",title:"Current Developments in Optical Fiber Technology",subtitle:null,isOpenForSubmission:!1,hash:"834b9a9593a62b116d2101815fd94dd3",slug:"current-developments-in-optical-fiber-technology",bookSignature:"Sulaiman Wadi Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/3360.jpg",editedByType:"Edited by",editors:[{id:"17617",title:"Dr.",name:"Sulaiman Wadi",middleName:null,surname:"Harun",slug:"sulaiman-wadi-harun",fullName:"Sulaiman Wadi Harun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2992",title:"Current Trends in Short- and Long-period Fiber Gratings",subtitle:null,isOpenForSubmission:!1,hash:"7ea3b8fc542d07312526928ba5bac062",slug:"current-trends-in-short-and-long-period-fiber-gratings",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/2992.jpg",editedByType:"Edited by",editors:[{id:"29543",title:"Dr.",name:"Christian",middleName:"A",surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2196",title:"Organic Light Emitting Devices",subtitle:null,isOpenForSubmission:!1,hash:"a0752ca9019b034c7493b2c793e4e0cc",slug:"organic-light-emitting-devices",bookSignature:"Jai Singh",coverURL:"https://cdn.intechopen.com/books/images_new/2196.jpg",editedByType:"Edited by",editors:[{id:"148578",title:"Prof.",name:"Jai",middleName:null,surname:"Singh",slug:"jai-singh",fullName:"Jai Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3068",title:"Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves",subtitle:null,isOpenForSubmission:!1,hash:"ed32f8b9c79742d8ba52a7546781b4fb",slug:"solutions-and-applications-of-scattering-propagation-radiation-and-emission-of-electromagnetic-waves",bookSignature:"Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/3068.jpg",editedByType:"Edited by",editors:[{id:"73920",title:"Prof.",name:"Ahmed",middleName:"A",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2478",title:"Optical Communication",subtitle:null,isOpenForSubmission:!1,hash:"f8af14196b5429d6bf9fcb7db0a39199",slug:"optical-communication",bookSignature:"Narottam Das",coverURL:"https://cdn.intechopen.com/books/images_new/2478.jpg",editedByType:"Edited by",editors:[{id:"15357",title:"Dr.",name:"Narottam",middleName:null,surname:"Das",slug:"narottam-das",fullName:"Narottam Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1383",title:"Laser Scanner Technology",subtitle:null,isOpenForSubmission:!1,hash:"771c3069cd4dc6212513566bc71c2e5e",slug:"laser-scanner-technology",bookSignature:"J. Apolinar Munoz Rodriguez",coverURL:"https://cdn.intechopen.com/books/images_new/1383.jpg",editedByType:"Edited by",editors:[{id:"108690",title:"Dr.",name:"J. Apolinar",middleName:null,surname:"Munoz Rodriguez",slug:"j.-apolinar-munoz-rodriguez",fullName:"J. Apolinar Munoz Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1502",title:"Selected Topics on Optical Amplifiers in Present Scenario",subtitle:null,isOpenForSubmission:!1,hash:"fd2ecaaacdf0728e8f8af28d899ca791",slug:"selected-topics-on-optical-amplifiers-in-present-scenario",bookSignature:"Sisir Kumar Garai",coverURL:"https://cdn.intechopen.com/books/images_new/1502.jpg",editedByType:"Edited by",editors:[{id:"113477",title:"Dr.",name:"Sisir",middleName:"Kumar",surname:"Garai",slug:"sisir-garai",fullName:"Sisir Garai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:22,mostCitedChapters:[{id:"8446",doi:"10.5772/39538",title:"2 µm Laser Sources and Their Possible Applications",slug:"2-m-laser-sources-and-their-possible-applications",totalDownloads:11307,totalCrossrefCites:97,totalDimensionsCites:141,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Karsten Scholle, Samir Lamrini, Philipp Koopmann and Peter Fuhrberg",authors:[{id:"4951",title:"Dr.",name:"Karsten",middleName:null,surname:"Scholle",slug:"karsten-scholle",fullName:"Karsten Scholle"},{id:"133366",title:"Prof.",name:"Samir",middleName:null,surname:"Lamrini",slug:"samir-lamrini",fullName:"Samir Lamrini"},{id:"133370",title:"Prof.",name:"Philipp",middleName:null,surname:"Koopmann",slug:"philipp-koopmann",fullName:"Philipp Koopmann"},{id:"133371",title:"Mr.",name:"Peter",middleName:null,surname:"Fuhrberg",slug:"peter-fuhrberg",fullName:"Peter Fuhrberg"}]},{id:"44684",doi:"10.5772/54682",title:"A Guide to Fiber Bragg Grating Sensors",slug:"a-guide-to-fiber-bragg-grating-sensors",totalDownloads:5008,totalCrossrefCites:15,totalDimensionsCites:46,book:{slug:"current-trends-in-short-and-long-period-fiber-gratings",title:"Current Trends in Short- and Long-period Fiber Gratings",fullTitle:"Current Trends in Short- and Long-period Fiber Gratings"},signatures:"Marcelo M. Werneck, Regina C. S. B. Allil,\nBessie A. Ribeiro and Fábio V. B. de Nazaré",authors:[{id:"37623",title:"Prof.",name:"Marcelo",middleName:"M",surname:"Werneck",slug:"marcelo-werneck",fullName:"Marcelo Werneck"},{id:"61263",title:"Dr.",name:"Regina",middleName:"Célia",surname:"Allil",slug:"regina-allil",fullName:"Regina Allil"},{id:"167291",title:"MSc.",name:"Bessie",middleName:null,surname:"Ribeiro",slug:"bessie-ribeiro",fullName:"Bessie Ribeiro"},{id:"167292",title:"D.Sc.",name:"Fábio",middleName:"V. B. De",surname:"Nazaré",slug:"fabio-nazare",fullName:"Fábio Nazaré"}]},{id:"29105",doi:"10.5772/27304",title:"Synthesis of Two-Frequency Symmetrical Radiation and Its Application in Fiber Optical Structures Monitoring",slug:"synthesis-of-two-frequency-symmetrical-radiation-and-its-application-in-fiber-optical-structures-mon",totalDownloads:1727,totalCrossrefCites:25,totalDimensionsCites:35,book:{slug:"fiber-optic-sensors",title:"Fiber Optic Sensors",fullTitle:"Fiber Optic Sensors"},signatures:"Oleg Morozov, German Il’in, Gennady Morozov and Tagir Sadeev",authors:[{id:"69648",title:"Prof.",name:"Oleg",middleName:null,surname:"Morozov",slug:"oleg-morozov",fullName:"Oleg Morozov"},{id:"71962",title:"Prof.",name:"Gennady",middleName:null,surname:"Morozov",slug:"gennady-morozov",fullName:"Gennady Morozov"},{id:"71964",title:"Dr.",name:"Tagir",middleName:null,surname:"Sadeev",slug:"tagir-sadeev",fullName:"Tagir Sadeev"},{id:"120647",title:"Prof.",name:"German",middleName:null,surname:"Il'In",slug:"german-il'in",fullName:"German Il'In"}]}],mostDownloadedChaptersLast30Days:[{id:"44684",title:"A Guide to Fiber Bragg Grating Sensors",slug:"a-guide-to-fiber-bragg-grating-sensors",totalDownloads:5008,totalCrossrefCites:15,totalDimensionsCites:46,book:{slug:"current-trends-in-short-and-long-period-fiber-gratings",title:"Current Trends in Short- and Long-period Fiber Gratings",fullTitle:"Current Trends in Short- and Long-period Fiber Gratings"},signatures:"Marcelo M. Werneck, Regina C. S. B. Allil,\nBessie A. Ribeiro and Fábio V. B. de Nazaré",authors:[{id:"37623",title:"Prof.",name:"Marcelo",middleName:"M",surname:"Werneck",slug:"marcelo-werneck",fullName:"Marcelo Werneck"},{id:"61263",title:"Dr.",name:"Regina",middleName:"Célia",surname:"Allil",slug:"regina-allil",fullName:"Regina Allil"},{id:"167291",title:"MSc.",name:"Bessie",middleName:null,surname:"Ribeiro",slug:"bessie-ribeiro",fullName:"Bessie Ribeiro"},{id:"167292",title:"D.Sc.",name:"Fábio",middleName:"V. B. De",surname:"Nazaré",slug:"fabio-nazare",fullName:"Fábio Nazaré"}]},{id:"8446",title:"2 µm Laser Sources and Their Possible Applications",slug:"2-m-laser-sources-and-their-possible-applications",totalDownloads:11307,totalCrossrefCites:97,totalDimensionsCites:141,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Karsten Scholle, Samir Lamrini, Philipp Koopmann and Peter Fuhrberg",authors:[{id:"4951",title:"Dr.",name:"Karsten",middleName:null,surname:"Scholle",slug:"karsten-scholle",fullName:"Karsten Scholle"},{id:"133366",title:"Prof.",name:"Samir",middleName:null,surname:"Lamrini",slug:"samir-lamrini",fullName:"Samir Lamrini"},{id:"133370",title:"Prof.",name:"Philipp",middleName:null,surname:"Koopmann",slug:"philipp-koopmann",fullName:"Philipp Koopmann"},{id:"133371",title:"Mr.",name:"Peter",middleName:null,surname:"Fuhrberg",slug:"peter-fuhrberg",fullName:"Peter Fuhrberg"}]},{id:"8431",title:"Bismuth-doped Silica Fiber Amplifier",slug:"bismuth-doped-silica-fiber-amplifier",totalDownloads:3268,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Young-Seok Seo and Yasushi Fujimoto",authors:[{id:"4778",title:"Researcher",name:"Young-Seok",middleName:null,surname:"Seo",slug:"young-seok-seo",fullName:"Young-Seok Seo"},{id:"4885",title:"Dr.",name:"Yasushi",middleName:null,surname:"Fujimoto",slug:"yasushi-fujimoto",fullName:"Yasushi Fujimoto"}]},{id:"8441",title:"Magneto-Optical Devices for Optical Integrated Circuits",slug:"magneto-optical-devices-for-optical-integrated-circuits",totalDownloads:5805,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Vadym Zayets and Koji Ando",authors:[{id:"4688",title:"Dr.",name:"Vadym",middleName:null,surname:"Zayets",slug:"vadym-zayets",fullName:"Vadym Zayets"},{id:"133363",title:"Prof.",name:"Koji",middleName:null,surname:"Ando",slug:"koji-ando",fullName:"Koji Ando"}]},{id:"47457",title:"Multi-User Visible Light Communications",slug:"multi-user-visible-light-communications",totalDownloads:2531,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances-in-optical-communication",title:"Advances in Optical Communication",fullTitle:"Advances in Optical Communication"},signatures:"Oswaldo González, Marcos F. Guerra Medina and Inocencio R.\nMartín",authors:[{id:"143544",title:"Dr.",name:"Oswaldo",middleName:null,surname:"González",slug:"oswaldo-gonzalez",fullName:"Oswaldo González"},{id:"171546",title:"Mr.",name:"Marcos F.",middleName:null,surname:"Guerra Medina",slug:"marcos-f.-guerra-medina",fullName:"Marcos F. Guerra Medina"},{id:"172973",title:"Dr.",name:"Inocencio R.",middleName:null,surname:"Martín",slug:"inocencio-r.-martin",fullName:"Inocencio R. Martín"}]},{id:"45075",title:"Smart Technical Textiles Based on Fiber Optic Sensors",slug:"smart-technical-textiles-based-on-fiber-optic-sensors",totalDownloads:3943,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"current-developments-in-optical-fiber-technology",title:"Current Developments in Optical Fiber Technology",fullTitle:"Current Developments in Optical Fiber Technology"},signatures:"Katerina Krebber",authors:[{id:"158312",title:"Dr.",name:"Katerina",middleName:null,surname:"Krebber",slug:"katerina-krebber",fullName:"Katerina Krebber"}]},{id:"8444",title:"Optical Deposition of Carbon Nanotubes for Fiber-based Device Fabrication",slug:"optical-deposition-of-carbon-nanotubes-for-fiber-based-device-fabrication",totalDownloads:3469,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Ken Kashiwagi and Shinji Yamashita",authors:[{id:"5133",title:"Dr.",name:"Ken",middleName:null,surname:"Kashiwagi",slug:"ken-kashiwagi",fullName:"Ken Kashiwagi"},{id:"38416",title:"Mr.",name:"Shinji",middleName:null,surname:"Yamashita",slug:"shinji-yamashita",fullName:"Shinji Yamashita"}]},{id:"8425",title:"Frontiers in Guided Wave Optics and Optoelectronics",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",totalDownloads:4480,totalCrossrefCites:2,totalDimensionsCites:11,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Bishnu Pal",authors:[{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}]},{id:"8427",title:"Nonlinear Properties of Chalcogenide Glass Fibers",slug:"nonlinear-properties-of-chalcogenide-glass-fibers",totalDownloads:4934,totalCrossrefCites:3,totalDimensionsCites:22,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Jas S. Sanghera, L. Brandon Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, Dan Gibson and I. D. Aggarwal",authors:[{id:"5111",title:"Dr.",name:"Jasbinder",middleName:null,surname:"Sanghera",slug:"jasbinder-sanghera",fullName:"Jasbinder Sanghera"},{id:"133867",title:"Dr.",name:"Brandon",middleName:null,surname:"Shaw",slug:"brandon-shaw",fullName:"Brandon Shaw"},{id:"133868",title:"Dr.",name:"Catalin",middleName:null,surname:"Florea",slug:"catalin-florea",fullName:"Catalin Florea"},{id:"133872",title:"Prof.",name:"Gam",middleName:null,surname:"Nguyen",slug:"gam-nguyen",fullName:"Gam Nguyen"},{id:"133876",title:"Dr.",name:"Ishwar",middleName:null,surname:"Aggarwal",slug:"ishwar-aggarwal",fullName:"Ishwar Aggarwal"}]},{id:"8442",title:"Tunable Hollow Optical Waveguide and Its Applications",slug:"tunable-hollow-optical-waveguide-and-its-applications",totalDownloads:3734,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Mukesh Kumar, Toru Miura, Yasuki Sakurai and Fumio Koyama",authors:[{id:"63461",title:"Dr.",name:"Mukesh",middleName:null,surname:"Kumar",slug:"mukesh-kumar",fullName:"Mukesh Kumar"},{id:"133388",title:"Prof.",name:"Toru",middleName:null,surname:"Miura",slug:"toru-miura",fullName:"Toru Miura"},{id:"133402",title:"Prof.",name:"Yasuki",middleName:null,surname:"Sakurai",slug:"yasuki-sakurai",fullName:"Yasuki Sakurai"},{id:"133404",title:"Prof.",name:"Fumio",middleName:null,surname:"Koyama",slug:"fumio-koyama",fullName:"Fumio Koyama"}]}],onlineFirstChaptersFilter:{topicSlug:"optical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/301243/kelly-cristina-vieira",hash:"",query:{},params:{id:"301243",slug:"kelly-cristina-vieira"},fullPath:"/profiles/301243/kelly-cristina-vieira",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()