With active devices lingering on the brink of activity and every passive device and interconnection on chip acting as potential radiator, a paradigm shift from “top-down” to “bottom-up” approach in silicon terahertz (THz) circuit design is clearly evident as we witness orders-of-magnitude improvements of silicon THz circuits in terms of output power, phase noise, and sensitivity since their inception around 2010. That is, the once clear boundary between devices, circuits, and function blocks is getting blurrier as we push the devices toward their limits. And when all else fails to meet the system requirements, which is often the case, a logical step forward is to scale these THz circuits to arrays. This makes a lot of sense in the terahertz region considering the relatively efficient on-chip THz antennas and the reduced size of arrays with half-wavelength pitch. This chapter begins with the derivation of conditions for maximizing power gain of active devices. Discussions of circuit topologies for THz sources, detectors, and transceivers with emphasis on their efficacy and scalability ensue, and this chapter concludes with a brief survey of interface options for channeling THz energy out of the chip.
Part of the book: Electromagnetic Materials and Devices