\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"3540",leadTitle:null,fullTitle:"Biodegradation - Engineering and Technology",title:"Biodegradation",subtitle:"Engineering and Technology",reviewType:"peer-reviewed",abstract:"This book contains a collection of different research activities where several technologies have been applied to the optimization of biodegradation processes. The book has three main sections: A) Hydrocarbons biodegradation, B) Biodegradation and anaerobic digestion, and C) Biodegradation and sustainability.",isbn:null,printIsbn:"978-953-51-1153-5",pdfIsbn:"978-953-51-6349-7",doi:"10.5772/50829",price:139,priceEur:155,priceUsd:179,slug:"biodegradation-engineering-and-technology",numberOfPages:486,isOpenForSubmission:!1,isInWos:1,hash:"0ee069d311f4d412f6bbf7180e3a8ea4",bookSignature:"Rolando Chamy and Francisca Rosenkranz",publishedDate:"June 14th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3540.jpg",numberOfDownloads:45184,numberOfWosCitations:103,numberOfCrossrefCitations:56,numberOfDimensionsCitations:137,hasAltmetrics:1,numberOfTotalCitations:296,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 19th 2012",dateEndSecondStepPublish:"July 10th 2012",dateEndThirdStepPublish:"December 17th 2012",dateEndFourthStepPublish:"February 25th 2013",dateEndFifthStepPublish:"April 30th 2013",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"165784",title:"Dr.",name:"Rolando",middleName:null,surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy",profilePictureURL:"https://mts.intechopen.com/storage/users/165784/images/4439_n.jpg",biography:"Rolando Chamy obtained his professional degree in Biochemical Engineering from Pontificia Universidad Catolica de Valparaíso (PUCV), Chile, in 1982. He obtained his PhD in Chemical Engineering from the University of Santiago de Compostela, Spain, in 1991. The same year, he became fulltime Professor in the School of Biochemical Engineering at PUCV. He also participated in the creation of the Biotechnology Center (NBC) of PUCV. Currently, Dr. Chamy serves as the Director of NBC and is the main researcher of the bioenergy unit of Fraunhofer Chile Research. His research interests are in the fields of bioenergy, biofuels, environmental engineering, and climate change. Dr. Chamy has authored and coauthored more than 200 scientific publications.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Pontificial Catholic University of Valparaiso",institutionURL:null,country:{name:"Chile"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"780",title:"Ecological Engineering",slug:"ecological-engineering"}],chapters:[{id:"45121",title:"Biodegradability of Water from Crude Oil Production",doi:"10.5772/56328",slug:"biodegradability-of-water-from-crude-oil-production",totalDownloads:1576,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Edixon Gutiérrez and Yaxcelys Caldera",downloadPdfUrl:"/chapter/pdf-download/45121",previewPdfUrl:"/chapter/pdf-preview/45121",authors:[{id:"165103",title:"Dr.",name:"Edixon",surname:"Gutierrez",slug:"edixon-gutierrez",fullName:"Edixon Gutierrez"},{id:"168623",title:"Dr.",name:"Yaxcelys",surname:"Caldera",slug:"yaxcelys-caldera",fullName:"Yaxcelys Caldera"}],corrections:null},{id:"45108",title:"Emulsification of Hydrocarbons Using Biosurfactant Producing Strains Isolated from Contaminated Soil in Puebla, Mexico",doi:"10.5772/56143",slug:"emulsification-of-hydrocarbons-using-biosurfactant-producing-strains-isolated-from-contaminated-soil",totalDownloads:2079,totalCrossrefCites:4,totalDimensionsCites:7,signatures:"Beatriz Pérez-Armendáriz, Amparo Mauricio-Gutiérrez, Teresita\nJiménez-Salgado, Armando Tapia-Hernández and Angélica\nSantiesteban-López",downloadPdfUrl:"/chapter/pdf-download/45108",previewPdfUrl:"/chapter/pdf-preview/45108",authors:[{id:"164502",title:"Dr.",name:"Beatriz",surname:"Perez",slug:"beatriz-perez",fullName:"Beatriz Perez"},{id:"168424",title:"Dr.",name:"Amparo",surname:"Mauricio-Gutiérrez",slug:"amparo-mauricio-gutierrez",fullName:"Amparo Mauricio-Gutiérrez"},{id:"168425",title:"MSc.",name:"Teresita",surname:"Jiménez-Salgado",slug:"teresita-jimenez-salgado",fullName:"Teresita Jiménez-Salgado"},{id:"168426",title:"M.Sc.",name:"Armando",surname:"Tapia-Hernández",slug:"armando-tapia-hernandez",fullName:"Armando Tapia-Hernández"},{id:"168427",title:"Dr.",name:"Angélica",surname:"Santiesteban-López",slug:"angelica-santiesteban-lopez",fullName:"Angélica Santiesteban-López"}],corrections:null},{id:"45087",title:"Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs",doi:"10.5772/55920",slug:"microbial-hydrocarbon-degradation-efforts-to-understand-biodegradation-in-petroleum-reservoirs",totalDownloads:6036,totalCrossrefCites:4,totalDimensionsCites:16,signatures:"Isabel Natalia Sierra-Garcia and Valéria Maia de Oliveira",downloadPdfUrl:"/chapter/pdf-download/45087",previewPdfUrl:"/chapter/pdf-preview/45087",authors:[{id:"164284",title:"Dr.",name:"Valeria",surname:"Oliveira",slug:"valeria-oliveira",fullName:"Valeria Oliveira"},{id:"164763",title:"MSc.",name:"Isabel Natalia",surname:"Sierra-García",slug:"isabel-natalia-sierra-garcia",fullName:"Isabel Natalia Sierra-García"}],corrections:null},{id:"45048",title:"Biodegradation of PCDDs/PCDFs and PCBs",doi:"10.5772/56018",slug:"biodegradation-of-pcdds-pcdfs-and-pcbs",totalDownloads:2626,totalCrossrefCites:10,totalDimensionsCites:11,signatures:"Magdalena Urbaniak",downloadPdfUrl:"/chapter/pdf-download/45048",previewPdfUrl:"/chapter/pdf-preview/45048",authors:[{id:"163564",title:"Associate Prof.",name:"Magdalena",surname:"Urbaniak",slug:"magdalena-urbaniak",fullName:"Magdalena Urbaniak"}],corrections:null},{id:"44369",title:"Crude Oil Biodegradation in the Marine Environments",doi:"10.5772/55554",slug:"crude-oil-biodegradation-in-the-marine-environments",totalDownloads:3784,totalCrossrefCites:10,totalDimensionsCites:31,signatures:"Mehdi Hassanshahian and Simone Cappello",downloadPdfUrl:"/chapter/pdf-download/44369",previewPdfUrl:"/chapter/pdf-preview/44369",authors:[{id:"107040",title:"Dr.",name:"Simone",surname:"Cappello",slug:"simone-cappello",fullName:"Simone Cappello"},{id:"163666",title:"Dr.",name:"Mehdi",surname:"Hassanshahian",slug:"mehdi-hassanshahian",fullName:"Mehdi Hassanshahian"}],corrections:null},{id:"45072",title:"Challenges for Cost-Effective Microalgae Anaerobic Digestion",doi:"10.5772/55975",slug:"challenges-for-cost-effective-microalgae-anaerobic-digestion",totalDownloads:3799,totalCrossrefCites:10,totalDimensionsCites:16,signatures:"Álvaro Torres, Fernando G. Fermoso, Bárbara Rincón, Jan Bartacek,\nRafael Borja and David Jeison",downloadPdfUrl:"/chapter/pdf-download/45072",previewPdfUrl:"/chapter/pdf-preview/45072",authors:[{id:"74541",title:"Dr.",name:"Barbara",surname:"Rincon",slug:"barbara-rincon",fullName:"Barbara Rincon"}],corrections:null},{id:"44514",title:"Advanced Monitoring and Control of Anaerobic Digestion in Bioreactor Landfills",doi:"10.5772/55715",slug:"advanced-monitoring-and-control-of-anaerobic-digestion-in-bioreactor-landfills",totalDownloads:1954,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Mohamed Abdallah and Kevin Kennedy",downloadPdfUrl:"/chapter/pdf-download/44514",previewPdfUrl:"/chapter/pdf-preview/44514",authors:[{id:"163578",title:"Dr.",name:"Mohamed",surname:"Abdallah",slug:"mohamed-abdallah",fullName:"Mohamed Abdallah"},{id:"164937",title:"Prof.",name:"Kevin",surname:"Kennedy",slug:"kevin-kennedy",fullName:"Kevin Kennedy"}],corrections:null},{id:"45334",title:"Sustainable Post Treatment Options of Anaerobic Effluent",doi:"10.5772/56097",slug:"sustainable-post-treatment-options-of-anaerobic-effluent",totalDownloads:3432,totalCrossrefCites:2,totalDimensionsCites:13,signatures:"Abid Ali Khan, Rubia Zahid Gaur, Absar Ahmad Kazmi and Beni Lew",downloadPdfUrl:"/chapter/pdf-download/45334",previewPdfUrl:"/chapter/pdf-preview/45334",authors:[{id:"163593",title:"Dr.",name:"Abid",surname:"Khan",slug:"abid-khan",fullName:"Abid Khan"}],corrections:null},{id:"45112",title:"Determination of Anaerobic and Anoxic Biodegradation Capacity of Sulfamethoxasole and the Effects on Mixed Microbial Culture",doi:"10.5772/56049",slug:"determination-of-anaerobic-and-anoxic-biodegradation-capacity-of-sulfamethoxasole-and-the-effects-on",totalDownloads:1864,totalCrossrefCites:5,totalDimensionsCites:9,signatures:"Zeynep Cetecioglu, Bahar Ince, Samet Azman, Nazli Gokcek, Nese\nCoskun and Orhan Ince",downloadPdfUrl:"/chapter/pdf-download/45112",previewPdfUrl:"/chapter/pdf-preview/45112",authors:[{id:"48845",title:"Prof.",name:"Orhan",surname:"Ince",slug:"orhan-ince",fullName:"Orhan Ince"},{id:"53263",title:"Dr.",name:"Zeynep",surname:"Cetecioglu",slug:"zeynep-cetecioglu",fullName:"Zeynep Cetecioglu"},{id:"56506",title:"Prof.",name:"Bahar",surname:"Ince",slug:"bahar-ince",fullName:"Bahar Ince"},{id:"164803",title:"MSc.",name:"Nazli",surname:"Gokcek",slug:"nazli-gokcek",fullName:"Nazli Gokcek"},{id:"164805",title:"MSc.",name:"Samet",surname:"Azman",slug:"samet-azman",fullName:"Samet Azman"},{id:"164806",title:"MSc.",name:"Nese",surname:"Coskun",slug:"nese-coskun",fullName:"Nese Coskun"}],corrections:null},{id:"45120",title:"Biodegradation in Animal Manure Management",doi:"10.5772/56151",slug:"biodegradation-in-animal-manure-management",totalDownloads:2166,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Matthieu Girard, Joahnn H. Palacios, Martin Belzile, Stéphane\nGodbout and Frédéric Pelletier",downloadPdfUrl:"/chapter/pdf-download/45120",previewPdfUrl:"/chapter/pdf-preview/45120",authors:[{id:"89461",title:"Dr.",name:"Stephane",surname:"Godbout",slug:"stephane-godbout",fullName:"Stephane Godbout"},{id:"168438",title:"Dr.",name:"Matthieu",surname:"Girard",slug:"matthieu-girard",fullName:"Matthieu Girard"}],corrections:null},{id:"45097",title:"Methods for Separation, Recycling and Reuse of Biodegradation Products",doi:"10.5772/56241",slug:"methods-for-separation-recycling-and-reuse-of-biodegradation-products",totalDownloads:2190,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Ganapati D. Yadav and Jyoti B. Sontakke",downloadPdfUrl:"/chapter/pdf-download/45097",previewPdfUrl:"/chapter/pdf-preview/45097",authors:[{id:"49324",title:"Prof.",name:"Ganapati",surname:"Yadav",slug:"ganapati-yadav",fullName:"Ganapati Yadav"},{id:"164919",title:"Dr.",name:"Jyoti B.",surname:"Sontakke",slug:"jyoti-b.-sontakke",fullName:"Jyoti B. Sontakke"}],corrections:null},{id:"45109",title:"Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants",doi:"10.5772/55584",slug:"biodegradation-and-mechanical-integrity-of-magnesium-and-magnesium-alloys-suitable-for-implants",totalDownloads:2796,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"S. González, E. Pellicer, S. Suriñach, M.D. Baró and J. Sort",downloadPdfUrl:"/chapter/pdf-download/45109",previewPdfUrl:"/chapter/pdf-preview/45109",authors:[{id:"20271",title:"Dr.",name:"Eva",surname:"Pellicer",slug:"eva-pellicer",fullName:"Eva Pellicer"},{id:"163693",title:"Dr",name:"Sergio",surname:"Gonzales",slug:"sergio-gonzales",fullName:"Sergio Gonzales"},{id:"164319",title:"Prof.",name:"Santiago",surname:"Suriñach",slug:"santiago-surinach",fullName:"Santiago Suriñach"},{id:"164320",title:"Prof.",name:"María Dolors",surname:"Baró",slug:"maria-dolors-baro",fullName:"María Dolors Baró"},{id:"164321",title:"Prof.",name:"Jordi",surname:"Sort",slug:"jordi-sort",fullName:"Jordi Sort"}],corrections:null},{id:"44809",title:"Biodegradation of Nitrogen in a Commercial Recirculating Aquaculture Facility",doi:"10.5772/55841",slug:"biodegradation-of-nitrogen-in-a-commercial-recirculating-aquaculture-facility",totalDownloads:2675,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"S. Sandu and E. Hallerman",downloadPdfUrl:"/chapter/pdf-download/44809",previewPdfUrl:"/chapter/pdf-preview/44809",authors:[{id:"79633",title:"Prof.",name:"Eric",surname:"Hallerman",slug:"eric-hallerman",fullName:"Eric Hallerman"}],corrections:null},{id:"45047",title:"Aerobic Biodegradation Coupled to Preliminary Ozonation for the Treatment of Model and Real Residual Water",doi:"10.5772/56011",slug:"aerobic-biodegradation-coupled-to-preliminary-ozonation-for-the-treatment-of-model-and-real-residual",totalDownloads:1203,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"P. Guerra, J. Amacosta, T. Poznyak, S. Siles, A. García and I. Chairez",downloadPdfUrl:"/chapter/pdf-download/45047",previewPdfUrl:"/chapter/pdf-preview/45047",authors:[{id:"164677",title:"Dr.",name:"Tatyana",surname:"Poznyak",slug:"tatyana-poznyak",fullName:"Tatyana Poznyak"},{id:"164963",title:"MSc.",name:"Jessica",surname:"Amacosta",slug:"jessica-amacosta",fullName:"Jessica Amacosta"},{id:"164964",title:"Dr.",name:"S",surname:"Siles",slug:"s-siles",fullName:"S Siles"},{id:"164965",title:"Dr.",name:"Alejandro",surname:"Garcia-González",slug:"alejandro-garcia-gonzalez",fullName:"Alejandro Garcia-González"},{id:"164966",title:"Dr.",name:"Isaac",surname:"Chairez",slug:"isaac-chairez",fullName:"Isaac Chairez"}],corrections:null},{id:"44725",title:"Emerging Trend in Natural Resource Utilization for Bioremediation of Oil — Based Drilling Wastes in Nigeria",doi:"10.5772/56526",slug:"emerging-trend-in-natural-resource-utilization-for-bioremediation-of-oil-based-drilling-wastes-in-ni",totalDownloads:3109,totalCrossrefCites:1,totalDimensionsCites:7,signatures:"Iheoma M. Adekunle, Augustine O. O. Igbuku, Oke Oguns and\nPhilip D. Shekwolo",downloadPdfUrl:"/chapter/pdf-download/44725",previewPdfUrl:"/chapter/pdf-preview/44725",authors:[{id:"77235",title:"Dr.",name:"Iheoma Mary",surname:"Adekunle",slug:"iheoma-mary-adekunle",fullName:"Iheoma Mary Adekunle"},{id:"168183",title:"Dr.",name:"Augutsine",surname:"Igbuku",slug:"augutsine-igbuku",fullName:"Augutsine Igbuku"}],corrections:null},{id:"44036",title:"Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behaviour",doi:"10.5772/56290",slug:"biocomposites-influence-of-matrix-nature-and-additives-on-the-properties-and-biodegradation-behaviou",totalDownloads:3905,totalCrossrefCites:6,totalDimensionsCites:12,signatures:"Derval dos Santos Rosa and Denise Maria Lenz",downloadPdfUrl:"/chapter/pdf-download/44036",previewPdfUrl:"/chapter/pdf-preview/44036",authors:[{id:"164078",title:"Dr.",name:"Denise",surname:"Lenz",slug:"denise-lenz",fullName:"Denise Lenz"},{id:"164858",title:"Prof.",name:"Derval",surname:"Rosa",slug:"derval-rosa",fullName:"Derval Rosa"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3570",title:"Biodegradation of Hazardous and Special Products",subtitle:null,isOpenForSubmission:!1,hash:"29ce0f4a059cb02b060a2b4082ca81e0",slug:"biodegradation-of-hazardous-and-special-products",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3570.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4645",title:"Biodegradation and Bioremediation of Polluted Systems",subtitle:"New Advances and Technologies",isOpenForSubmission:!1,hash:"de86e2d98b4cc7ee51ca11a65f08079f",slug:"biodegradation-and-bioremediation-of-polluted-systems-new-advances-and-technologies",bookSignature:"Rolando Chamy, Francisca Rosenkranz and Lorena Soler",coverURL:"https://cdn.intechopen.com/books/images_new/4645.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2190",title:"Biomass Now",subtitle:"Sustainable Growth and Use",isOpenForSubmission:!1,hash:"f8a1a12b5516a184685e6421805ff25d",slug:"biomass-now-sustainable-growth-and-use",bookSignature:"Miodrag Darko Matovic",coverURL:"https://cdn.intechopen.com/books/images_new/2190.jpg",editedByType:"Edited by",editors:[{id:"27708",title:"Dr.",name:"Miodrag Darko",surname:"Matovic",slug:"miodrag-darko-matovic",fullName:"Miodrag Darko Matovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3138",title:"Biomass Now",subtitle:"Cultivation and Utilization",isOpenForSubmission:!1,hash:"14aa4b6c2eb974aad5a2839688220b04",slug:"biomass-now-cultivation-and-utilization",bookSignature:"Miodrag Darko Matovic",coverURL:"https://cdn.intechopen.com/books/images_new/3138.jpg",editedByType:"Edited by",editors:[{id:"27708",title:"Dr.",name:"Miodrag Darko",surname:"Matovic",slug:"miodrag-darko-matovic",fullName:"Miodrag Darko Matovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2311",title:"Climate Change and Variability",subtitle:null,isOpenForSubmission:!1,hash:"2fb02ff1e1671367663032ec44d0cb85",slug:"climate-change-and-variability",bookSignature:"Suzanne Simard",coverURL:"https://cdn.intechopen.com/books/images_new/2311.jpg",editedByType:"Edited by",editors:[{id:"11062",title:"Prof.",name:"Suzanne",surname:"Simard",slug:"suzanne-simard",fullName:"Suzanne Simard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1327",title:"Greenhouse Gases",subtitle:"Emission, Measurement and Management",isOpenForSubmission:!1,hash:"f810749db3ab5479aa80cd81c0509033",slug:"greenhouse-gases-emission-measurement-and-management",bookSignature:"Guoxiang Liu",coverURL:"https://cdn.intechopen.com/books/images_new/1327.jpg",editedByType:"Edited by",editors:[{id:"92642",title:"Dr.",name:"Guoxiang",surname:"Liu",slug:"guoxiang-liu",fullName:"Guoxiang Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2117",title:"Greenhouse Gases",subtitle:"Capturing, Utilization and Reduction",isOpenForSubmission:!1,hash:"8cf4593468574b6d25cf38dea36729b5",slug:"greenhouse-gases-capturing-utilization-and-reduction",bookSignature:"Guoxiang Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2117.jpg",editedByType:"Edited by",editors:[{id:"92642",title:"Dr.",name:"Guoxiang",surname:"Liu",slug:"guoxiang-liu",fullName:"Guoxiang Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"449",title:"Environmental Impact of Biofuels",subtitle:null,isOpenForSubmission:!1,hash:"faa4e85fdce130eae4d51d73d23c4816",slug:"environmental-impact-of-biofuels",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/449.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2151",title:"Novel Approaches and Their Applications in Risk Assessment",subtitle:null,isOpenForSubmission:!1,hash:"b37b8b1a2ebbcf1d218f6d570c65f247",slug:"novel-approaches-and-their-applications-in-risk-assessment",bookSignature:"Yuzhou Luo",coverURL:"https://cdn.intechopen.com/books/images_new/2151.jpg",editedByType:"Edited by",editors:[{id:"117189",title:"Dr.",name:"Yuzhou",surname:"Luo",slug:"yuzhou-luo",fullName:"Yuzhou Luo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9484",leadTitle:null,title:"Glucagon",subtitle:null,reviewType:"peer-reviewed",abstract:'
\r\n\tGlucagon is one of the pancreatic hormones. It plays different and significant roles in the human body. Their functions include protections against damages of glucose homeostasis, in particular against hypoglycemia. It influences and regulates not only metabolism and glucose homeostasis. Glucagon is also involved in the metabolism of lipids and amino acids, as well as it regulates also energy homeostasis. On the other hand, disturbances in functions, synthesis and/or secretion of glucagon may cause several pathologies such as obesity and hepatic steatosis. Impairment functions of this hormone may have influence, direct or indirect, on the development of diabetes mellitus, "a progressive worldwide epidemic". Presented examples of glucagon\'s role in human health and diseases suggest a very important role of this hormone. Therefore, knowledge of this hormone, its functions, regulations, secretions, etc seems to be very significant. This book will be written by a scientist with expertise in the study of glucagon.
\r\n\r\n\tThis book describes a series of up-to-date topics about physiological and pathological processed that occurred in the functions of glucagon. By presenting a clear and exhaustive review of the correlation between synthesis and secretion of glucagon and health/disease, it is expected to draw more attention from biomedical scientists, physicians, pharmacologists, physiologists, and students to dedicate their research in uncovering the role of hormonal regulation, especially glucagon, in human health and diseases.
',isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e2fce59d7d576c75b80cbdd2e271fe54",bookSignature:"Dr. Leszek Szablewski",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9484.jpg",keywords:"Pancreatic Hormones, Glucagon and Glucose Homeostasis, Regulation of Glucagon Synthesis, Regulation of Glucagon Secretion, Gluconeogenesis, Glycogenolysis, Characteristics of Glucagon, Glucagon Signaling Pathway, Hyperglucagonemia, Glucagonoma, Glucagon Resistance, Hepatic Steatosis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 30th 2019",dateEndSecondStepPublish:"March 27th 2020",dateEndThirdStepPublish:"May 26th 2020",dateEndFourthStepPublish:"August 14th 2020",dateEndFifthStepPublish:"October 13th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"220812",firstName:"Lada",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/220812/images/6021_n.jpg",email:"lada@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3857",title:"Glucose Homeostasis",subtitle:null,isOpenForSubmission:!1,hash:"7d6d19b59871b430fbcfc4bd297e242d",slug:"glucose-homeostasis",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/3857.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6581",title:"Adipose Tissue",subtitle:null,isOpenForSubmission:!1,hash:"85899eab2d8b01653e1297b168c470d7",slug:"adipose-tissue",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/6581.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7061",title:"Blood Glucose Levels",subtitle:null,isOpenForSubmission:!1,hash:"71d38173067c610b03c51dec97dd031d",slug:"blood-glucose-levels",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/7061.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",isOpenForSubmission:!1,hash:"34880b7b450ef96fa5063c867c028b02",slug:"adipose-tissue-an-update",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69338",title:"Advanced Glycation End Products: Formation, Role in Diabetic Complications, and Potential in Clinical Applications",doi:"10.5772/intechopen.89408",slug:"advanced-glycation-end-products-formation-role-in-diabetic-complications-and-potential-in-clinical-a",body:'Advanced glycation end products (AGEs) are formed through a non-enzymatic process in hyperglycemic conditions, and they impact the retinal vasculature negatively through the formation of reactive oxygen species, secretion of aberrant proteins or growth factors, alteration of the extracellular matrix, and secretion of inflammatory cytokines [1]. It is important to consider the difficulty of differentiating the effects of hyperglycemia from those of AGEs, as AGE concentration is controlled by glucose levels. Because of this, occasionally high glucose levels are measured interchangeably with high levels of AGEs. There are two primary mechanisms by which AGEs damage the retinal vasculature which will be discussed in this chapter: interactions with RAGE (AGE receptors) and damage to the extracellular matrix [2]. While these two mechanisms work differently, both pathways result in thickening of the basement membrane which impairs signaling between cells of the microvasculature hindering their structure and increasing rigidity, which leads to the hemorrhagic signs seen in patients with diabetic retinopathy (DR) [3]. Endogenous anti-stressors are important for the management of high levels of AGEs through various mechanisms, but many times are not sufficient to control the progression of DR [2]. Thus, it is important to modify the production of AGEs through exogenous mechanisms, such as nutrition, reducing smoking, or treating the condition through medication [2].
Advanced glycation end products (AGEs) were first discovered in the early 1900s by the Maillard reaction process. Scientists discovered that when amino acids were heated in a mixture with reducing sugars, the reaction turned a yellowish brown color. Further studies indicated that reducing sugars, i.e., glucose, reacted non-enzymatically with the amino acid reagents to form Schiff bases, an early glycation product, and Amadori products, intermediate glycation products. AGE formation can utilize other reagents such as lipids, connective tissue extracellular matrix, and nucleic acids. The process of glycation is enhanced by diabetic complications and occurs in the earlier stages of the Maillard reaction; intracellular sugars, such as glycolytic pathway intermediate glucose-6-phosphate, are glycated at a faster rate than glucose. Amadori products are α-dicarbonyls (oxoaldehydes) such as 3-deoxyglucosone (3-DG) and methylglyoxal (MGO) which is formed by the non-oxidative rearrangement of Amadori adducts from fructose-3-phosphate in the polyol pathway. This pathway has also been studied as a precursor to hyperglycemia-induced damage in diabetes. Methylglyoxal and 3-deoxyglucosone are formed in the early stages of glycation processes: degradation of glucose, Schiff’s bases, and from Amadori products; these oxoaldehyde products can serve as a checkpoint in the AGE pathway since an accumulation of these products is an implication of accelerated vascular damage [4, 5].
The main mechanisms of AGE that affect cells are the adducts on proteins (including N-carboxymethyllysine, pentosidine, or hydroimidazolone) that can interact via AGE ligand-gated receptors such as RAGE on endothelium that lead to secretion of cytokines TNF-α and VEGF; AGEs can stem from exogenous and endogenous adducts due to glucose metabolism. RAGE is the most widely studied AGE receptor found on endothelial cells in vasculature and on macrophages and microglia. AGE interacts with RAGE on macrophages, leading to intracellular generation of free radicals and oxidative stress, which are then phosphorylated by MAP kinase to activate NF-κB and increase expression of NF-κB controlled genes to cause vasoconstriction, enhanced adhesion molecule expression, and induce a procoagulant state. An overexpression of RAGE leads to oxidative stress and NF-κB activation. Current studies show that cross-linked AGEs with RAGE on proteins are closely linked with diabetic retinopathy progression. In the diabetic retina, AGE and adducts are found on vascular cells, neurons, glia, and in elevated levels in Muller macroglia—these specialized retinal cells show increased dysfunction in hyperglycemic and hypoxic conditions that lead to more AGE formation. AGEs induce oxidative stress and consequent apoptosis of retinal pericytes; furthermore, AGEs induce the closure of intercellular junctions between endothelial cells [4, 5, 6, 7].
Inflammation is an important component in the progression of diabetic retinopathy (DR), and AGEs induce this process through interaction with receptors on the cell surface called RAGEs. These receptors are found on most cells, meaning that AGEs exert a wide effect on many different organs. In DR, results of AGE-RAGE interaction on inflammatory cells such as macrophages and lymphocytes, and on microvascular cells such as endothelial cells or pericytes are thought to produce a significant impact on the progression of DR [8]. Monocytes and lymphocytes secrete inflammatory cytokines through the induction of NF-κB [9], production of IL-1, IL-6, IL-8, MCP-1 and TNF-α, and upregulation of adhesion molecules such as VCAM and ICAM [9]. IL-8 and TNF-α levels are elevated in patients with nonproliferative diabetic retinopathy (NPDR), signifying the increased inflammation in the early stages of DR. These cytokines are produced by activated neuronal cells and endothelial cells, and they exert their effect by causing early neuronal cell death in the retina [9]. Inflammation negatively impacts the retinal vasculature by altering the action of vascular cells which leads to the upregulation of various proteins that contribute to the thickening of the basement membrane. MIP-1, IL-3, and IL-1 are thought to play a role in angiogenesis [9, 10], which would facilitate the progression from NPDR to proliferative diabetic retinopathy (PDR). Communication between glial cells and neurons is imperative for maintenance of the vasculature, and it has been shown that inflammation can impede the crosstalk between these cells early in the disease process [9]. Thickening of the basement membrane is one of the leading mechanisms by which crosstalk amongst cells of the retinal vasculature are impeded. This crosstalk is essential for many processes such as providing energy to retinal vascular cells and maintaining homeostasis [9]. In endothelial cells, AGE-RAGE interaction has been shown to increase proliferation via increased VEGF production induced through the MAPK pathway [10, 11]. This process contributes to angiogenesis and accelerates the progression of DR from NPDR to PDR. In pericytes, an opposite effect has been observed, as increased AGE-RAGE interaction leads to apoptosis of these cells, which is one of the first steps in the pathogenesis of DR [11]. As pericyte dropout occurs, the vasculature becomes less regulated leading to hemorrhage and leaking.
Reactive oxygen species (ROS) accumulate in DR from the conversion of glucose to fructose through the NADPH pathway. This accumulation of ROS leads to increased production of AGEs, which then exert their effects through AGE-RAGE interactions or by crosslinking extracellular matrix proteins. One of the outcomes of AGE-RAGE interactions is production of ROS as well, leading to enhanced concentrations of ROS and further progression of the disease. Aldose reductase, which is upregulated to compensate for the high levels of glucose and is essential for the conversion of glucose to fructose, activates a serine/threonine-related protein kinase PKC-δ. Protein kinase PKC-δ is known to inhibit platelet derived growth factor survival activity, an essential pathway for pericyte proliferation and survival. Considering that pericyte loss is typically the initial step in the pathogenesis of DR, this explains the role of ROS in the early stages of DR [12].
The other predominant mechanism of damage from AGEs pertains to their effect on the extracellular matrix of the retinal basement membrane. Inflammation induced by AGEs that was discussed above has a significant impact on the basement membrane, specifically from the elevated levels of inflammatory cytokines IL-1β and TNF-α which induce the production of extracellular matrix proteins. As these excess proteins accumulate in the extracellular matrix, the basement membrane begins to thicken. When AGEs attach to collagen or elastin in the extracellular matrix, it causes the collagen to be less susceptible to hydrolytic breakdown and becomes less flexible. It has also been found that glycation increases the production of collagen and other extracellular matrix proteins, along with the increase in production induced by inflammatory cytokines. This increased production and crosslinking of collagen along with the decreased elastin levels significantly increase the rigidity of the microvasculature through stiffening and thickening of the basement membrane [2, 10, 13].
The accumulation and crosslinking of extracellular matrix proteins contributes to the thickening of the basement membrane, which hinders its integrity ultimately leading to the hemorrhagic pathologies that occur as a result of diabetic retinopathy. The initial damage caused by this thickening is decreased perfusion of the retinal capillaries, leading to occlusion or degeneration of these capillaries [14]. This is one of the characteristic steps in NPDR: ischemia caused by lack of oxygen perfusion sets off the cascade of events that leads to neovascularization, the hallmark of PDR. When looking at the sequelae following the impact of AGEs on the basement membrane, it suggests that AGEs play a significant role in the progression and pathogenesis of diabetic retinopathy. A study showed rats with diabetes tested positive for AGEs (periodic acid/Schiff reagent positive material) at significantly higher levels than those under normal conditions [15]. Rats with diabetes also demonstrated a twofold increase in acellular retinal capillaries over the course of 26 weeks compared to their wild type counterparts, and diabetic rats also experienced significant capillary closure over the course of 75 weeks.
Processing of foods at high temperatures using the Maillard reaction to enhance flavoring and color subsequently leads to the formation of reactive aldehydes that leads to formation of advanced glycation end products, which are also formed naturally in body tissues. Studies depicted that canned meats, nuts, and grain-based products contained the highest levels of AGE, and coffee, butter, vegetables, and fruits as well as food prepared by steaming or boiling contained the lowest amounts of AGE [5, 16].
Research studies show that the average amount of AGE consumed on a daily basis by an individual range from 12,000 to 20,000 kilo-units (kU) of AGEs/day with diabetic subjects consuming a range of 4000–24,000 kU AGEs/day. Pyrraline is one of the most common AGE adducts and may be found in milk and bread crust, while pentosidine, another AGE adduct, is found in pretzel sticks and in its free form in coffee. Study of individual AGEs suggest that protein-bound pentosidine is not as readily absorbed as free pentosidine, therefore, increased levels free AGE in urine and plasma is correlated to AGE-rich dietary intake. Intake of elevated levels of sodium, carbohydrates, and vitamins were found to not be associated with DR risk or progression. Relationship between dietary AGE and promotion of AGE formation in the body tissues will require new research since current research has only centered on skin autofluorescence before and after intake of AGE-rich foods [5, 16].
The effects of dietary AGE were examined in several studies. AGE-poor diets depicted improved biomarkers for oxidative stress, endothelial, and inflammation in healthy subjects, and restricted AGE diets showed decreased levels of oxidative stress in diabetic patients as well as decreased insulin resistance and reduced levels of low-density-lipoprotein. Other studies have also found that dietary AGEs affect inflammatory markers including cytokine TNF-α, and AGE-poor diets have led to decreased risk for cardiovascular disease and endothelial dysfunction. Several studies have also examined the effects of dietary AGE on motor functions, finding that increases in oxidative stress and inflammation due to high levels of AGE lead to muscle stiffness and loss of elasticity [5, 16].
Hyperglycemic conditions initiate formation of AGE and promote biochemical abnormalities that involve formation of AGE. The three main AGE formation biochemical abnormalities include flux via hexosamine pathway, diacylglycerol-mediated activation of PKC-β with benfotiamine, and the stimulation of transketolase activity that induces excess triose phosphates to undergo the pentose phosphate pathway [17, 18].
The primary precursor of AGE is glucose, but other carbonyl precursors exists, though diminutively less reactive, including glyoxal, methylglyoxal, and 3-deoxyglucosone that result from glycolysis. The levels of AGE in the body tissues increase significantly in complications of disease such as diabetic retinopathy, but it is the accumulation of AGE that results in accelerated complications of diseases. Body cells have innate detoxification systems that prevent accumulation of AGE precursors such as methylglyoxal, and detoxification properties of enzymes may be essential in further research about prevention of diabetic retinopathy complications. Deterioration of kidney function leads to accumulation of AGEs, thus leading to endothelial abnormality and vascular disease [4, 5, 17].
No cure for diabetic retinopathy has been discovered yet, despite many efforts from various clinical trials. The standard pharmacological treatment currently for diabetic retinopathy is anti-VEGF injections, which aids in the stabilization and halts progression of the disease [19]. This approach has only been successful in treating about two-thirds of the population and the best second-line pharmacological therapy has not been identified [19]. These factors have spurred the search for a better alternative, especially agents which combat the AGEs and their effects directly. There are different categories of treatments against AGEs, but the most widely studied treatments include those that specifically inhibit AGEs themselves as well as lifestyle changes to reduce the production of AGEs.
The first direct AGE inhibitor that garners the most promise is aminoguanidine, which inhibits AGE formation on both collagen and the basement membrane [15]. As discussed above in the section about AGE’s impact on the extracellular matrix, AGEs crosslink collagen and other proteins in the basement membrane and extracellular matrix which causes it to thicken, lose its integrity and ultimately become leaky. By inhibiting the formation of these crosslinked proteins, the basement membrane and extracellular matrix can preserve their integrity and the normal communication between pericytes and endothelial cells can continue. A study demonstrated that rats treated with aminoguanidine showed significantly less AGE deposition in the basement membrane/extracellular matrix and overall healthier capillaries [15]. Treatment with aminoguanidine also reduced endothelial cell proliferation in diabetic retina, which is another pathological change associated with diabetes. The downside is that this treatment was unable to completely resolve all of the pathological processes of diabetes, namely the occurrence of retinal microaneurysms. In untreated diabetic rats, 38% demonstrated microaneurysms while those treated with aminoguanidine reduced the incidence to 20% (0% in controls). This improvement is promising, but microaneurysms lead to vessel destruction, which advances the progression of NPDR to PDR, the more detrimental stage of DR. An alternative study demonstrated an even greater decrease in microaneurysms, but their sample size was small (a single retina) and it was conducted in dogs rather than rats [20].
Another direct AGE inhibitor is pyridoxamine. This compound has been found to decrease glycation of proteins in the extracellular matrix as well as decrease the formation and production of AGEs. A study measured the success of treating diabetic retinopathy with pyridoxamine by the quantity of acellular capillaries formed over a period of time [4]. Acellular capillaries are nonperfused capillaries which result from a variety of factors onset by diabetes such as pericyte dropout, extracellular matrix, and endothelial damage [21]. After 29 weeks, it was found that diabetic rats treated with pyridoxamine showed similar amounts of acellular capillaries to controls. It also demonstrated the impact of pyridoxamine on the production of extracellular matrix proteins, which are upregulated in diabetic retinopathy. Pyridoxamine significantly reduced the production of extracellular matrix proteins like collagen type IV and laminin, close to the levels found in controls [4].
Besides the usage of direct AGE inhibitors, other drugs options are being explored. One such drug is Tanshinone IIA (Tan IIA). Tan IIA is derived from the roots of Salvia miltiorrhiza, which is a plant that is used in traditional Chinese medicine. Studies indicate that Tan IIA impacts several of the negative effects that hyperglycemic conditions have on human retinal endothelial cells. Tan IIA has an inhibitory effect on proliferation, migration, and vascularization in human endothelial cells and has some correlation to VEGF expression [22]. In terms of AGEs, a recent study explored how Tan IIA protects retinal endothelial cells from the impacts of AGEs, specifically cell dysfunction resulting from the presence of MGO. The study showed that MGO impacted cell viability negatively in a dose-dependent manner. Treatment of the cells with Tan IIA increased their viability in conditions where MGO was also present. MGO presence also resulted in mitochondrial fission in bovine retinal endothelial cells, and the presence of Tan IIA protected against this type of AGE-induced injury in the cells [23].
Exogenous AGEs are AGEs that are consumed and produced through diet and lifestyle, and they differ from the endogenous AGEs that form in hyperglycemic conditions metabolically. Because of this, diet and lifestyle changes are arguably the most important treatment in DR, as diet is a significant contributor to exogenous AGEs found in the form of foods high in protein and fat. Pertaining to lifestyle, smoking tobacco products is associated with higher levels of AGEs in serum which contributes to the progression and risk of DR [24]. Overall, a decreased calorie intake, a modified diet, and smoking cessation have been shown to increase risk and overall disease progression of DR and should be an important treatment regimen, in addition to pharmacological treatments with AGE inhibitors, in all patients with DR.
Advanced glycation end products (AGEs) are formed in increasing amounts due to hyperglycemic conditions implicated in diseases such as diabetic retinopathy. Endogenous AGEs are products from metabolic pathways that follow the Maillard reaction with the oxidation of oxoaldehydes. Exogenous AGEs may come from food sources processed at high temperatures, which increased the amount of reactive aldehydes in the food. Several studies have indicated that inhibition of AGEs holds high potential in the treatment of diabetic retinopathy. Aminoguanidine, a nonspecific inhibitor of AGE, holds the most pharmaceutical promise according to several studies conducted, but other drugs such as Tanshinone IIA are also promising. However, alterations of lifestyles may also provide highly favorable results in decreasing the amount of AGE produced and consumed by the body.
Diabetes and the complication of diabetic retinopathy are gradually on the rise and are widespread. Another disease that is nearly as widespread and also equally relevant in scientific study is Alzheimer’s disease. Recent studies indicate that there may be a link between the two and the factors that are known to impact one of those diseases, such as AGEs, also have effects on the other [25]. Of organs that may exhibit diabetic complications, the eye and its associated connections are one that are closest physically to the brain, and one long-term study on retinal health and cognitive dysfunction showed that 40% of patients with DR showed reduced cognition [26]. Future studies in relation to AGEs will not only focus on the properties of AGEs and their impact on diabetes and its complications, but also how other illnesses are impacted by them as well.
The purpose of this work was to show the real and potential health risks of the European bison, which have or can influence the general condition of the population and affect the restitution effects of this endangered by extinction species. From the species history, through the old, however recently increasingly re-emerging, threats until the new challenges for the species conservation, we have tried to present the most complete picture of the veterinary aspect of the species protection. Not without significance is also the manner in which these tasks are implemented, i.e., active species protection, not always accepted, but effective, which is best evidenced by the continuous increase in the number of the world’s European bison population. Today, when the number of the species exceeded 7000 individuals, it is not of key importance to protect individual European bison at all costs but to improve the welfare of the whole population, e.g., by minimizing the risk of infectious diseases by eliminating sick animals. Health threats can be removed or minimized through implemented prophylaxis and monitoring of pathological conditions in individual populations. Moreover, the exchange of experience and cooperation between breeders at national and international levels is extremely important. Another important aspect is the sanitary control of the animals in movement, especially of the greatest health threats such as tuberculosis and bluetongue disease and conducting quarantine for the introduced animals. One should also not underestimate the potential health hazards that can be assessed by postmortem diagnostics of fallen and selectively eliminated animals followed by discriminatory laboratory testing. The future of the European bison depends on the wise care of the herd managers and veterinary medicine specialists based on the best scientific and practical knowledge.
\nThe European bison (Bison bonasus) is currently the wild land mammal of Europe, belonging to the cloven-hoofed ruminants, the family Bovidae. The males may reach up to 1000 kg (average 700–800 kg) of weight, while female up to 650 kg (average 400–500 kg) [1]. At the beginning of the last millennium, lowland European bison lived widely in the vast forests covering most of Europe and were highly valued hunting prize. In Europe, the wild bison survived the longest at the Białowieża Forest while it was within the borders of the Grand Duchy of Lithuania, the Kingdom of Poland, and the Polish-Lithuanian Commonwealth. In 1919, the last free-living European bison in the Białowieża Forest was killed. In 1927, the scientific expedition to Caucasus has also failed to find any living European bison there. The period between 1919 and 1929 was the time when not a single European bison was present at the Białowieża Forest. When in 1924 a decision was taken to try to save the species, only 54 European bison were still alive worldwide; however only a part of those animals participated in the species restitution. Currently, all European bison living in the world originate from 12 animals, referred to as the founding group. The European bison belongs to two lines, i.e., Lowland (derived only from seven individuals) and Lowland-Caucasian. As part of the restitution breeding in September 1929, the first European bison returned to Białowieża, but it was not until 1952 that two individuals were released into the wild [2]. Currently, over 1200 animals live in the entire Białowieża Primeval Forest (560 on the Belarusian side); there are almost 1900 of them all over Poland and over 7000 in the whole world [3]. In Poland, European bison appear in 5 free-living populations and over 20 enclosures (Figure 1). European bison are protected animals and are inscribed in the IUCN Red List of Threatened Species [4] under the vulnerable category. In Poland and Belarus, European bison have the status of animals under species protection, while in other countries they are treated as free-living animals kept in closed breeding. Since they need a space composed of a forest environment in which they spend most of their time, as well as grasslands (pastures) for feeding, only few places in Europe meet the conditions without causing losses in agricultural crops and forestry [1]. An efficient way to minimize conflicts is to carry out winter supplementary feeding of these animals with roughage (hay), which provides an existential minimum for European bison and may protect the crops [5]. For veterinarians, breeders, and carers of the free-living bison population, winter gathering is the appropriate occasion to overview the herd. All European bison are counted, and the sexual (male, female) and age (calves, 0–1 year; youth, 2–3 years; adult, 4 years and more) structures of the herd are determined. The individuals are entered into the European Bison Pedigree Book [3]. In addition, the winter overview of the herd allows to identify any diseased or weak animals, which may constitute a potential epizootic threat to other European bison [1, 6]. Because European bison remain endangered and rare species, as well as attractive because of their uniqueness as a show species, breeding restitution of this species is also carried out in enclosures and reserves in Poland and Europe. All European bison kept in captivity have a unique pedigree number and a name, specific for the country and place of the origin [3]. Keeping breeding centers allows to control the breeding of European bison by selection of animals with known pedigree and least related. Moreover, breeding enclosures provide a genetic and breeding reserve of pedigree animals in case if any depopulating incidence occurs, what the species had already experienced at the beginning of twentieth century. Therefore, the management of the enclosures needs to be supervised by a veterinarian. Each movement of animals between breeding centers should be preceded by a clinical examination of the animal; a laboratory test for the most important infectious diseases and prophylaxis (more often therapeutic in practice) against ecto- and endoparasites should be applied [7].
\nEuropean bison population distribution in Poland, 2018 (graphic design by J. Tomana).
One of the dangers, often underestimated by ignorance or financial incentives, is the commercial breeding of American bison (Bison bison) in Europe, which is a serious genetic and epizootic threat for European species. The European and American bison crossbreed can naturally reproduce, which means that the co-existence of both species in one area could lead to loss of the protected species genetic purity and threaten biodiversity and conservation [8]. Therefore, the establishment of commercial American bison farms disqualifies the immediate vicinity as potential places for the release of European bison into the wild. Moreover, the presence of American bison poses a critical epizootic risk to the European cousin, since they can transmit the pathogens threating European bison health, which are absent or emerging in Europe [9], for example, Fasciola magna invasions [10] or epizootic hemorrhagic disease, caused by EHDV [11]. The close interspecies relationship does not ensure similar susceptibility to diseases. Significant differences in clinical outcome of foot-and-mouth disease virus (FMDV) infection were demonstrated, for instance, between dromedary and Bactrian camels [12]. The burden of FMD epizootics in Polish European bison at the beginning of the twentieth century was much higher than in cattle in the same area [13, 14].
\nDespite that the species was just starting to be re-established, European bison were put under epidemic pressure and exposed to many pathogens endemic to domestic ruminants in Poland at the beginning of the twentieth century. After the Second World War, the European bison population in Poland systematically increased, except for several incidents associated with the occurrence of infectious diseases (Figure 2). Konrad Wróblewski [14], a vet and researcher, gave the first detailed descriptions of the health problems in European bison in Białowieża at the turn of the nineteenth and twentieth centuries. At that time, the causes of morbidity and pathological changes were not yet fully understood due to the lack of knowledge and research tools. Dr. Wróblewski observed pleuropneumonia caused by Pasteurella multocida and connected to the Strongylidae invasions of lungs [15]. The problem of purulent pneumonia is still observed in European bison at Białowieża [6]; however the agent, Pasteurella multocida subsp. multocida serogroup A was identified just recently [16]. At the time, the highest mortality in European bison was caused by blackleg. The infection with Clostridium chauvoei probably caused death of 172 European bison in 1904 [14]. The most common were Fasciola hepatica and Trypanosoma parasite invasions, which affected health condition causing weakness, weight loss, and secondary infections. Occurrence of Trypanosoma wrublewski protozoans in the blood of European bison was reported still in the 1990s [15]. Another problem was FMD, endemic in cattle from the area; nevertheless Dr. Wróblewski described only 5% mortality in European bison in the 1920s. However, FMD was taking its toll in the 1950s at the south of Poland causing almost complete depopulation of European bison reserves in Pszczyna, Niepołomice, and Gorce [17, 18, 19]. Staśkiewicz [13] has observed FMD in American bison and European-American bison hybrids bred in Smardzewice reserve in 1938. He has noticed significantly higher resistance to FMDV infection of those animals in comparison to European species. This also contends against the introduction of this invasive to Europe bison species into the areas where European bison are being reared.
\nDynamics of the European bison number in Poland (bars) and Białowieża Forest (curve) between 1947 and 2017 (European Bison Pedigree Book). The cases of diseases which caused significant declines in the population size and dates of their detection are marked.
In 1980s, due to the occurrence of Q fever in domestic animals in northeastern Poland, several dozen free-ranging European bison from Borecka Forest were examined for the presence of specific antibodies [20]. The high seroprevalence (76%) to Coxiella burnetii found in European bison indicated that they could be a potential reservoir of Q fever for humans and other animals. The European bison-human transmission was suspected, since the infection was also confirmed in some employees (some hospitalized) of the Białowieża National Park (BNP) staff. Szarek et al. [21] have linked C. burnetii infection with the pathomorphological changes of the heart and kidneys observed in European bison specific for Q fever.
\nThe first signs of another important disease in the male European bison, referred to as necrotic posthitis or balanoposthitis (called also pizzle rot), the causes of which still remain unsolved, were observed in Białowieża in 1980 remain unsolved, were observed in Białowieża in 1980 (Figure 3) [22]. Trueperella pyogenes and some other purulent bacteria have been isolated from the diphtheroid-necrotic changes observed on the prepuce and penis, which may lead to self-mutation of the penis in severe cases causing primarily great pain and immunosuppression, excluding the affected males from breeding [6, 22, 23, 24]. Infection with BoHV-1 causing similar symptoms in cattle was excluded from the investigation, since hardly any European bison affected had detectable antibodies to the virus and no isolation from the tissues was possible [1, 22, 25]. Also no association between Trypanosoma invasion and balanoposthitis was found [1]. Prior to the prepuce and penis lesions reported in Białowieża, similar symptoms were observed in Pszczyna, in the eastern part of Białowieża Forest (now Belarus), Ukraine, and Russia [1]. The epidemic of balanoposthitis in Białowieża included annually up to 15.2% males in 1993, with the average of 6.1% between 1980 and 2015. Selective culling was found the most effective method to decrease the cases, especially in the recent years [1, 6]. The symptoms are observed in all age groups of males, including calves and 2–3-year-old European bison males, yet not reproductively active [1, 6, 23]; therefore venereal route of transmission may rather be rejected. Since most cases occurred at Białowieża Forest, involvement of some environmental or vectors such as ticks was speculated, however, never verified. Since European bison genetic pool had gone through a dramatic “bottleneck” at the beginning of the twentieth century, high inbred was suspected to play a role; however, little evidence was reported [26, 27].
\nOne of the most devastating bacterial diseases, which remains a current problem in Polish European bison populations, is tuberculosis. The disease was diagnosed in the free-living European bison population in the Bieszczady mountains in the 1990s [28, 29, 30, 31], European bison are very susceptible to mycobacterial infections, and since no vaccination programs or treatment could have been introduced, the only method of disease control and prevention from spreading was the elimination of infected European bison [28, 29, 31, 32, 33, 34]. The eradication resulted in a significant depopulation observed in decrease of the numbers of European bison (Figure 2). Tuberculosis affecting European bison in Poland is caused by Mycobacterium caprae [35]. The management of the diseases is extremely difficult especially in wildlife, since the mycobacteria transmit readily between different wild species such wild boar, deer, and wolves in Bieszczady mountains [31]. American bison bred in Poland are also considered important reservoir of tuberculosis [36].
\nMale Bison bonasus with clinical signs of balanoposthitis showing symptoms of impeded urination (stranguria) and swelling of the whole external genital area (photo: Ł. J. Mazurek).
Free-ranging European bison create herds consisting of cows, their offspring, and youth; solitary bulls live outside of the herd and, however, approach or join in the mixed groups during rutting season and winter (for feeding), while young bulls often create small male groups [37]. Since European bison move over considerable distances during the day (especially the bulls), in order to monitor the distribution of these animals and study their use of space and different ecosystems, telemetric transmitters are being placed on selected individuals. Through such transmitters, we can track the daily rhythm of European bison and the use of various habitats for feeding and resting, divided into seasons and various periods relevant to the behavior of animals (the calving season, mating season) [1]. Such transmitters can use a radio signal emission (the oldest way, currently replaced by GPS); it requires the involvement of a person with a radio receiver together with an antenna to track the animal and record their location. Another way is to connect the transmitter to the server via cellular telephony; coordinates from the GPS system are collected, converted, and transferred to the operator’s server, processed and plotted on the map; however, it requires the animal remains within the GSM network, and the reading may be analyzed by the inspector only after some time. The most modern, but also significantly more expensive, way is placing satellite emitters on the European bison, which allows tracking these animals in different conditions (also outside the GSM network) and the ability to record the location of the “marked” animal systematically regardless of the environment in which it is located. By monitoring European bison for a longer period of time, maps can be created for the use of both males and females of different ecosystems, determine the range of existence of individual herds, and determine, for example, the nutritional preferences of these animals. The telemetric coordinates of European bison location are applied to maps and visualized showing land usage of individuals/herds in relation to season, differences in distribution, and behavior of females and males [38]. Same as European bison counting, setting up telemetry transmitters is usually performed during winter concentration at feeding places. For this purpose, the individual is pharmacologically immobilized (Figure 4) [7], and the belt with the telemetry transmitter is adjusted to its neck. This is important because a too tight collar may cause difficulties in swallowing and regurgitation, while too loosely attached collar may cause injuries (entrapment of the limb, foreign bodies such as branches). For an adult European bison, a telemetry transmitter that weighs approx. 2 kg may be compared to a watch on a human wrist. Additionally, during the pharmacological immobilization of European bison, samples are collected for veterinary, genetic, and toxicological tests, which is a part of the health monitoring described in paragraph 3.
\nChemical immobilization of free-living European bison (photo: J. Klej).
When considering the problems of infectious and invasive diseases, three aspects (the so-called epidemiological triangle: animal-environment-pathogen) should be considered. The epizootic and epidemiological situation is a resultant of the interactions between the natural environment of the free-living animals, other wild reservoir species and farm animals at the wildlife-lifestock interface. An important environmental component will also be access to competent vectors of a given microorganism. In the case of environmental impact, it is also necessary to take into account people who are susceptible to zoonoses, can themselves be a source of infections, or can be a mechanical vector of infectious and invasive agents transmitted to animals, becoming endemic in sylvatic environment [39]. Those aspects meet in the One Health approach, which include wildlife as a key component of the ecosystem [9, 32, 40, 41]. Therefore, in the case of an epizootic, surveillance should be carried out in both domestic and non-domestic populations, both free-living and captive, and the potential role of humans (animal care takers, breeders, vets) as vectors should be taken into account. Climate, environment, socioeconomical changes create alterations also in the distribution of infectious diseases and remind us that animals and humans, environment, and pathogens are the elements of the same ecosystem. In the last 20 years, the population size of European bison in Białowieża Forest and in the whole country increased more than twice (Figure 2). It generated an increasing epidemiological pressure connected to higher animal density, a need for expanding the habitat, and what further increases the frequency of contacts between wildlife, farm animals, and humans. The evident environmental changes may provoke also emergence and re-emergence of new pathogens, change the seasonality of wild species, and induce stress and therefore the immunosuppression leading to increased susceptibility to diseases.
\nSince the European bison population was on the verge of extinction at the beginning of the twentieth century, each individual was extremely valuable; therefore one of the main aspects of European bison restitution still remains veterinary health protection, especially in terms of the threat of infectious and invasive disease occurrence. The role of European bison veterinarians and keepers include the supervision, health monitoring, understanding disease characteristics, identification of disease risks, provision of information for control, prevention or treatment, and evaluation of the effectiveness of control and its adjustment. One of the effective tools to control the disease is selective elimination of diseased animals and limiting the population size to reduce its density [32]. The selection is made by a panel of experts in the field; however, it should be remembered that the approach presented here is based on veterinary health protection sometimes argued by epidemiologists [42]. In the case of protected species such European bison, enforcement of the veterinary regulations to protect the species by a sacrifice of few diseased individuals, which are reservoirs of the pathogens putting on risk the whole population, becomes often inconvenient decision against some environmentalist protests.
\nEuropean bison monitoring in Poland consists of four elements: (1) passive surveillance, (2) active (targeted) monitoring, (3) sanitary control of transported animals, and (4) habitat monitoring (Figure 5) [43]. The first approach is based on one of the most suitable ways of health control, the postmortem examination as an element of mortality and morbidity investigations and sampling of the material for laboratory testing [6, 23, 44].
\nThe four main elements of the European bison health monitoring scheme in Poland.
The most recent study involved the analysis of necropsy findings of over 230 fallen or selectively culled European bison from Białowieża Forest between 2008 and 2013 [6]. Changes in the male reproductive tract such as posthitis and balanoposthitis remained the most common pathological changes observed in European bison bulls; however, it should be kept in mind that those changes are the main reason for bull elimination (Figure 6). Moreover, the decrease in the proportion of males with prepuce and penis lesions of the whole Białowieża male population in regard to the last century was significant [1, 44].
\nPercentage of European bison with individual pathological changes and parasitic invasions observed at postmortem examinations performed between 2008 and 2013 in Białowieża Forest [6].
The next most common problem included pneumonia (45% necropsied animals) and pulmonary emphysema (33%) [6], which were also reported in earlier studies [44]. Respiratory problems were associated with Dictyocaulus viviparus invasion of the lungs observed macroscopically; however, the characteristic picture of interstitial or catarrhal-purulent pneumonia suggested also involvement of some infectious agents, what was confirmed for Pasteurella multocida [16]. The study has shown that the liver fluke Fasciola hepatica still remained endemic in European bison in Białowieża [6]. The presence of the parasite is associated directly with the habitat of European bison in Białowieża [45]. The most frequent cause of death of European bison under the age of 6 months were body injuries caused by other European bison or less often as a result of other accidents. An important finding was that the frequency of pathological changes was higher in the selectively culled European bison than those that were found dead in the wild. This confirms the purposefulness of selection and elimination of diseased individuals as a tool to improve the health and welfare of the population of the species and allows to limit the number of animals that constitute a potential reservoir of infectious and invasive diseases [32]. Additionally, unlike farm animals, European bison are protected animals and live to a mature age; the pathological changes characteristic of elderly individuals, such as kidney cysts, fatty liver, and cataracts may be observed [6]. However, their frequency in the studied European bison did not exceed several percent.
\nAnother large serosurvey has revealed the possible involvement of some respiratory viruses in the pathogenesis of the frequent changes observed in the lungs or in the upper respiratory tract such as bovine adenovirus type 3 (BAdV-3), bovine parainfluenza type 3 (PIV-3), and bovine respiratory syncytial virus (BRSV) [46]. The high seroprevalences observed especially for BAdV-3 (60%) and PIV-3 (34%) were surprising, also because they have not been studied too intensively before [47]. Interestingly, the association between BAdV-3 and PIV-3 infections and health status of European bison were demonstrated, with significantly lowest seroprevalences in the apparently healthy animals. Whether the high BAdV-3 and PIV-3 infection rates were due to the circulation inside the European bison population or it is connected to the transmission of those viruses from domestic ruminants remains unsolved. However, higher infection rates in the free-living European bison suggested that it might have been associated with a spillover from farm animals. The European bison kept in the enclosures were possibly protected from a direct contact with domestic species, not sharing grazing areas as observed in Białowieża [48, 49]. The studies on the characterization of the viral strains in European bison, what may explain the transmission source, are ongoing.
\nMoreover, other endemic in ruminants infectious agents were considered as potential threats to European bison. Those included pestiviruses with bovine viral diarrhea virus type 1 (BVDV-1) and alpha- and gammaherpesviruses (bovine herpesvirus type 1—BoHV-1, BoHV-4, and BoHV-6), endemic in Polish cattle herds [46]. While in farm animals those viruses are responsible for economic losses, they may prevent the reproduction of an endangered species and make the restitution program fail. However, very low seroprevalence to those viruses suggests certain resistance or only accidental exposure of European bison and hence little importance for European bison at present [15, 25, 46, 47]. On the other hand, low seroprevalence means that most European bison are naïve and fully susceptible to infections with BVDV-1 and BoHV-1, BoHV-4, and BoHV-6. The involvement of herpesviruses in the etiology of balanoposthitis was also disclosed [22].
\nOther respiratory agents, which could affect the clinical picture observed frequently postmortem in European bison such as Mycoplasma spp. and Mycobacterium spp., are probably of limited geographical importance [33, 46, 50, 51]. Infections with Mycoplasma bovis in few individuals suggest that the exposure was accidental and, however, might have added to some pathological changes of the respiratory tract observed in one case such as intrabronchial pneumonia and pleurisy [51]. In addition, Mycoplasma bovigenitalium was suggested to be involved in balanoposthitis under serological evidence; however, the bacteria have never been detected in the lesions of the male genital tract [50]. Moreover, the occurrence of Mycoplasma ovipneumoniae infections was never investigated; notwithstanding this direction is worth considering in the pathogenesis of respiratory disorders [52]. Bovine tuberculosis (bTB) remains one of the major infections putting on risk the whole population. Mycobacterium accompanies European bison since the dawn of time. Bacterial DNA has been discovered in the bison fossil dated 17,000 years before the present [53]. One of the major obstacles for tuberculosis control in wildlife is that the mycobacteria spread among different mammalian species and survive in numerous biotopes (soil, water, vegetation) becoming endemic in the wild ecosystem for a very long time. Additionally, the diagnostic test used for European bison is dedicated mostly to cattle; therefore, the sensitivity may vary. Sample quality is critical, and the use of several complementary diagnostic methods is necessary to confirm a bTB case in European bison [54]. Fortunately, the disease has not been observed in European bison from the world largest population in Białowieża for some decades now, probably owing to the elimination of the pathogen from cattle in Poland. The disease stroke, however, in a reserve in the European bison breeding center in Smardzewice [33, 46], what has led to stamping out of the whole herd in 2018. The outbreak as the previous one in Bieszczady mountains was connected to Mycobacterium caprae [31, 35]. Reports of tuberculosis in captive European bison caused by M. bovis in German and Brazilian zoos underline the need for control in the species being important bTB reservoir worldwide [55, 56, 57].
\nFurther studies are concerned with pathogens, which may be depopulating through their influence on European bison reproduction, reducing already fragile number of the species under restitution. Low seroprevalences of Brucella spp., Leptospira spp., and Toxoplasma gondii observed in European bison in eight main Polish populations sampled between 2011 and 2015 by Krzysiak et al. [46] suggest limited importance of those agents for the species conservation at present. It had been also confirmed by the results of some previous investigations [47, 58]. Only slightly higher T. gondii parasite seroprevalence was observed in European bison from Białowieża prior to the study of Krzysiak et al. [46, 59]. It was followed by the report of T. gondii isolation from an aborted at 4–5-month-old gestation of European bison fetus in Białowieża in 2014 [60]. Similar to T. gondii, European bison pose some potential as Neospora caninum and Chlamydia spp. reservoirs [58, 61].
\nBovine leukemia virus (BLV) and Mycobacterium avium subsp. paratuberculosis (Johne’s disease) infections, endemic in Polish cattle, are subject of official tests performed routinely in the movement of European bison inside the European Union. Only one case of subclinical BLV infection has been reported so far in the 1880s. Just as paratuberculosis [51], bovine leukemia does not pose a serious threat to Polish European bison at present.
\nFinally, it is worth mentioning European bison susceptibility to malignant catarrhal fever virus (MCFV) infection, which is comparable to cattle’s. The reports of clinical picture of MCF in the species kept in zoos are quite old [62, 63]. MCF is considered more emerging and non-endemic in Poland; therefore, no current data exists. However, it was well documented that the exposure of American bison to sheep-associated MCFV is frequently fatal [64, 65]. In 2018, an outbreak of fatal MCF in European bison enclosure in Switzerland was consulted with European Bison Pedigree Book department at the Białowieża National Park; however no report was published officially (Baumgartner, personal communication).
\nThe twenty-first century brings new challenges of the protection of animal health, including free living. Social and economic changes, globalization, intensification of intra- and intercontinental trade and travels, and environment and climate change contributed to the observed increase in the risk of emergence and re-emergence of pathogens [66]. The last few years have brought an increase in the importance of new pathogens, completely unknown before or not present in a given geographical latitude [67, 68], which may also have a significant impact on the health of an endangered species such as the European bison. It is related to processes related to human activity or changes in the environment but also to the development of science, improvement of disease diagnostics, and the introduction of new cognitive techniques, such as metagenomics and next-generation sequencing (NGS). Due to the habitat and the maintenance of a part of the European bison population in captivity, they are exposed to pathogens from both wild and domestic animals. Along with climate change, infections caused by pathogens transmitted by vectors such as arthropods (ticks, biting midges, mosquitoes) are more and more frequently reported in our part of Europe. In 2007, the first cases of infection with bluetongue virus (BTV) serotype 8 (BTV-8) causing significant mortality in European bison at an enclosure in Hardehausen occurred. The virus is transmitted by the blood-sucking midges of the family of Culicoides spp. (Figure 7a,b). BTV infections have never been detected as far north of Europe. During the epizootics more than 30% of European bison kept in Hardehausen died, and the surviving animals received a vaccine containing homologous inactivated BTV-8 [69]. BTV-8 epizootics did not reach Poland; however another strain, BTV-14, was detected almost simultaneously in cattle and in European bison at the northeast of Poland, near the Belarusian and Lithuanian borders [11, 70]. The source remains puzzling, particularily since the virus was highly homologous to South African BTV-14 reference strains used in vaccines, which were never used in Europe. However, closely related BTV-14 was detected in Russia almost at the same time. Therefore, combining this with the dynamics of geographical spread of BTV-14 in Poland, use of some illegal vaccine containing or contaminated with this BTV strain was suggested [71]. Serosurveillance of BTV in European bison showed that the infections occurred only in the eastern populations [11]. Interestingly, despite that the discovered BTV-14 has been described as attenuated strain causing only subclinical infection in cattle, significant association between health status of European bison and the presence of specific antibodies was observed [11]. The exposure rate to BTV in selectively eliminated and fallen animals in respect to healthy ones was clear; however multivariable analysis has not confirmed the health status as a risk factor. Notwithstanding, the most important consequences of the occurring of BT are the culling of diseases or suspected animals and restrictions on the movement of animals, since the disease is notifiable disease listed by the World Organization. Control or eradication of BTV in protected wild species such as European bison is rather doomed, especially that the environment provides more susceptible species such as cervids and favorable conditions for midge reproduction and survival [72, 73]. BTV epidemiological situation remains under continuous supervision (unpublished data). Additionally, the occurrence of epizootic hemorrhagic disease virus (EHDV) infections transmitted by Culicoides spp. in European bison in Poland was also ruled out [11]. However, since some diseases of wildlife considered so far as absent in certain geographic areas such as African swine fever in wild boar or chronic wasting disease (CWD) in cervids become endemic in Europe, the threat of EHD in the future should also be considered real [9].
\nBTV, EHDV, and SBV insect vectors: biting midges of Culicoides obsoletus species—(a) freshly blood-fed and (b) gravid (containing a mature egg batch in the abdomen). Ultraviolet (UV) light trap (CDC 1212, John W. Hock Company, USA) for Culicoides spp. midges collection set at the Show Reserve in Białowieża National Park (c) (photo: Ł. Mazurek). The midges are active at night; therefore the trap was set on from dusk till dawn once a week during the vector activity season (April-October). UV light attracts the insects, which were trapped and fell down into the jar containing water with detergent [73].
After the bluetongue epizootics (BTV) in 2007 [67], a new pathogen named Schmallenberg virus (SBV) was identified in Europe in 2011 [74], which spread very quickly across the continent. The first SBV infection in cattle in Poland was found in 2012, and in the same year, virus transmission to the ruminants of free-living ruminants in the Białowieża Forest, including European bison, was observed [75]. The first case of acute SBV infection in wild animals was actually confirmed in a fallen elk calf rescued by the animal keepers of the Białowieża National Park [76, 77]. This was the first report on the identification of the SBV virus in a free-living animal that began an international discussion on the importance of free-living animals as a reservoir of this new virus [77]. It proceeded the subsequent surveillance of European bison and other wild ruminants at Białowieża Forest, what allowed to determined that the transmission of SBV occurred during 2012 Culicoides activity season [76]. Further studies concentrated on the epidemiology of SBV in European bison and the environment (other susceptible species, vector) [11, 73, 78]. SBV seroprevalence in European bison in all studies was significantly much higher than observed in the cervids sampled simultaneously at the same locations. It is not, however, due to the higher susceptibility of the European bison to SBV infection, rather than higher exposure to midge biting. Similar differences were reported between cattle and small ruminants. Most probably, higher exposure in larger ruminants is associated with their higher production of carbon dioxide, one of the strongest attractants of many arthropods including Culicoides spp. [79, 80]. SBV in utero infections may lead to congenital malformations of newborns, stillbirths, or abortions. Limited access to the material of aborted fetus in the wild European bison did not allow to draw many conclusions [73]; however some losses in reproduction rate may be expected as observed in cattle.
\nSince the transmission of arthropod-borne pathogens involves environmental factors, entomological and virological studies of the midges near European bison were performed between 2014 and 2015 [73]. Using specially designed ultraviolet (UV) light traps (Figure 7c) placed near European bison resting places at Białowieża National Park abundance, species composition and virus exposure were tested. The wood midges of Culicoides achrayi species were the most abundant with almost 280 thousand (over 50% of the whole midge number collected) individual midges of the species trapped over the 2-year period [73]. The presence of SBV was confirmed in some midges trapped in 2015. The work except its originality provided very needed data to study all Culicoides-borne infections including BTV in the sylvatic habitat of European bison.
\nFurther studies suggest that European bison may be an important reservoir of tick-borne Lyme disease, since Borrelia burgdorferi was detected in blood of several animals in Białowieża [81]. Earlier, the presence of specific antibodies to B. burgdorferi was confirmed in European bison in the same area in the 1990s [82]. Other documented in European bison investigations of the infections transmitted by ticks include tick-borne encephalitis (TBE), tularemia, and anaplasmosis. While TBE virus was detected in the ticks collected from European bison [83], no antibodies supported the hypothesis that the species is an important reservoir of the virus [84]. European bison probably have little importance in the transmission of another zoonotic pathogen, Francisella tularensis, since none of the 251 individuals from eight Polish populations had antibodies against the bacteria according to Krzysiak et al. [46]. However, it is different when Anaplasma phagocytophilum responsible for human granulocytic ehrlichiosis (HGE) is considered. This tick-transmitted bacterium was found in a blood of over 66% of European bison in Białowieża Forest [85]. The pathogen was also confirmed to be present in the ticks collected from the animals [86]. However, whether any of the detailed tick-borne pathogens influences European health remains unexplored.
\nThe last emerging disease with high epizootic potential we would like to discuss shortly is hepatitis E. The pigs including wild boar are the main reservoirs of hepatitis E virus (HEV); however, cases of virus to humans through cervid meat have been also reported. In a recent study, none of the European bison had antibodies against HEV [87]; however, the sensitivity of the methods to ruminants is debatable, and therefore the studies are being continued.
\nEuropean bison survived to the present times, only thanks to human care and protection. Because Europe, unlike the Americas, was significantly more populated in the Middle Ages, European bison conservation by the Polish kings saved this species from total extinction, as was the case outside the Kingdom of Poland. Successive rulers continued to protect the species, but warfare led to the total depopulation of the last surviving free-living population in the Białowieża Primeval Forest. Thanks to the efforts of scientists and naturalists, the current global population of European bison which was founded by 12 individuals is over 7000. This is undoubtedly a success, but without the supervision of the health of European bison, it would be impossible. European bison, in general opinion, is characterized by a decreased resistance to infections due to their low genetic heterogeneity after passing through the “bottleneck.” Except for Mycobacterium spp. and foot-and-mouth disease, there are few threats threatening to total depopulation of the species at the moment. However, many European bison seems to be susceptible to many pathogens which may influence their health status and exclude genetically valuable individuals from the breeding. Monitoring of the exposure is essential for the knowledge but also for taking the necessary steps to protect and control. It requires a sampling plan, which allows collection of representative number of specimen necessary for statistical analysis, which is not always feasible since European bison are few and most live in the wild. Therefore, many discussed above studies do not meet any epidemiological assumption and need to be analyzed with caution. Many retrospective studies suggest that European bison may be a reservoir of pathogens; however, the susceptibility to the infection is arguable, since they do not manifest any clinical symptoms (borreliosis, toxoplasmosis). In contrast to high-production animals, it seems not to be highly susceptible to infection, e.g., with pestiviruses and herpesviruses. At the same time, the possible interspecies transmission between domestic ruminants and European bison may be possibly responsible for the high prevalence of respiratory viruses and Pasteurella multocida infections in which clinical manifestations are observed frequently postmortally in European bison. Changing environment brings new challenges to European bison protection too, since the entire population may be at risk due to the emerging and re-emerging diseases observed recently such as bluetongue disease and malignant catarrhal fever. Therefore, maintaining the health monitoring of free-living European bison and eliminating all epizootic threats from the environment are crucial. It is also very important to follow the veterinary procedures and appropriate prophylactic measures when moving these animals. In our opinion, “prevent to protect” should stand for active protection, which proved to be the most effective in European bison restitution so far. Restitution breeding is a long and tedious process, often associated with making difficult and unpopular decisions.
\nThe publishing of the chapter was funded by KNOW (Leading National Research Centre) Scientific Consortium “Healthy Animal-Safe Food,” decision of Ministry of Science and Higher Education no. 05-1/KNOW2/2015. The collection of some data was funded from the project: ‘In situ conservation of the European bison in Poland - the north-eastern part’ cofinanced by Operational Program Infrastructure and Environment (contract no: POIS.05.01.00-00-229/09-00).
\nWe declare no conflict of interest exists for this publication.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1225",title:"Optical Physics",slug:"optics-and-lasers-optical-physics",parent:{title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:5,numberOfAuthorsAndEditors:92,numberOfWosCitations:47,numberOfCrossrefCitations:36,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optics-and-lasers-optical-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8350",title:"Fiber Optic Sensing",subtitle:"Principle, Measurement and Applications",isOpenForSubmission:!1,hash:"d35774b28952d3c4c4643b58dec25549",slug:"fiber-optic-sensing-principle-measurement-and-applications",bookSignature:"Shien-Kuei Liaw",coverURL:"https://cdn.intechopen.com/books/images_new/8350.jpg",editedByType:"Edited by",editors:[{id:"206109",title:"Dr.",name:"Shien-Kuei",middleName:null,surname:"Liaw",slug:"shien-kuei-liaw",fullName:"Shien-Kuei Liaw"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7582",title:"Nonlinear Optics",subtitle:"Novel Results in Theory and Applications",isOpenForSubmission:!1,hash:"a3ad4a3553a3ec59f7992d4f6495ac07",slug:"nonlinear-optics-novel-results-in-theory-and-applications",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/7582.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris",middleName:"I.",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6599",title:"Small Angle Scattering and Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"9b1efb6a54c3fbdadd875f7bac0f6718",slug:"small-angle-scattering-and-diffraction",bookSignature:"Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/6599.jpg",editedByType:"Edited by",editors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",middleName:null,surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"52294",doi:"10.5772/65118",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2472,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52465",doi:"10.5772/65385",title:"Bioluminescent Fishes and their Eyes",slug:"bioluminescent-fishes-and-their-eyes",totalDownloads:1372,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"José Paitio, Yuichi Oba and Victor Benno Meyer-Rochow",authors:[{id:"185998",title:"Dr.",name:"Yuichi",middleName:null,surname:"Oba",slug:"yuichi-oba",fullName:"Yuichi Oba"},{id:"186175",title:"Dr.",name:"Jose Rui",middleName:null,surname:"Lima Paitio",slug:"jose-rui-lima-paitio",fullName:"Jose Rui Lima Paitio"},{id:"202747",title:"Dr.",name:"Victor B.",middleName:null,surname:"Meyer-Rochow",slug:"victor-b.-meyer-rochow",fullName:"Victor B. Meyer-Rochow"}]},{id:"52672",doi:"10.5772/65185",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2918,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]}],mostDownloadedChaptersLast30Days:[{id:"52173",title:"The Dynamics of Luminescence",slug:"the-dynamics-of-luminescence",totalDownloads:1531,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Luyanda L. Noto, Hendrik C. Swart, Bakang M. Mothudi, Pontsho S.\nMbule and Mokhotjwa S. Dhlamini",authors:[{id:"102985",title:"Dr.",name:"Mokhotswa",middleName:null,surname:"Dhlamini",slug:"mokhotswa-dhlamini",fullName:"Mokhotswa Dhlamini"}]},{id:"52294",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2476,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52672",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2922,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]},{id:"65854",title:"The State-of-the-Art of Brillouin Distributed Fiber Sensing",slug:"the-state-of-the-art-of-brillouin-distributed-fiber-sensing",totalDownloads:793,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"fiber-optic-sensing-principle-measurement-and-applications",title:"Fiber Optic Sensing",fullTitle:"Fiber Optic Sensing - Principle, Measurement and Applications"},signatures:"Cheng Feng, Jaffar Emad Kadum and Thomas Schneider",authors:[{id:"280943",title:"M.Sc.",name:"Cheng",middleName:null,surname:"Feng",slug:"cheng-feng",fullName:"Cheng Feng"},{id:"290271",title:"Mr.",name:"Jaffar",middleName:null,surname:"Kadum",slug:"jaffar-kadum",fullName:"Jaffar Kadum"},{id:"290272",title:"Prof.",name:"Thomas",middleName:null,surname:"Schneider",slug:"thomas-schneider",fullName:"Thomas Schneider"}]},{id:"64727",title:"Nonlinear Schrödinger Equation",slug:"nonlinear-schr-dinger-equation",totalDownloads:822,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-novel-results-in-theory-and-applications",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - Novel Results in Theory and Applications"},signatures:"Jing Huang",authors:[{id:"198550",title:"Ph.D.",name:"Jing",middleName:null,surname:"Huang",slug:"jing-huang",fullName:"Jing Huang"}]},{id:"52568",title:"Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence",slug:"trap-level-measurements-in-wide-band-gap-materials-by-thermoluminescence",totalDownloads:1546,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Pooneh Saadatkia, Chris Varney and Farida Selim",authors:[{id:"185781",title:"Prof.",name:"Farida",middleName:null,surname:"Selim",slug:"farida-selim",fullName:"Farida Selim"},{id:"186734",title:"Ms.",name:"Pooneh",middleName:null,surname:"Saadatkia",slug:"pooneh-saadatkia",fullName:"Pooneh Saadatkia"},{id:"186735",title:"Dr.",name:"Chris",middleName:null,surname:"Varney",slug:"chris-varney",fullName:"Chris Varney"}]},{id:"66415",title:"Magnetic Solitons in Optical Lattice",slug:"magnetic-solitons-in-optical-lattice",totalDownloads:227,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-from-solitons-to-similaritons",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - From Solitons to Similaritons"},signatures:"Xing-Dong Zhao",authors:[{id:"283277",title:"Dr.",name:"Zhao",middleName:null,surname:"Xingdong",slug:"zhao-xingdong",fullName:"Zhao Xingdong"}]},{id:"52708",title:"Bioluminescence of the Black Sea Ctenophores-Aliens as an Index of their Physiological State",slug:"bioluminescence-of-the-black-sea-ctenophores-aliens-as-an-index-of-their-physiological-state",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Tokarev Yuriy Nikolaevich and Mashukova Olga Vladimirovna",authors:[{id:"186292",title:"Dr.",name:"Yuriy",middleName:null,surname:"Tokarev",slug:"yuriy-tokarev",fullName:"Yuriy Tokarev"},{id:"186293",title:"Dr.",name:"Olga",middleName:null,surname:"Mashukova",slug:"olga-mashukova",fullName:"Olga Mashukova"}]},{id:"52133",title:"Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies",slug:"excitation-intensity-ei-effect-on-photoluminescence-of-zno-materials-with-various-morphologies",totalDownloads:1427,totalCrossrefCites:4,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Prasada Rao Talakonda",authors:[{id:"185838",title:"Dr.",name:"Prasada Rao",middleName:null,surname:"Talakonda",slug:"prasada-rao-talakonda",fullName:"Prasada Rao Talakonda"}]},{id:"52293",title:"Luminescent Glass for Lasers and Solar Concentrators",slug:"luminescent-glass-for-lasers-and-solar-concentrators",totalDownloads:1537,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Meruva Seshadri, Virgilio de Carvalho dos Anjos and Maria Jose\nValenzuela Bell",authors:[{id:"185581",title:"Dr.",name:"Seshadri",middleName:null,surname:"Meruva",slug:"seshadri-meruva",fullName:"Seshadri Meruva"},{id:"193648",title:"Prof.",name:"Anjos",middleName:null,surname:"V",slug:"anjos-v",fullName:"Anjos V"},{id:"193649",title:"Prof.",name:"Bell",middleName:null,surname:"M.J.V",slug:"bell-m.j.v",fullName:"Bell M.J.V"}]}],onlineFirstChaptersFilter:{topicSlug:"optics-and-lasers-optical-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/294878/stevan-tofovic",hash:"",query:{},params:{id:"294878",slug:"stevan-tofovic"},fullPath:"/profiles/294878/stevan-tofovic",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()