The dynamical behavior of pulse and traveling hole in a one-dimensional system depending on the boundary conditions, obeying the complex Ginzburg-Landau (CGL) equation, is studied numerically using parameters near a subcritical bifurcation. In a spatially extended system, the criterion of Benjamin-Feir-Newell (BFN) instability near the weakly inverted bifurcation is established, and many types of regimes such as laminar regime, spatiotemporal regime, defect turbulence regimes, and so on are observed. In finite system by using the homogeneous boundary conditions, two types of regimes are detected mainly the convective and the absolute instability. The convectively unstable regime appears below the threshold of the parameter control, and beyond, the absolute regime is observed. Controlling such regimes remains a great challenge; many methods such as the nonlinear diffusion parameter control are used. The unstable traveling hole in the one-dimensional cubic-quintic CGL equation may be effectively stabilized in the chaotic regime. In order to stabilize defect turbulence regimes, we use the global time-delay auto-synchronization control; we also use another method of control which consists in modifying the nonlinear diffusion term. Finally, we control the unstable regimes by adding the nonlinear gradient term to the system. We then notice that the chaotic system becomes stable under strong nonlinearity.
Part of the book: Research Advances in Chaos Theory