Determination of viral characteristics including genotype (GT), subtype (ST) and resistance-associated variants (RAVs) profile is important in assigning direct-acting antivirals regimes in HCV patients. To help achieve the best clinical management of HCV patients, a routine diagnostic laboratory should aim at reporting accurate viral GT/ST and RAVs using a reliable diagnostic platform of choice. A laboratory study was conducted to evaluate performance characteristics of a new commercial next-generation sequencing (NGS)-based HCV genotyping assay in comparison to another widely used commercial line probe assay for HCV genotyping. Information on RAVs from deeply sequenced NS3, NS5A and NS5B regions in samples classified as HCV 1a and 1b was harnessed from the fully automated software. Perfect (100%) concordance at HCV genotype level was achieved in GT2 (N = 13), GT3 (N = 55) and GT5 (N = 7). NGS refined the ST assignment in GTs 1, 4 and 6, and resolved previously indeterminate GTs reported by line probe assay. NGS was found to have consistent intra- and inter-run reproducibility in terms of genotyping, subtyping and RAVs identification. Detection of infections with multiple HCV GTs or STs is feasible by NGS. Deep sequencing allows sensitive identification of RAVs in the GT 1a and 1b NS3, NS5A and NS5B regions, but the list of target RAVs is not exhaustive.
Part of the book: Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations