Main applications of Fe3O4/G composites.
\r\n\tBasic science studies have provided new insights into the pathophysiology of β-thalassemia. Studies of genotypic and phenotypic heterogeneity among patients and a better understanding of the control of erythropoiesis have provided new targets for designing novel agents that can be tailored to individual patient needs. JAK-2 kinase inhibitors and agents targeting the GDF-11/SMAD pathway are in clinical trials.
\r\n\r\n\tThis book will attempt to discuss the historical background of the disease and present the most up-to-date material regarding disease management in today's world for the reader to be updated on the best practice management of the disease.
",isbn:"978-1-83969-158-4",printIsbn:"978-1-83969-157-7",pdfIsbn:"978-1-83969-159-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"23abb2fecebc48a2df8a954eb8378930",bookSignature:"Dr. Akshat Jain",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10727.jpg",keywords:"History of Gene Mutation, Genetic Counselling, Anemia, Genotyping, Hemoglobin Electrophoresis, HLA typing, Hemolysis, Aplastic Anemia, Blood Transfusion, Laboratory Testing, Fetal Hemoglobin Modifiers, Gene Therapy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 4th 2021",dateEndSecondStepPublish:"March 4th 2021",dateEndThirdStepPublish:"May 3rd 2021",dateEndFourthStepPublish:"July 22nd 2021",dateEndFifthStepPublish:"September 20th 2021",remainingDaysToSecondStep:"2 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A board-certified pediatrician with a specialization in pediatric hematology-oncology and stem cell transplantation. In collaboration with Harvard Medical School, he studied and reported the outcomes of a global hemophilia collaboration. He is a member of the American Board of Pediatrics, Hematology, and American Board of Pediatrics, also he is a Committee member for the American Society of Pediatric Hematology-Oncology Special Interest Group in Global Pediatric Hematology oncology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"344600",title:"Dr.",name:"Akshat",middleName:null,surname:"Jain",slug:"akshat-jain",fullName:"Akshat Jain",profilePictureURL:"https://mts.intechopen.com/storage/users/344600/images/system/344600.jpg",biography:"Akshat Jain M.D. M.P.H.\n11175 Campus Street \nLoma Linda, California 92354\nPhone: (917) 331-3216\nakshatjainusa@gmail.com \n\nMEDICAL EDUCATION \n●\tS.S.R. Medical College, Belle Rive, Mauritius - MBBS, Bachelor of Medicine Bachelor of Surgery, 2007\n●\tPediatrics Residency Training ,The New York Medical College, Metropolitan Hospital , Dec2008-Dec 2011\n●\tPediatric Hematology Oncology and Stem Cell Transplant Fellowship, Cohen’s Children's Hospital of New York at LIJ-North Shore Health system. July 2012- September 2015\n●\tMaster’s in Public Health ,Hofstra University School of Public Health ,New York , August 2015\n\n\nHONORS/ AWARDS \n●\tThe New York Academy of Medicine Honorary Associate Award , December 2009\n●\tProgram Leadership Award - Committee of Interns and Residents (C.I.R./SIEU), April 2010\n●\tAmerican Academy of Pediatrics Program Delegate Award, New York Medical College, December 2010.\n●\tCitation of Honor from New York County for Excellence in Medicine and Service to Long Island, New York,Nassau county executive chambers , August 15,2015 \n●\tTimes of India N.R.I. ( Non Resident Achiever ) award , August 2015 \n●\tCertificate for academic excellence –Hofstra University School of Health Science & Human Services, New York August 26, 2015\n●\tAmerican Society of Hematology Leadership Institute Award , April 2016\n●\tGlobal Health Speaker Award , convener of Global Health Symposium, Hofstra NorthWell School of Medicine and School of Public health , May 2016\n●\tInternational Pediatric Lymphoma Meeting ,Session Chairperson of Pediatric Lymphoma , Indian Society of Hematology and Oncology , November 2016\n●\tContent Leader Award for Hematology perspective’s in the Global CoronaVirus Pandemic Preparedness Response for Medical Association of physicians of Indian Origin, April 2020.\n●\tConvener and Chairperson International Webinar for COVID 19 Coagulopathy, May 2020. \n●\tFeatured in the Top Doctors magazine 2020, ranked top pediatric Hematologist Oncologist for Southern California.\n\nNATIONAL/INTERNATIONAL POSITIONS \n●\tHofstra University Dean Advisory Board for the School of Health Professions, December 2017\n●\tEditorial Board – American Society of Pediatric Hematology Oncology Communications Committee, International Journal of Hematology Research (ISSN 2409-3548)\n●\tReviewer - JAMA Pediatrics (ISSN: 2168-6203), British Medical Journal (ISSN, 1468-5833), JAMA Oncology (ISSN: 2374-2437), International Journal of Hematology Research (ISSN 2394—806X), Journal of Pediatric Hematology and Oncology (ISSN: 1536-3678), New England Journal of Medicine (Resident 360). \n●\tMember – Core committee: American Cancer Society (A.C.S.) and American Academy of Pediatrics (A.A.P.) - Joint global pediatric Oncology taskforce.\n●\tAdvisor -World Health Organization, South East Asia for maternal and child health initiatives.( 2013-Ongoing) , Ministry of Health and Family Welfare ,Government of India ( 2014- Ongoing ) , American Academy of Pediatrics &American Cancer Society Global Taskforce on Pediatric Cancers.( 2014-Ongoing )\n●\tEditor – AAPI journal (American Association of Physicians of Indian Origin. Circulation -40,000)\n●\tVisiting Professorship in Hematology Oncology and Stem Cell Transplantation, Rajasthan University of Medical Sciences, India. ( 2009-Ongoing )\n●\tIndustry Advisor – Bayer, UniQure, Sanofi-Genzyme, Takeda, CSL Behring\n●\tDirector of International Bone Marrow Failure Consortium- India, part of the Global Hematology Initiative of Cohen Children’s Medical Center, New York, August 2015-2017. \n●\tCommittee member for the American Society of Pediatric Hematology Oncology Special Interest Group in Global Pediatric Hematology oncology. ( 2016- Ongoing)\n\n\n WORK EXPERIENCE \nNov 2017- Current Loma Linda University Children’s Hospital \n Director Division of Pediatric Hematology \n Director, Comprehensive Hemophilia Program\n Director, Comprehensive Sickle Cell Program \n Division of Pediatric Hematology Oncology and Stem Cell Transplantation\n Professor of Public Health, Loma Linda University School of Public Health \n\nMar 2017– Oct 2017 Pediatrics and Pediatric Hematology Oncology Practice \n Adventist Health Ukiah Valley, California \n\nSept 2015 –Aug 2016 Assistant Professor Pediatrics, Hofstra North Shore LIJ School of Medicine \n Section Head –Global Pediatric Hematology Oncology and Stem Cell Transplantation\n North Shore LIJ Health system.\n Associate Adjunct Faculty, Hofstra University School of Public Health.\n\nJuly 2012 – Sep 2015 The Steven and Alexandra Cohen’s Children's’ Hospital of New York at LIJ-North Shore \n Hofstra University - Pediatrics Hematology Oncology and Stem Cell Transplant Fellowship \n Chief - Jeffrey Lipton MD\n\nDec 2011- April 2012 Global Health : SMS Medical College and Group of Hospitals, Government of India \n Project Director for Project A.G.N.I. - Set up a regional Lead Poisoning prevention and \n anemia nodal center \n \n Course Director - Pediatric Subspecialty training module for Pediatricians at J.K. Lone \n Children’s Hospital for Government of India. \n\nDec 08- Dec 2011 The New York Medical College, Residency in Pediatrics \n Metropolitan Hospital, NY\n Maria Fareri Children's Hospital at Westchester.\n The Memorial Sloan Kettering Hospital. NY\n House staff on Stem Cell Transplantation service.\n \nApril – August 2008 Oklahoma State Medical Association (O.S.M.A.) Externship Program\n The Integris Baptist Teaching Hospital and Nazih Zuhdi Transplant Center\n\nRESEARCH EXPERIENCE \nNov 2017 – Ongoing: Current and ongoing – Director, Inherited Bleeding Disorder Experimental Therapeutics Program, Loma Linda University School of Medicine\nJan 2014 –July 2015 - Hofstra University School of Public Health \n Needs Assessment to barriers in cancer care for newly diagnosed patients in a resource \n Limited setting. \n Principal Investigator - Akshat Jain, Co-PI -Corrine Kyriacou \n\nJune 2012- July 2015 - Steven and Alexandra Cohen Children’s Medical Center \n Study – Non Invasive assessment of endothelial dysfunction in children with Sickle cell \n Disease. \n Co-Principal Investigator – Banu Aygun MD\n Study – Multicenter study assessing outcome of Reduced Intensity Conditioning for \n patients undergoing hematopoetic stem cell transplantation for Sickle cell disease . \n Co-Principal Investigator – Indira Sahdev MD\n \nJan 2012- Mar12 A.G.N.I. (Anterograde Growth Normalization Initiative) \n Project Director, Project of Government of India for establishment of Universal Lead \n Independent Pilot project to study effects of Elevated Blood Lead levels in children \n suffering from Developmental disorders- Adapted by W.H.O. 2014 for a National Level \n Lead Screening program, India \n \nJan 2009- Dec11 The New York Medical College, Metropolitan Hospital Center. NY\n Resident Physician – Hypothalamic volumes in patients with Growth Hormone deficiency.\n Maria Fareri Children's hospital / Dr.Richard Noto - Pediatric Endocrinology\n \nApril 2008-Dec 08 Nazih Zuhdi Transplant Institute, Integris Baptist Hospital, Oklahoma City\n Project – Single institution outcome study for Solid organ transplants\n Research Assistant Department of Hepatology\n \nOct 2007 – Dec07 Mount Sinai School of Medicine, New York, NY\n Project- Arterio-venous fistula post liver transplantation.\n Research mentor-Dr. Charissa Chang, Assistant Professor in Department of Liver Diseases. \n\nCERTIFICATION\n\n1.\tCalifornia State Medical License 8/2016- Present , New York State Licensure 8/2013-12/16\n2.\tAmerican Board of Pediatrics - Board certified, 11/14- Present\n3.\tAmerican Board of Pediatric Hematology Oncology – Board Certified , 06/2018- Present\n4.\tNeonatal Advanced Life Support 06/2009-Present \n5.\tPediatric Advanced Life Support 06/2009-Present \n6.\tECFMG Certification 12/2007-Present \n\nORAL PRESENTATIONS \n\n\n1.\tLeukemia and Lymphoma Society of America C.M.E. Symposium presentation – Leukemia and Beyond: Advances in Cancer Care and Blood Disorders in the 21st Century, October 2019\n2.\tLoma Linda University School of Medicine – Grand Rounds, Advances in the Management of Sickle Cell Disease, March 2019.\n3.\tLoma Linda University School of Medicine – Experimental Therapeutics in Sickle Cell Disease – New Horizons at Loma Linda , November 2018 .\n4.\tAdventist Health Ukiah , California - Neurological Defects of Iron Deficiency and Lead Poisoning in Humans , October 2017\n5.\tHofstra NorthWell School of Medicine - National Public Health Symposium on Global Public Health , Convener and Moderator ,April 2016 \n6.\tCleveland Clinic Children’s Medical Center, Ohio – Non BCR-ABL Myeloproliferative syndromes of childhood, January 19, 2016.\n7.\tChildren’s Hospital at SMS Medical College ,India – Pediatric Hematology Oncology Emergencies for the Tropics, November 13, 2015 \n8.\tHarvard Medical School, Boston Children’s Hospital Division of Pediatric Hematology – Advances in Global Hematology, Annual Hemophilia Twining symposium, August 2, 2015.\n9.\tNew York Medical College as Grand Rounds, Division of Pediatrics – Emergencies in Pediatric Hematology and Oncology, April 2015.\n10.\tMaurice A. Deane School of Law, Hofstra University, New York - Healthcare Access to Undocumented immigrants: Immigration reform and its impact, March 2015.\n11.\tPediatric Academic Society/Society of Pediatric Research (PAS/SPR) as platform presentation, Vancouver, BC - Global Child Health in Rich & Poor Countries Lessons Learned from Indigenous Health, May 3 2014.\n12.\tDepartment of Medicine and Medical Oncology, as Guest International faculty , SMS Medical College, India - Advances in Stem Cell Transplantation – January 2014.\n13.\tInternational health conference, Global Association of physicians of Indian Origin , New Jersey – Impact of Lead Intoxication in Low to middle income countries , August 2012.\n14.\t139st APHA Annual Meeting and Exposition 2011, Boston - Use of decision support in a Harlem pediatric emergency department to increase prescription of controller medicines to patients with poorly controlled asthma - Wilson Wang, Carolina Valez, Nicole Falanga, Vikas Bhambhani , Akshat Jain , Farhad Gazi, David Spiller, Paper no-227188 , November 2011 \n15.\tThe New York Academy of Medicine, Resident award night - False negative result in newborn screening for Congenital Adrenal hyperplasia - July 2009.",institutionString:"Loma Linda University Children's Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Loma Linda University Children's Hospital",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51437",title:"Magnetic-Graphene-Based Nanocomposites and Respective Applications",doi:"10.5772/64319",slug:"magnetic-graphene-based-nanocomposites-and-respective-applications",body:'\nGraphene, which consists in a single layer of carbon atoms, has been intensively studied in the last decade due to its extraordinary structural and electronic properties, leading to numerous current and potential applications in electronic devices. Growing, doping, or adsorption of metal nanoparticles and other inorganic/organic species on its surface can change, improve, and manipulate graphene magnetic and electronic properties. If these particles possess magnetic properties, the whole nanocomposite can have them too, opening new opportunities and applications for the formed hybrids.
\nCurrently, the information on magnetic graphene and graphene oxide nanocomposites has not yet been extensively reviewed despite a number of original reports. At the same time, their importance is undoubtful due to numerous current and potential applications of graphene itself, and magnetic nanoparticles in a variety of fields of chemistry, physics, medicine and biology, in the frontiers with nanotechnology. This topic is rarely presented as short sections in some reviews [1–4], dedicated to graphene, in contrast to carbon nanotubes, where a concise review was recently published [5]. So, the main purpose of this chapter is to highlight magnetic graphene composites, and review their main synthesis methods, properties, and current and potential applications.
\nA certain number of magnetic metals are present in the Periodic Table. Graphene composites have been reported only with some typical metals with paramagnetic properties, such as iron, cobalt, or nickel. Among theoretical studies of metal interactions with graphene surface, quantum Monte Carlo methods, studying the consequences of placing a magnetic adatom adjacent to a vacancy in a graphene sheet [6, 7], and description of electronic and magnetic properties of the graphene-ferromagnet interfaces [8] are particularly relevant. In addition, the plane-wave density functional theory (DFT) was used to study the properties of nanostructures of the type C60-M-G (M: Ti, Cr, Mn, Fe, or Ni; G: graphene) [9]. In this work, in particular, it was found that the high-spin C60-Cr-G nanostructure is more stable than its low spin analog. Structures containing distinct metals can be different. For instance, on the graphene surface, C60-Ti stands symmetrically upright, while for other metals, C60-M fragments are bent and nonequal in each composite (Figure 1). Authors suggested, based on calculations, that the C60-M fragment is flexible, respecting the bending motion. Importantly, the attachment of C60 to an M-G surface is more energetically favored than the decoration of graphene with C60-metal complexes. DFT studies were also carried out for Co-G composites (cobalt-vacancy defect [10] or single Co atom incorporated with divacancy in armchair graphene nanoribbon [11]). In this case, metal dopation was found to introduce magnetic properties into the formed composite.
\nSeveral reports were dedicated to cobalt-graphene nanocomposites. Studying single Co atoms on graphene on Pt(111) and their magnetic properties by scanning tunneling microscopy spin-excitation spectroscopy, upon hydrogen adsorption, three differently hydrogenated species were identified (Figure 2) [12], whose magnetic properties are very different from those of cobalt element. It was suggested that, due to the interaction of Co-G orbitals, large magnetic anisotropy stems from strong ligand field effects that take place. A series of reports studied the intercalation of cobalt between graphene and Ir(111) via distinct techniques. Thus, cobalt layers intercalated in between graphene and Ir(111) were characterized by a combination of X-ray magnetic circular dichroism and photoemission [13]. In particular, an induced magnetic moment in the graphene layer, antiparallelly oriented to that of cobalt, was established. Magnetic ordering was found to exist beyond monolayer intercalation. In a related report [14], cobalt-intercalated graphene on Ir(111) was studied by DFT calculations and spin-polarized scanning tunneling microscopy. It was revealed that the strong bonding between cobalt and graphene leads to a high corrugation within the Moiré pattern, which arises due to the lattice mismatch between the graphene and the Co on Ir(111).
\nC60-M-G nanostructures. Reproduced with permission form the American Chemical Society.
Top and side view of atomic structures of CoHn (n = 1, 2, and 3) complexes. Reproduced with permission from the APS Physics.
In addition, nanometer-sizes films of cobalt were intercalated at the interface “graphene/Ir(111)” and were characterized by Auger electron spectroscopy and spin-polarized low-energy electron microscopy [15]. In resulting composites, graphene top layer was found to promote perpendicular magnetic anisotropy in the Co film. It was also revealed that the magnetic anisotropy energy is significantly larger for the graphene/Co interface than for the free metallic surface. Regarding metal intercalation, contrarily to cobalt, Fe-based intercalation of GO led to the formation of reduced GO/Fe3C magnetic hybrids [16]. Iron carbide particles were encapsulated in a graphite cage, protecting them from agglomeration.
\nAmong other available theoretical studies on Co/G nanocomposites, the single Co layer added on graphene showed ferromagnetic ordering, with perpendicular alignment to the graphene sheet [17], according to the data obtained by relativistic density functional theory, at the level of generalized gradient approximation. These properties are promising for magnetism in 2D systems despite experimental difficulties in obtaining regular structures of single layer of this metal on graphene. In addition, the oxidation state of cobalt, together with possible oxidation of metal in real conditions, is also important. Thus, XPS spectral data for graphene/Co composites, obtained from CoCl2. 6H2O diluted in ethyl alcohol and highly split graphite, showed two sets of 2p3/2,1/2 lines belonging to partly oxidized and metallic Co atoms [18]. The formation of this protective oxide layer prevents metallic cobalt from deep oxidation.
\nScheme of synthesis of magnetic cobalt–graphene (MCG) nanocomposite. Reproduced with permission from the Royal Society of Chemistry.
The synthesis methods for cobalt-graphene nanocomposites frequently include high-temperature decomposition of precursors. Thus, a magnetic cobalt-G nanocomposite (Figure 3) was prepared by carbonizing a self-assembly of a cobalt-based metal organic framework, ZIF-67, and GO [19]. This composite based on cobalt and reduced graphene oxide (RGO) was used as a catalyst for the activation of peroxymonosulfate (PMS) in the process of decolorizing Acid Yellow dye in water. Resulting regeneration efficiency remained at 97.6% over 50 cycles, showing its effective and stable catalytic activity. The proposed mechanism of MCG activating PMS to generate sulfate radicals is shown in Figure 4. Another example is a combination of autocombustion and sol-gel methods, which led to Co-G nanocomposite, prepared from GO, Co(NO3)2, and citric acid as precursors [20]. A sol-gel was first prepared and then underwent autocombustion in Ar atmosphere, at 300°C, due to the action of the produced reducing agents H2 and CH4. In the formed nanocomposite, Co nanoparticles (with a diameter of about 10 nm) are homogeneously distributed on graphene surface. The same technique can be applied for loading Ni, Cu, Ag, and Bi on graphene surface. Pyrolisis was also used, for instance, in the case of cobalt phthalocyanine (CoPc), for the purpose of fabricating organic metal/graphene composites [21]. CoPc is capable of dispersing cobalt and its oxide onto graphene sheets due to π-interactions between them in the conditions of pyrolysis or oxidation. The process of the fabrication of Co/GC and Co3O4/GC is shown in Figure 5. The Co3O4/graphene nanocomposites showed remarkable lithium storage performance, including good rate capability, good cycle performance, and highly reversible capacity. It was suggested that CuO, Fe2O3 and other metal or metal-oxide-based graphene composites can also be prepared in this way.
\n\nProposed mechanism for PMS activation generating sulfate radicals. Reproduced with permission from the Royal Society of Chemistry.
Fabrication of Co/GC and Co3O4/GC: (1) dispersion of graphite oxide and CoPc in water by ultrasonication and subsequently chemical reduction of graphite oxide, (2) pyrolysis at 800°C, and (3) oxidation at 400°C. Reproduced with permission from the John Wiley & Sons.
The decolorization of organic dyes, such as the Acid Yellow as mentioned above, is one of the classical applications of graphene composites of cobalt and other magnetic metals. Cobalt nanoparticles (about 30 nm size), anchored on graphene sheets, were tested for heterogeneous oxidation of a dyeing pollutant, Orange II, with peroxymonosulfate (PMS) in aqueous solutions [22]. In comparison to pure cobalt, the incorporation of Co nanoparticles into graphene sheets resulted in much higher catalytic activity for Orange II degradation. The proposed reaction mechanism is described by reactions (1)–(7). This work shows the importance of using other metal nanoparticles rather than iron for the decontamination of organic pollutants.
\nCo0 → Co2+ + 2e− (1)
\n≡Co0 + O2 + 2H2O → ≡ Co2+ + 4OH− (2)
\n≡Co0 + 2HSO5− → ≡ Co2+ + 2SO4−.+ 2OH− (3)
\n≡Co2+ + HSO5− → ≡ Co3+ + SO4−. + OH− (4)
\n≡Co3+ + HSO5− → ≡ Co2+ + SO5−. + H+ (5)
\n≡Co0 + 2 ≡ Co3+ → 3 ≡ Co2+ (6)
\nSO4−. + Orange II → many steps → CO2 + H2O (7)
\n(a) Optical image of the device after graphene growth: an Ni stripe is coated with CVD graphene and an Al2O3/Co electrode is then deposited on lithographed squares in UV resist. (b) Cross-sectional scheme of the junction. Reproduced with permission from the American Chemical Society.
In the case of nickel, its graphene or GO composites are not so widespread compared to cobalt or iron. Nickel itself is used as a support for graphene fabrication, for instance, by the CVD technique of CH4, leading to low-defect synthesis of bilayer graphene on evaporated polycrystalline nickel films [23]. The CVD method also allows to obtain nickel coated with a few layers of graphene, resulting in a stable surface upon air exposure [24]. This way, graphene-passivated (against oxidation) ferromagnetic electrodes can be fabricated, which are suitable for spin devices (namely spin-polarized oxidation-resistant electrodes as shown in Figure 6).
\n\nIn addition to CVD, graphene or GO hybrids with nickel have also been obtained by other methods, for example, grown on a graphene Moire on Rh(111) at 150 K [25]. These processes of graphene decoration with nickel nanoparticles can include simultaneous reduction of GO in the process of synthesizing GO/Ni composites [26], in particular simultaneous reduction of GO and nickel(II) ions by the one-step far-infrared-assisted method [27]. Also, nickel nanoparticles were loaded by a graphene nanosheet by easily scalable and reproducible direct electrochemical deposition [28]. The graphene sheet decorated with magnetic nickel nanoparticles yielded a composite with soft magnetic and conductive properties, which efficiently promoted microwave absorbability (and was better than graphene alone).
\nIron/graphene (or iron/GO) hybrids are very well studied and, together with other iron-containing nanostructures below (iron oxides and their combinations with iron, as Fe@Fe2O3), are undoubtedly the center of magnetic metal/graphene field. The hybrids can be obtained by several methods, both classic chemical and “greener” routes. Thus, focused solar radiation, as a green chemical route, was applied for the fabrication of 3D metal/metal oxide nanoparticles dispersed on 2D ultrathin graphene by a simultaneous reduction and exfoliation process [29]. This procedure allowed the insertion of nanoparticles between ultrathin graphene layers acting as “spacers” between them. These metal/metal oxide nanoparticle dispersed graphene composites might have potential applications in environmental fields, conversion devices, energy storage sensing, and heterogeneous catalysis.
\nMicrowave irradiation was used for the synthesis (Figure 7) of combined hierarchical 3D graphene/carbon nanotube/iron nanostructures (G-CNT-Fe) [30]. The formed composite consists of vertically aligned CNTs, which are grown in graphene sheets along with shorter branches of CNTs stemming out from both the vertically aligned CNTs and the graphene sheets. Zero-dimensional (0D) functional iron oxide nanoparticles decorated within this 3D hierarchical nanostructure (both on 1D nanotubes and 2D graphene sheets) provide outstanding lithium storage characteristics. Iron moieties were found to be present in mixed valence states of FeOOH and Fe2O3. In addition, iron nanoparticles can be first deposited onto a graphene/Cu substrate by vacuum deposition and then the hydrogenation was carried out at 1 atm of gaseous H2 and under liquid N2 [31]. Before the experiment, the stabilization of hydrogenated Fe nanoparticles on this support was predicted by DFT calculations, meanwhile the existence of Fe hydride is considered as nonreachable. Hydrogen was found to be released from hydrogenated Fe nanoparticles. In addition, a thermal reduction method was used for the synthesis of Fe/Fe3O4/G nanocomposite electrode material, using iron oxalate and exfoliated graphene oxide as precursors [32]. Its application, along with nickel, for rechargeable Ni/Fe alkaline batteries (discharge and charge capacities of 280 mAh/g) in hybrid electric vehicles can be applied in a large-scale production.
\nTwo-step synthesis of hierarchical G-CNT-Fe 3D nanostructure and its application to anode material in lithium-ion batteries. (a) Step 1: microwave reaction for carbon nanotube growth. Step 2: iron nanoparticle decoration and fast explosive growth of smaller carbon nanotubes on original carbon nanotubes and graphene. (b) Schematic diagram for charge and discharge in G-CNT-Fe 3D anode material. Reproduced with permission from the American Chemical Society.
Sodium borohydride has been frequently used as classic reductive agent for the reduction of iron ions and/or GO. Thus, nano zero-valent iron (nZVI) -decorated graphene sheets were prepared via sodium borohydride reduction of GO and applied for Cr(VI) removal [33]. In a related report [34], nonhazardous superparamagnetic nanocomposites, consisting of iron nanoparticles (5 nm) and graphene, were synthesized from GO through intermediate formation of Fe3+/GO complexes and their further reduction with NaBH4. Methyl blue solution, a dye often present in wastewater of dyeing industry, can easily be decolorized using this nanocomposite.
\nIron/G (or GO), as well as iron oxide/G (or GO) hybrids, can also have applications in the catalysis area. A novel type of oxygen reduction reaction (ORR) electrocatalyst on the basis of few-walled (2–3 walls) CNT-G complexes was reported [35]. Abundant defects on the outer walls of the CNTs can be produced via partial unzipping of the outer CNTs walls and the formation of large quantities of graphene sheets, connected with the intact inner walls of the CNTs. These graphene sheets make easier the formation of catalytic sites for ORR on annealing in NH3. Nitrogen doping and Fe impurities are responsible for higher ORR activity in the CNT-G complexes. It was established that Fe atoms are often close to N atoms and are frequently situated along edges of defective graphene sheets. Elimination of Fe by purification leads to a considerable decrease in ORR activity. Indeed, both nitrogen and iron atomic species are important to the high ORR electrocatalytic activity. Another example is a cost-effective synthesis of nitrogen-doped graphene (NG; Figure 8) carried out by using cyanamide as a nitrogen source and graphene oxide as a precursor; iron nanoparticles were incorporated into NG using FeCl3 as precursor [36]. This composite was used as a model for the elucidation of the influence of nonnoble metals on the electrocatalytic performance. The NG supported with iron nanoparticles (5 wt%) showed high current density (8.20 mA cm2) in an alkaline solution and an excellent methanol crossover effect, high stability in distinct media, high surface area, among other advantages, in comparison with Pt and NG-based catalysts, thus allowing platinum replacement.
\n(a) The content of three types of nitrogen in NG. (b) Schematic representation of NG. Reproduced with permission from the American Chemical Society.
Environmental problems of contamination with heavy metals and other pollutants (As, Cr) can be partially solved using iron/graphene composites, in particular those containing iron in both metallic and oxidized form. A one-pot thermal decomposition method was used for the preparation of graphene nanoplatelet composites decorated with core-shell Fe-Fe2O3 nanoparticles [37]. These nanocomposites could be separated from the liquid-phase mixture with the aid of a permanent magnet. Efficient and effective adsorption of arsenic(III) from the polluted water was observed for this material (nearly complete As(III) removal within 1 ppb) and attributed to the increased adsorption sites existing in the presence of magnetic nanoparticles. Magnetic graphene nanocomposites (MGNCs), consisting of a core@double-shell structure of the nanoparticles with crystalline Fe as the core, iron oxide as the inner shell, and amorphous Si-S-O compound as the outer shell, were prepared by a thermodecomposition process (Figure 9) [38]. These composites were highly stable even in 1 M HCl aqueous acid and showed a fast and highly efficient removal of Cr(VI) from wastewater after 5 min (Figure 10), in contrast to several other materials (like carbon or waste biomass), the use of which require several hours or days and are not able to achieve 100% removal of Cr(VI).
\nSchematic illustration of the formation of the MGNCs. Reproduced with permission from the American Chemical Society.
Schematic adsorption mechanisms on graphene and MGNCs. Reproduced with permission from the American Chemical Society.
Another application is related to polymers: graphene nanosheets, consisting of iron core and iron oxide shell nanoparticles, G/Fe@Fe2O3, were used as nanofillers for the fabrication of magnetic epoxy resin polymer nanocomposites [39]. The G/Fe@Fe2O3 was found to favor char formation from the epoxy resin; in addition, the tensile strength of polymer nanocomposite with 1.0 wt% Gr/Fe@Fe2O3 was found to be 58% higher than that of the pure epoxy and it was attributed to the high stiffness of graphene. It was suggested that the porous char layer with Gr/Fe@Fe2O3 may indicate the existence of Fe@Fe2O3, which helps the formation of gas, during the decomposition process of epoxy resin.
\nIron can be present in graphene composites in the elemental form (as shown above) or as Fe core/oxide shell nanoparticles, iron oxides, among others. The ratio of iron nanoforms in different oxidation states depends, in particular, on O-containing groups present in the graphene surface, use of reductants, and other conditions. Magnetic iron-containing nanoparticles were loaded on the GO sheets due to the abundant oxygen-containing functionalities present in these carbon materials (hydroxyl, epoxy, and carboxyl functional groups), and their growth mechanism was studied [40]. Most of these functional groups were eliminated and the magnetic nanoparticles were partially converted to iron during thermal treatment under reducing conditions. Metal nanoparticles changed the GO lattice structure and intrinsic functionalities; this effect depended on the amount of iron precursor.
\nThe effect of pH is also very important and it was studied for several noncovalent magnetic GO-based materials, prepared using Fe2O3 microparticles, nanoparticles, and magnetic surfactants [41]. pH adjustment was used to effectively charge repulsion or attraction between Fe2O3 particles and the GO sheets (Figure 11). Each material caused coflocculation of GO at acidic pH, leading to materials that could be captured using an external magnetic field. The adsorption of GO at low pH was explained by attractive electrical double-layer forces between the GO and Fe2O3 or surfactants. On the contrary, at higher values of pH, the dispersions are stable due to alike-charge repulsions. An intriguing effect was found with Fe2O3 nanoparticles: low concentrations resulted in the flocculation of GO and higher concentrations caused restabilization, which are explained by an effective overcharging of the GO surfaces. These systems were found to remove a model nanomaterial, gold nanoparticles, from water.
\n(a) Conceptual scheme of the experiment: pH adjustment is used to affect charge attraction or repulsion between the GO sheets and Fe2O3 particles. A magnetic field can be used to separate the Fe2O3 from solution or dispersion. (b) Zeta potentials of graphene oxide and Fe2O3, demonstrating the pH ranges at which electrical double-layer attraction or repulsion would be expected. Reproduced with permission from the American Chemical Society.
The main synthesis methods for iron(III) oxide/graphene nanohybrids are, in general, similar to those used for metals described above or Fe3O4 that are explained below. Thus, iron oxide nanoparticles encased by permeable carbon layers of few-layer graphene were synthesized by high-pressure pyrolysis of ferrocene with pristine graphene [42]. The ferrocene precursor provides both carbon and iron, leading to the carbon-coated iron oxide, while the graphene works as a high-surface-area anchor, to obtain small iron oxide nanoparticles. This material was used to improve the electrochemical performance of iron-oxide-based electrodes on Li-ion batteries. Similarly, an iron-oleate precursor (Figure 12) was used for the preparation of an iron-oxide/graphene nanocomposite via a solventless thermal decomposition method [43]. Highly monodisperse γ-Fe2O3 nanoparticles were found to be in close contact with graphene. This nanomaterial can serve as a potentially valuable candidate anode material for high-rate Li-ion batteries.
\nSchematic representation of the direct preparation of iron-oxide/graphene nanocomposites by the solventless thermal decomposition method. Reproduced with permission from the Royal Society of Chemistry.
Scheme of the formation of the rGO/Fe2O3 composite. Reproduced with permission from the American Chemical Society.
In addition to high-temperature destructive methods, sol-gel and coprecipitation techniques are also common. Thus, reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was prepared by a sol-gel process without a reducing agent in which sodium dodecylbenzenesulfonate (NaDDBS) was added into the suspension for the prevention of undesirable formation of an iron oxide 3D network [44]. These composites were applied as anodes for half lithium-ion cells, exhibiting improved cycle life, reversible capacity, and good rate capability. Two-step synthesis (Figure 13), consisting of homogeneous precipitation and subsequent microwave-assisted reduction of the GO with hydrazine, led to reduced graphene oxide (rGO) platelets decorated with Fe2O3 nanoparticles, uniformly distributed on the surface of platelets [45]. The total specific capacity of rGO/Fe2O3 was determined to be higher than the sum of pure rGO and nanoparticular Fe2O3. In addition, polypyrrole (PPy) was reinforced with rGO and Fe2O3 to reach electrochemical stability and enhancement [46]. This ternary nanocomposite film was fabricated using a one-pot chronoamperometry approach.
\nIn addition to their use in batteries, as referred above, a few other uses are known for Fe2O3/G hybrids. Thus, functional nanocomposite-based selective separation of microcystin-LR (toxin belonging to the family of microcystins produced by cyanobacteria and known to be the most toxic of this group) from contaminated water was achieved (Figure 14), applying cyclodextrin-functionalized magnetic composites consisting in porous silica and colloidal graphene [47]. In this material, the magnetic component offers easier separation of microcystin-LR from water and the cyclodextrin constituent offers host-guest interaction with microcystin-LR. Among all experimented cyclodextrins, γ-cyclodextrin was found to offer the best performance. The studied functional nanomaterials can be used for the development of advanced water purification systems. Catalytic applications are also reported, for example, for nanosized Fe2O3 composites on carbon matrix, modified with nitrogen-doped graphene (Figure 15), that are excellent catalysts for the chemoselective hydrogenation of nitroarenes to anilines with good yields (reaction (8)) [48].
\nSynthesis strategies for cyclodextrin functionalized magnetic graphene composite (G-Fe2O3-CD) and cyclodextrin functionalized magnetic mesoporous silica (MMS-CD). Reproduced with permission from the American Chemical Society.
Nanoscaled Fe2O3 particles surrounded by N-doped graphene layers. Reproduced with permission from the American Chemical Society.
Among a large variety of mixed-valent-iron-oxide/graphene (or GO) composites, considerable attention is paid to aerogels in contrast to the above-described magnetic graphene hybrids. Graphene and other aerogels and routes for their synthesis are well known [49]. The introduction of a magnetic component could lead to a larger variety of unusual properties and potential applications, namely, the easy removal of pollutants, such as crude oil. These nanocomposites can have a simple composition ( i.e., Fe3O4/G) or contain an additional component like a polymer. Thus, 3D N-doped graphene aerogel (N-GA)-supported Fe3O4 nanoparticles (Fe3O4/N-GAs; Figure 16) are known as efficient cathode catalysts for the oxygen reduction reaction (ORR) [50]. These hybrids were prepared via a combined hydrothermal self-assembly, freeze-drying, and thermal treatment process (Figure 17). The products showed an excellent electrocatalytic activity for the ORR in alkaline electrolytes, including a lower ring current, higher current density, higher electron transfer number (∼4), lower H2O2 yield, and better durability.
\n3D graphene aerogels containing Fe3O4 nanoparticles (Fe3O4/GA (Figure 18), the lightest magnetic elastomer ever reported with density about 5.8 mg.cm3) were hydrothermally prepared by self-assembly of graphene, simultaneously decorated with Fe3O4 nanoparticles [51]. They can be used to monitor the degree of compression/stretching of the material due to up to 52% reversible magnetic-field-induced strain and strain-dependent electrical resistance. Among more complex aerogels, hydrophobic graphene aerogel/Fe3O4/polystyrene composites (having extremely low density of 0.005 g cm−3, which corresponds to a volume porosity of 99.7%), with reticulated graphene structure, were solvothermally produced (Figure 19) [52]. Porous Fe3O4 nanoparticles were found to appear as partial substitutes for ethylenediamine-assisted cross-linking and interconnections between graphene plates. These composites were applied for crude oil remediation, allowing intake capacity as much as 40 times its own mass, after 10 water-oil separation cycles.
\nStructure and morphology of Fe3O4/N-GAs catalysts. (a) XRD pattern and (b−d) typical SEM images of Fe3O4/N-Gas, revealing the 3D macroporous structure and uniform distribution of Fe3O4 nanoparticles in the graphene aerogels. The red rings in (d) indicate Fe3O4 nanoparticles encapsulated in thin graphene layers. Representative (e) TEM and (f) HRTEM images of Fe3O4/N-GAs showing an Fe3O4 nanoparticle wrapped by graphene layers. Reproduced with permission from the American Chemical Society.
Fabrication process for the 3D Fe3O4/N-GAs catalyst. (a) Stable suspension of GO, iron ions, and polypyrrole (PPy) dispersed in a vial. (b) Fe- and PPy-supporting graphene hybrid hydrogel prepared by hydrothermal self-assembly and floating on water in a vial, and its ideal assembled model. (c) Monolithic Fe3O4/N-GAs hybrid aerogel obtained after freeze-drying and thermal treatment. Reproduced with permission from the American Chemical Society.
TEM and SEM images of the GA and Fe3O4/GA. (a) TEM image of GO and the diffraction pattern of a single flake (inset). (b) TEM image of Fe3O4 nanoparticle-decorated graphene sheets. (c, d) SEM images of microporous structures of GA and Fe3O4/GA. (e, f) SEM images of cross-linking patterns of GA and Fe3O4/GA. Reproduced with permission from the American Chemical Society.
Schematic illustration of the fabrication process of the graphene aerogel/Fe3O4/polystyrene composites CPFA and its cyclic utilization for oil removal in water. Reproduced with permission from the American Chemical Society.
Regarding the nonaerogel type of graphene-Fe3O4 hybrids, the hydrothermal [53] and solvothermal synthesis [54] have also been widely used although other methods are also frequently used, such as the atomic layer deposition, applied not only for Fe3O4/graphene but also for Ni/graphene composites [55]. Magnetic graphene foam with porous and hierarchical structures, on the basis of magnetite nanoparticles, was solvothermally obtained by gaseous reduction in a hydrothermal system and used for the adsorption of oil and organic solvents, thus serving for the cleanup of oil spills [56]. Fe3O4 nanoparticles on graphene foam possessed different morphologies, nanosheet arrays, or cubic structures, while controlling the reduction degree of graphene oxide under mild conditions. Distinct ratios “iron oxide/graphene” are important for several applications. Thus, G/Fe3O4 nanocomposites with different ratios of Fe3O4 to GO (mFe3O4: mG = 0.1:1, 0.2:1, 0.4:1, 0.6:1, 0.8:1 and 1:1) were prepared by solvothermal method and used for the removal of methylene blue dye from aqueous solutions [57]. The following morphologies were observed: uniform spherical homogeneously distributed Fe3O4 nanoparticles, with no agglomeration over the graphene sheets, and a uniform sheet-like shape of prepared graphene. Increasing the Fe3O4 nanoparticles on the surface of the graphene sheet was found to decrease the adsorption capacity, while the magnetization increased.
\n(a) A schematic representation of the preparation route of Fe3O4/rGO via a redox reaction between GO and Fe2+. Photos show a water/NH4OH (pH = 9) solution of Fe3O4/rGO (b) before and (c, left panel) after the redox reaction with Fe2+, and (c, right panel) with an applied magnet. Reproduced with permission from the Royal Society of Chemistry.
Several methods, considered as “greener”, are sometimes reported for iron oxide/graphene composites. Thus, the “green” oxidation of Fe2+ cations in FeCl2 or FeSO4 by graphene oxide led to an in situ deposition of Fe3O4 nanoparticles onto the self-reduced graphene oxide (rGO) sheets (Figure 20) [58]. Strongly supraparamagnetic with highly chemical reactivity, electrical conductivity, good solubility, and excellent processability G@Fe3O4 nanocomposites (with an average diameter of Fe3O4 nanoparticles of 1.2–6.3 nm; coverage density of Fe3O4 nanoparticles on graphene nanosheets of 5.3–57.9%) were prepared by a one-step “green” procedure (Figure 21) [59]. In addition, an approach for the deposition of iron oxide nanoparticles with selective narrow size distribution (0.5–7 and 1–3 μm), supported on different sizes of graphene oxide by coprecipitation, using Fe2+ and Fe3+ aqueous salt solutions and NH3, is described in reaction (9) [60]. The reduction of mitochondrial activity using these materials is size dependent, but the chemical functionalization of GO and Fe3O4 is a way to enhance the biocompatibility, making the system independent of the size distribution of GO.
\n\nSchematic illustration of the formation of graphene@Fe3O4. The inset shows TEM images of graphene@ Fe3O4 at reaction times of 0 (A), 1 (B), 5 (C), and 60 min (D). Scale bars are 20 nm. Reproduced with permission from the American Chemical Society.
(NH4)2Fe(SO4)2⋅6H2O + 2NH4Fe(SO4)2⋅12H2O + 8NH3⋅H2O → Fe3O4⋅4H2O + 6(NH4)2SO4 + 14H2O (9)
\nMore complex Fe3O4/G- and organic(inorganic)-containing systems are also common. Thus, coating a layer of mesoporous silica materials on each side of magnetic graphene, in the conditions of CTAB-assisted sol-gel process, with further calcination, led to obtaining magnetic graphene double-sided mesoporous nanocomposites (G/SiO2) with high surface area (168 cm2/g) and large pore volume (0.2 cm3/g) (Figure 22) [61]. The formed materials were applied to size-selective and specific enrichment and identification of peptides (peptidomics analysis) in human urine samples, protein digest solutions, and standard peptide mixtures. Another example is G@mSiO2-C18 materials (with a surface area of 315 cm2.g−1 and a uniform pore size of 3.3 nm) with extended plate-like morphology, prepared by coating mesoporous silica layers onto graphene via surfactant-mediated cocondensation sol-gel process, and applied as magnetic solid-phase adsorbents to the selective enrichment of phthalates in water [62].
\nThe workflow of synthesis of double-sided magnetic graphene/mSiO2. Reproduced with permission from the John Wiley & Sons.
A few reports are dedicated to chitosan-containing magnetic materials with mainly biomedical applications. Thus, an iron oxide/graphene oxide/chitosan (Fe3O4/GO/CS) composite was obtained by a solution mixing-evaporation method [63]. Among other data, with the incorporation of 0.5 wt% Fe3O4 and 1 wt% GO, the tensile strength and Young’s modulus of the composite significantly improved by about 28% and 74%, respectively, compared with chitosan. In addition, it was established from TGA that Fe3O4/GO/CS is less thermally stable than GO/CS composites, and graphite is more thermally stable than GO. In a related report [64], magnetic Fe3O4 nanoparticles were introduced into a water-dispersible and biocompatible chitosan-functionalized graphene, fabricated by a one-step ball milling of carboxylic chitosan and graphite. It could be an excellent catalyst for electrochemical biosensors, in particular for glucose detection, due to the presence of nitrogen (from chitosan) at the surface of graphene.
\nAlso, superparamagnetic fluorescent Fe3O4/SiO2/G-CdTe QD s/chitosan nanocomposites (Fe3O4/SiO2/graphene-CdTe QDs/chitosan nanocomposites (FGQCs ), with a spherical diameter of 467 nm; QDs: quantum dots) were prepared and studied for improving the drug loading content [65]. In addition, a magnetic composite bioadsorbent on the basis of magnetic chitosan and graphene oxide (MCGO) was prepared [66, 67]. Its adsorption capacity for methyl blue was found to be about 90% of the initial saturation adsorption capacity after being used four times. The adsorption of methyl blue on MCGO strongly depends on ionic strength and pH, showing an ion exchange mechanism.
\nIn the case of polymers, integrated hybrid structures (stable for more than 1 year) consisting of exfoliated expanded graphite (EG flakes, both naked and functionalized with branched polyethylenimine (PEI)) and Fe3O4 nanocrystals were fabricated by an ex situ process by the integration of iron oxide nanoparticles, coated with meso-2,3-dimercaptosuccinic acid (DMSA) or poly(acrylic acid) (PAA), onto the exfoliated EG flakes under the support of N-hydroxysuccinnimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) [68]. Such materials can have antibacterial properties. For example, in situ growth of silver nanoparticles onto the polyethylenimine (PEI)-mediated magnetic reduced GO resulted in a bactericidal material, Ag@rGO-Fe3O4-PEI composite (Figure 23) [69]. The material provides a very high killing rate of 99.9% for E. coli bacteria under a 0.5 min near-infrared (NIR) laser irradiation.
\nSchematic illustration of the preparation process of magnetic Ag@rGO-Fe3O4-PEI composites. Reproduced with permission from the IOP Publishing.
Solvothermally prepared G/Fe3O4 (Figure 24) is able to effectively remove both bacteriophage and bacteria in water [70]. Indeed, it is capable of eliminating a wide range of pathogens including not only bacteriophages, but also various bacteria such as Shigella, Salmonella, E. Faecium, E. coli, E. faecalis, and S. aureus, with removal efficiencies up to 94%. Graphene oxide, particularly as magnetic Fe3O4/GO particles, was used as an adsorbent for wastewater treatment (Figure 25) [71]. A variety of other Fe3O4/G (or GO) hybrid applications are shown in Table 1.
\nSynthesis route of G/Fe3O4. Reproduced with permission from the American Chemical Society.
Illustrative scheme of the dyeing process and the proposed treatment of its effluents; RB5 dye (top) and functionalized GO adsorbent (bottom). Reproduced with permission from the John Wiley & Sons.
Composition | \nDescription | \nReference | \n
---|---|---|
Fe3O4/graphene aerogels | \nRemoval of arsenic ions (up to 40.048 mg/g) from water | \n[72] | \n
Fe3O4/graphene | \nUltrahigh electrochemical sorption capacity for both inorganic arsenic species (arsenate As(V) and arsenite As(III)). | \n[73] | \n
Magnetic graphene-oxide-supported-cyclodextrin | \nHeavy metal removal from wastewater. In particular, Cu(II) adsorption was found to be strongly pH-dependent and could be affected by background electrolytes, ionic strength, and citric acid. | \n[74] | \n
Polyethylenimine(PEI)-modified magnetic mesoporous silica and graphene oxide (MMSP-GO) | \nThese hierarchical composites are suitable for synergistic adsorptive simultaneous removal of heavy metal ions (Pb2+, Cd2+) and humic acid. | \n[75] | \n
rGO/Fe3O4-based conductive and magnetic multifunctional films (membranes) | \nCan be produced and tested for its application in water desalination. Its potential uses also include catalysis, radiation shielding devices, biomedical fields, and supercapacitors. | \n[76] | \n
GO/Fe3O4 | \nSuper adsorbent to remove naphthalene, 1-naphthol, and 1-naphthylamine with different polarity. MWCNTs/FeO Fe2O3 were also produced in these synthesis as a byproduct, but graphene composite has the highest adsorption capacity among carbon-based nanomaterials. The adsorption capacity was shown to be naphthalene < 1-naphthol < 1-naphthylamine. | \n[77] | \n
Magnetic graphene composite absorbent (Fe3O4@PDDA/ GO@DNA) based on poly cationic core-shell Fe3O4@PDDA (poly(diallyldimethyl ammonium chloride) (PDDA)) and GO@DNA | \nRemoval of trace levels of six types of polybrominated diphenyl ethers in water treatment. The nanomaterials can be reused at least 20 times for remediation purposes. | \n[78] | \n
A porous graphene composite affinity material, containing graphene scaffolds, Fe3O4 nanoparticles, and fully covered porous titania nanostructures | \nSelective capture and convenient magnetic separation of target phosphopeptides, showing superior activity in comparison with commercial TiO2 affinity materials. | \n[79] | \n
3D graphene foam-supported Fe3O4 | \nUse in lithium battery anodes. | \n[80] | \n
The Fe3O4/G (graphene sheets) composite disks of μm dimensions | \nHigh-capacity lithium-ion battery anodes. The composites were prepared by electrostatic self-assembly between positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyl)trimethoxysilane (APTMS)] and negatively charged GO sheets and in an acidic solution (pH = 2) followed by in situ chemical reduction. An excellent rate capability as well as much enhanced cycling stability. | \n[81] | \n
Main applications of Fe3O4/G composites.
Simple or complex graphene or GO composites are known for a few ferrites, mainly those of cobalt and nickel, and usually used for environmental purposes or in batteries. NiFe2O4/G nanocomposites were prepared by mixing graphene and NiFe2O4 nanoparticles (obtained via a polyacrylamide gel method) into ethanol and further thermal drying at 60°C [82]. This composite exhibited significantly enhanced photocatalytic activity for the degradation of methylene blue in the conditions of irradiation of simulated sunlight, while NiFe2O4 nanoparticles were inert. NOH radicals were suggested as being the most active species causing dye degradation. NiFe2O4/GO nanohybrids based on NiFe2O4 and reduced GO consisted in nanosized NiFe2O4 crystals (5–10 nm in size) confined by few-layered rGO sheets [83]. This material seems a promising anode constituent for Li-ion batteries. The ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposite was hydrothermally prepared by a two-step approach process using urea, GO, Ni(NO3)2⋅6H2O, Fe(NO3)3⋅9H2O, and PANI as precursors, and applied in electrodes for supercapacitors [84]. It was confirmed that the introduction of N-heteroatom greatly improved the electrode specific capacitance.
\nIn the case of cobalt, its graphene composites have been synthesized mainly by hydro/solvothermally although an ultrasonic method was also reported [85]. A CoFe2O4/G nanocomposite was hydrothermally prepared and was evaluated in the photocatalytic degradation of methylene blue dye under visible irradiation [86]. Its photocatalytic activity depends on the surface area and the structural and optical properties of samples, and behaves better than pure cobalt ferrite. The formation mechanism of hydrothermally synthesized CoFe2O4-FGS (FGS: functionalized graphene sheets) is described in detail by Li et al. [87]. In addition, porous CoFe2O4/rGO nanoclusters with different concentrations of graphene were solvothermally prepared (Figure 26) [88] and their electrochemical properties were evaluated using polyvinylidene fluoride and Na-alginate as binder materials to improve the anode performance of Li-ion batteries. The resulting CoFe2O4/rGO (20%) nanocomposites with sodium alginate binders exhibited promising electrochemical performance, such as excellent recycling behavior, good rate capability, and high reversible capacity.
\nSynthesis of the CoFe2O4/rGO composite. Reproduced with permission from the Royal Society of Chemistry.
Other graphene- (or GO)-ferrite hybrids are rare (for example, zinc-ferrite-reduced graphene oxide [89]), and their synthesis, properties, and applications are similar to those of nickel and cobalt. Thus, in a solvothermally fabricated uniform copper ferrite nanoparticle-attached graphene nanosheet (CuFe2O4/G), CuFe2O4 nanoparticles (with a diameter of about 100 nm) were shown to be densely and compactly deposited on graphene nanosheets [90]. This nanomaterial exhibited properties of a high-performance supercapacitor material. A related hydrothermal route was used for the formation of CuFe2O4 nanoparticles into the GO sheets, and the obtained material, with GO content varying from 10 to 30 wt%, was used as stable and good reproducible enzyme-free glucose sensor [91]. MnFe2O4 nanoparticle (MFNP)-decorated GO nanocomposites (MGONCs) were prepared through a miniemulsion and solvent evaporation process [92]. The loading of magnetic nanocrystals depends on the ratio of GO/magnetic nanoparticles. In a related report [93], MnFe2O4 nanoparticles were deposited on GO by thermal decomposition of manganese(II) acetylacetonate and iron(III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids showed imperceptible in vivo toxicity, negligible hemolytic activity, and very low cytotoxicity, being effective T2 contrast agents.
\n\nIn addition, barium hexaferrite nanoparticles, fabricated [94] via the citrate sol-gel combustion method, in a reaction medium consisting of various forms of graphene nanosheets (such as reduced graphite oxide, expanded graphite oxide, and expanded graphite) were used to prepare nanocomposites as microwave absorbing material for radars [95]. Finally, BiFeO3 nanoparticles that are important materials in photocatalysis [96] were prepared via a polyacrylamide gel route and transformed into a BiFeO3/G nanocomposite, by mixing with graphene in ethanol and further thermal drying at 60°C [97]. Methyl orange (MO) was found to be efficiently degraded by this material under simulated sunlight irradiation. This photocatalytic performance can be mainly ascribed to the efficient transfer of photogenerated electrons from BiFeO3 to graphene (Figure 27). A similar reduced graphene rGO/BiFeO3 nanocomposite, prepared by self-assembly, was also reported [98].
\nSchematic illustration of the photocatalytic mechanism of BiFeO3-graphene nanocomposite toward the degradation of MO. Reproduced with permission from the Hindawi Publishing Corporation.
An interesting example of a magnetic molecule and its composite with graphene is known for lanthanides. A device made of a graphene nanoconstruction, decorated with TbPc2 magnetic molecules (Pc: phthalocyananine), was able to electrically detect the magnetization reversal of the molecules in proximity with graphene (Figure 28) [99, 100].
\n(a) Schematic representation of the TbPc2 single-molecule magnet (SMM). (b, c) Schematic view of the device, showing in (b) the molecule attached to graphene and in (c) the nanoconstriction contacted by source (S) and drain (D) electrodes. The magnetic moments of the TbPc2 SMMs (hexyl and pyrenyl groups here omitted for clarity) on top of the constriction add another degree of freedom to tune the conductivity of the device. (d) False-colored SEM image of the device presented in the text. SiO2 substrate and etched graphene are colored in purple, while graphene conductive regions are colored in green. Source and drain electrodes are indicated. Reproduced with permission from the American Chemical Society.
The field of graphene and graphene oxide composites containing magnetic components can be considered as an important subject of the modern nanotechnology. Similarly to the filled or decorated carbon nanotubes, for which endohedral and exohedral functionalization with magnetic nanoparticles is well known, the graphene and graphene oxide magnetic nanocomposites can also be obtained via distinct methods and have a variety of applications. Graphene magnetic nanocomposites are currently known for those on the basis of elemental metals (Fe, Co, and Ni), magnetic nanoclusters, iron oxides (Fe2O3, Fe3O4) in distinct morphological forms, ferrites MFe2O4, 3D graphene aerogels@hierarchical Fe3O4 nanoclusters, single-molecule magnets such as TbPc2 (Pc: phthalocyanine), other organometallic-containing composites (benzene-metal-graphene), as well as polycomponent nanocomposites such as Ag/Fe3O4/G (G: graphene), Fe3O4/CdS/G, or FePc/Fe3O4/GO (GO :graphene oxide), etc.
\nMagnetic graphene and graphene oxide hybrids can be prepared by a variety of methods. Hydrothermal and solvothermal techniques are the most common. Other routes are also available, such as sol-gel autocombustion, sonoelectrochemical polymerization, thermal expansion and thermal reduction, microwave-assisted technique, as well as covalent bonding chemical methods. The formed composites have or might have several current and/or potential applications, such as devices (supercapacitors or material for anodes of lithium batteries), construction (graphene oxide-ferrofluid-cement nanocomposites), analytical, sensor, and biosensor applications (graphene-based magnetic solid-phase extraction for the determination of five chloroacetanilide herbicides (alachlor, acetochlor, metolachlor, butachlor, and pretilachlor), nitrite sensor, composites with peroxidase-like activity for colorimetric detection of glucose, etc.), environmental remediation (degradation and removal of water pollutants, such as chlorophenols, adsorbent for pesticide extraction, As and heavy metals (UVI)), compounds with antibacterial properties, and, of course, as magnetic nanocatalysts or nanophotocatalysts which can be simply magnetically removed from reaction media [101, 102].
\nAs described above, magnetic graphene and graphene oxide composites can have applications, in particular, in the removal, decoloration, sequestration and adsorption of dyes [103], antibiotics and other organic contaminants, heavy metal separation (Hg, Cd, Cr, Cu, and As), and other environmental remediation aspects [104]. Other areas include biological imaging and further bioapplications [105], magnetic separation, electromagnetic materials and coatings, conducting polymer nanocomposites, aligned substrate for nanodevices, and spintronic devices with perpendicular magnetic anisotropy. 3D graphene aerogels can have applications in electrode materials, supercapacitors, oil absorption, and gas sensors due to their electrical conductivity, mechanical strength, and high porosity.
\nThe fusion of optical images and real objects has been an interesting topic in the field of optics and information technology. A famous example is Pepper’s ghost [1], which was invented over 100 years ago. In Pepper’s ghost, a virtual image is displayed on real objects by using a slanted half mirror, which can realize surprising visual experiences like optical illusions. The perception of cyber-physical fusion using virtual images mainly relies on the imperceptibility of the frame of the display, which is caused by an axial displacement between the image plane and the screen plane. Recently, such technology has been revisited in the context of augmented reality (AR). For example, virtual imaging has been used in various applications from head-mounted displays (HMDs) [2] to public theaters [3], where digital images are displayed as overlapping on real objects.
\nA holographic optical element (HOE) is capable of implementing various flexible optical functions on a thin, flat, and transparent film based on wavefront recording and reconstruction. Many applications of HOEs exploit their flexibility in performing optical functions and their see-through characteristics. HOEs have been applied to head-up displays (HUDs) [4], head-mount displays (HMDs) [2, 4, 5, 6, 7, 8], bidirectional displays [9], see-through diffusive screens [10] projection-type three-dimensional (3-D) displays [11, 12, 13, 14], 3-D user interfaces [15], wearable eye-gaze detection systems [16], solar-power generation systems [17], vibration and temperature measurements [18, 19], and 3-D telepresence systems [20].
\nTo realize the virtual-image-based applications only with a thin optical system, we have proposed a new optical system that integrates an HOE-based mirror referred as holographic mirror, dispersion-compensation optics, and a digital projector [21]. We also showed that a similar optical design can be applied to the realization of a virtual camera, by using a virtualization method of a camera device based on off-axis image capturing [21]. In this chapter, we describe background on the virtual-image-based applications in Section 2, a method for exposing a holographic mirror in Section 3, the concept and verification of the proposed virtual-image display in Section 4, and the concept and verification of the proposed virtual camera in Section 5. More detailed background information for the work described here is given in [21].
\nPepper’s ghost is an illusion technique exploiting virtual images. Since the virtual image is formed outside the frame of a display, it is perceived as if it was appearing on the air. This feature is useful for realizing the unconventional visual systems based on cyber-physical fusion, which is recently referred as AR technology. This kind of visual applications can provide attractive and surprising user experiences such as the ultra-realistic telepresence system.
\nThe classical realization of an optical system for the Pepper’s ghost is based on the use of a slanted half mirror, like that in Figure 1(a). It is simple to realize this arrangement of the optical system; however, the optical system will likely be bulky due to the tilted alignment. If the screen for a virtual-image display could be implemented in an upright alignment like Figure 1(b), it could be integrated with flat walls, doors, windows, and existing 2-D screens. Such usage might be interesting because it allows ordinary environments to be converted into screens for virtual-image display. For instance, an ordinary wall can serve as a screen for a virtual-image-based video-communication system [22]. Figure 2 presents the concept on such system realized by the holographic Pepper’s ghost which is presented in this chapter. In the figure, a person is talking with a virtual image of another person on a real chair behind an upright window with achieving the line of sight. Exploiting the feature of the holographic mirror, a display for virtual-image formation can be realized by an upright thin screen unlike the conventional Pepper’s ghost with a slanted half mirror.
\nConcept on (a) Pepper’s ghost and (b) holographic Pepper’s ghost.
An example of a virtual-image-based video-communication system based on the holographic Pepper’s ghost. A person is talking with a virtual image on a real chair placed behind an upright window.
An HOE can be used for realizing such an upright virtual-image screen. Since an HOE is a kind of hologram, flexible optical functions can be implemented on a thin flat film by means of wavefront recording and reconstruction. For example, it is possible to realize a holographic mirror which works as an off-axis mirror by Bragg diffraction. The holographic mirror can be used for an upright virtual-image screen as mentioned above and shown in Figure 1(b). One problem in applying a holographic mirror to a virtual-image screen is the chromatic dispersion caused by diffraction, which results in spatial blurring of the virtual image. This problem can simply be solved by using a laser light source; however, especially when presenting a large, deep virtual image, safety and speckle become problems. Insertion of a band-pass filter is another possible solution [16]; however, this reduces the light-use efficiency.
\nA holographic mirror can simply be implemented by exposing a photosensitive material using two coherent parallel beams. Figure 3(a) shows the experimental setup used in our experiment. In the setup, a diode-pumped solid-state (DPSS) laser (Samba 100 mW manufactured by Cobolt, 532 nm) was used as a light source. A half-wave plate (HWP) and a polarization beam splitter (PBS) were placed in front of the laser to split the beam with a controlled intensity ratio. In addition, an acousto-optic modulator (AOM) was inserted to function as an electrical shutter. The two beams were delivered by polarization-maintaining single-mode optical fiber (pmSMF) to regions close to the photosensitive material. We used a photopolymer (Bayfol HX200 manufactured by Covestro) as the photosensitive material. The photopolymer was exposed by the interference fringes. We adopted the scanning-based exposure method called holographic printing [23, 24, 25, 26, 27, 28, 29] to realize spatially uniform diffraction efficiency of the holographic mirror. The photopolymer was mounted on a two-axes-motorized stage for scanning.
\n(a) Experimental setup for exposing a holographic mirror and (b) the appearance of the diffracted light (a star on a spatially uniform background) by the exposed holographic mirror.
The angle between the two beams incident on the photopolymer was set to \n
Since the holographic mirror is a volume hologram, the diffracted light should disperse chromatically, and this chromatic dispersion results in spatial blurring of the virtual image. The size of the blur caused by dispersion can be modeled as follows:
\nwhere b is the size of the blur, z is the depth of the virtual image from the holographic mirror, \n
To suppress the blur, dispersion compensation is necessary. Figure 4 illustrates the concept in the case of an integrated optical system with a holographic mirror, projection optics, and blur-compensation optics. The key idea is the replacement of a real display with an intentionally dispersed image, which contributes to dispersion compensation of the holographic mirror. In the system, a projector projects an image on a diffuser via a diffractive optical element (DOE). In such an optical system, a dispersed image appears on the diffuser screen. If the direction and the amount of dispersion are correctly designed for dispersion compensation, the spatial blur of the virtual image can be compensated. As a result, an observer can see a sharp virtual image through the holographic mirror.
\nOptical design of the virtual-image display with a holographic mirror and diffuser-based blur-compensation optics.
As a related method, dispersion compensation using two identical HOEs was proposed [30, 31]. Compared with the conventional method, the advantages of the proposed DOE-based method are superior light-use efficiency and a practical level of blur suppression [21]. As mentioned also in the Introduction section, another related method is to limit the spectral width by using a laser light source or a band-pass filter. Compared with this method, our method has merits from the perspective of safety and brightness.
\nWe verified the proposed method using the setup in Figure 5. We placed a reflection-type DOE (VIS Holographic Grating manufactured by Edmund optics) having 1200 grooves per millimeter in a 50 mm square in front of a projector (EH-TW5200 by EPSON) with an internal metal halide lamp. We also placed an A4-sized diffuser screen and a holographic mirror described in the previous section. We set the distance between the diffuser and the holographic mirror to 600 mm, and that between the DOE and the diffuser to 600 mm. The design conditions for the system parameters are presented in [21].
\nSetup for experimental verification of the proposed virtual-image display.
Figure 6(a) shows the images projected on the diffuser without and with a DOE. The images without the DOE were generated by replacing the DOE with a mirror. As shown in the figure, the image with the DOE was chromatically dispersed along the direction of diffraction (in this case, vertical direction). The images were severely blurred in direct observation; however, these are the expected results.
\n(a) Projected images on a diffuser and (b) virtual images displayed by the proposed virtual-image display without and with a DOE.
Figure 6(b) shows the virtual images generated without and with a DOE, captured by a camera placed at the observer’s position. The results without the DOE indicate that the virtual images were blurred along the dispersion direction. In contrast, the virtual images with the DOE were successfully resolved even along the dispersion direction. Using a resolution chart, the vertical resolution was improved from 0.12 to 0.42 cycle/mm.
\nFigure 7 shows the depth of the virtual images from multiple observations while changing the observer’s position. As indicated in the figure, motion parallax was confirmed experimentally with a blur-compensated virtual image. In addition, since the camera focused on the virtual mirror, the holographic-mirror screen was defocused. These observations show the displacement of the axial position of the holographic mirror working as a screen and the displayed virtual image.
\nExperimental virtual images observed while changing the viewing position.
The virtual-image display having the geometry in Figure 1(b) can also work inversely by replacing the projector with a camera, which can realize a virtual camera [21]. A virtual camera is a camera in which a virtual image of a real camera captures subjects, which allows off-axis image capturing. One benefit of off-axis image capturing is that frontal shooting of the subject can be accomplished by a camera placed at an invisible position. Figure 8 illustrates the concept. In the figure, an observer in front of a holographic mirror is captured from the front as if an invisible camera were placed behind the mirror, where a real camera device is placed at an off-axis position. By integrating the virtual camera with the virtual-image display, a virtual-image screen that can also capture frontal images can be realized. Such a screen can be applied to, e.g., a virtual-image-based video-communication system that achieves line of sight image capturing [22].
\nOptical design for the virtual camera using a holographic mirror.
To make use of the virtual camera with an upright holographic mirror, dispersion compensation is needed, as with the virtual display described above. In principle, the same optical system as that used for the virtual-image display can be adopted for the virtual camera; however, the insertion of a diffuser is not suitable for image capturing because the light intensity is severely reduced, and the intensity of environmental light sources (e.g., sunlight) cannot be controlled in general. To deal with this problem, we propose an alternative optical design without a diffuser for dispersion compensation. Figure 9 shows the concept of the proposed optical system. Compared with the display application in Figure 4, the diffuser and the projector are replaced with a convex lens and a camera, respectively. In this configuration, the light source is environmental illumination such as sunlight or room light. A convex lens is used for converting the spectrally diverging dispersed light into converging light. As a result of inserting the lens, a real image of the subject is optically formed between the lens and the DOE. A camera captures the formed real image via the DOE. Since the light is not diffused in the optical system, the light-use efficiency is superior to that of the diffuser-based display system, but on the other hand, the acceptable positions of the camera for capturing the image are restricted.
\nOptical design of the virtual camera with a holographic mirror and the lens-based blur-compensation optics.
Figure 10 shows the setup used for experimental verification. The holographic mirror and the DOE are as same as those described in the previous section. The diameter and focal length of the lens were 100 and 300 mm, respectively. A color CCD camera (Flea3 manufactured by FLIR) was used for image capturing. The distance between the holographic mirror and the lens was 590 mm, and that between the lens and a DOE was 680 mm. Design conditions for the system parameters are given in [21].
\nSetup for experimental verification of the proposed virtual camera.
Figure 11 shows the images experimentally captured by the proposed virtual camera system. Without a DOE, the chromatic dispersion of the holographic mirror degraded the vertical spatial resolution of the captured image. In contrast, with the DOE, the resolution degradation was successfully restored. By visual assessment of the images of a resolution chart, the vertical spatial resolution was improved from 0.80 to 1.46 cycle/mm. The result with a doll indicates the possibility of the proposed optical system for visual video-communication systems for human users.
\nExperimentally captured images obtained by the proposed virtual camera without and with a DOE.
In this chapter, we introduced a technology on the holographic Pepper’s ghost based on a virtual-image display and a virtual camera using a holographic mirror and blur-compensation optics. The holographic mirror works as an off-axis mirror, which can be used for an upright screen of the virtual-image display and the virtual camera. To make use of the holographic mirror in imaging systems, compensation of chromatic dispersion is necessary for preventing resolution degradation. We proposed two optical systems that integrate DOE-based dispersion-compensation optics, imaging devices, and a holographic mirror. In the systems, the chromatic dispersion of the holographic mirror was compensated optically. We experimentally verified the realization of the concepts on the virtual-image display and the virtual camera, and the effectiveness of the dispersion compensation.
\nThe proposed systems can be applied to upright, thin, see-through screens for virtual-image displays and virtual cameras. The system can be used for, e.g., virtual-image-based interactive displays and video-communication systems where the screen can be integrated with environmental objects like flat walls and screen panels.
\nThe authors would like to thank Covestro Deutschland AG for providing the photopolymer holographic recording material.
\nWe believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118378},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:204},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"304",title:"Urban Agriculture",slug:"urban-agriculture",parent:{title:"Agricultural Engineering",slug:"agricultural-and-biological-sciences-agricultural-engineering"},numberOfBooks:3,numberOfAuthorsAndEditors:69,numberOfWosCitations:10,numberOfCrossrefCitations:7,numberOfDimensionsCitations:22,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"urban-agriculture",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8939",title:"Urban Horticulture",subtitle:"Necessity of the Future",isOpenForSubmission:!1,hash:"5db1ff90f7e404baf4e42cdfbe0b9755",slug:"urban-horticulture-necessity-of-the-future",bookSignature:"Shashank Shekhar Solankey, Shirin Akhtar, Alejandro Isabel Luna Maldonado, Humberto Rodriguez-Fuentes, Juan Antonio Vidales Contreras and Julia Mariana Márquez Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/8939.jpg",editedByType:"Edited by",editors:[{id:"210702",title:"Dr.",name:"Shashank Shekhar",middleName:null,surname:"Solankey",slug:"shashank-shekhar-solankey",fullName:"Shashank Shekhar Solankey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8308",title:"Agricultural Economics",subtitle:"Current Issues",isOpenForSubmission:!1,hash:"138b8e4117a40c74fc41ec72d552fa9f",slug:"agricultural-economics-current-issues",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8308.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5227",title:"Urban Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"722ebe60b63f7c01577d063a3e39c36a",slug:"urban-agriculture",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5227.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"69221",doi:"10.5772/intechopen.89279",title:"Social Value of Urban Rooftop Farming: A Hong Kong Case Study",slug:"social-value-of-urban-rooftop-farming-a-hong-kong-case-study",totalDownloads:470,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"agricultural-economics-current-issues",title:"Agricultural Economics",fullTitle:"Agricultural Economics - Current Issues"},signatures:"Ting Wang and Mathew Pryor",authors:[{id:"289674",title:"Ph.D. Student",name:"Ting",middleName:null,surname:"Wang",slug:"ting-wang",fullName:"Ting Wang"},{id:"289677",title:"Prof.",name:"Mathew",middleName:null,surname:"Pryor",slug:"mathew-pryor",fullName:"Mathew Pryor"}]},{id:"50067",doi:"10.5772/62301",title:"Urban Gardening: From Cost Avoidance to Profit Making — Example from Ljubljana, Slovenia",slug:"urban-gardening-from-cost-avoidance-to-profit-making-example-from-ljubljana-slovenia",totalDownloads:1790,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Matjaž Glavan, Majda Černič Istenič, Rozalija Cvejić and Marina\nPintar",authors:[{id:"61187",title:"Prof.",name:"Marina",middleName:null,surname:"Pintar",slug:"marina-pintar",fullName:"Marina Pintar"},{id:"82604",title:"Dr.",name:"Matjaž",middleName:null,surname:"Glavan",slug:"matjaz-glavan",fullName:"Matjaž Glavan"},{id:"178797",title:"Dr.",name:"Rozalija",middleName:null,surname:"Cvejić",slug:"rozalija-cvejic",fullName:"Rozalija Cvejić"},{id:"179170",title:"Prof.",name:"Majda",middleName:null,surname:"Černič Istenič",slug:"majda-cernic-istenic",fullName:"Majda Černič Istenič"}]},{id:"50109",doi:"10.5772/62302",title:"Water Quality Modeling and Control in Recirculating Aquaculture Systems",slug:"water-quality-modeling-and-control-in-recirculating-aquaculture-systems",totalDownloads:2187,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Marian Barbu, Emil Ceangă and Sergiu Caraman",authors:[{id:"21470",title:"Dr.",name:"Sergiu",middleName:null,surname:"Caraman",slug:"sergiu-caraman",fullName:"Sergiu Caraman"},{id:"22039",title:"Prof.",name:"Marian",middleName:null,surname:"Barbu",slug:"marian-barbu",fullName:"Marian Barbu"},{id:"180348",title:"Prof.",name:"Emil",middleName:null,surname:"Ceanga",slug:"emil-ceanga",fullName:"Emil Ceanga"}]}],mostDownloadedChaptersLast30Days:[{id:"71186",title:"Application of Nanotechnology Solutions in Plants Fertilization",slug:"application-of-nanotechnology-solutions-in-plants-fertilization",totalDownloads:623,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Daniela Predoi, Rodica V. Ghita, Simona Liliana Iconaru, Carmen Laura Cimpeanu and Stefania Mariana Raita",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",middleName:null,surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"183930",title:"Prof.",name:"Daniela",middleName:null,surname:"Predoi",slug:"daniela-predoi",fullName:"Daniela Predoi"},{id:"313256",title:"Dr.",name:"Simona Liliana",middleName:null,surname:"Iconaru",slug:"simona-liliana-iconaru",fullName:"Simona Liliana Iconaru"},{id:"313258",title:"Dr.",name:"Carmen Laura",middleName:null,surname:"Cimpeanu",slug:"carmen-laura-cimpeanu",fullName:"Carmen Laura Cimpeanu"},{id:"313260",title:"Dr.",name:"Stefania Mariana",middleName:null,surname:"Raita",slug:"stefania-mariana-raita",fullName:"Stefania Mariana Raita"}]},{id:"70957",title:"Nutrients for Hydroponic Systems in Fruit Crops",slug:"nutrients-for-hydroponic-systems-in-fruit-crops",totalDownloads:620,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Pramod Kumar and Simran Saini",authors:[{id:"253238",title:"Dr.",name:"Pramod",middleName:null,surname:"Kumar",slug:"pramod-kumar",fullName:"Pramod Kumar"},{id:"316834",title:"Ms.",name:"Simran",middleName:null,surname:"Saini",slug:"simran-saini",fullName:"Simran Saini"}]},{id:"70662",title:"Automation and Robotics Used in Hydroponic System",slug:"automation-and-robotics-used-in-hydroponic-system",totalDownloads:1569,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Alejandro Isabel Luna Maldonado, Julia Mariana Márquez Reyes, Héctor Flores Breceda, Humberto Rodríguez Fuentes, Juan Antonio Vidales Contreras and Urbano Luna Maldonado",authors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",middleName:null,surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"},{id:"215230",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Vidales Contreras",slug:"juan-antonio-vidales-contreras",fullName:"Juan Antonio Vidales Contreras"},{id:"220744",title:"MSc.",name:"Héctor",middleName:null,surname:"Flores Breceda",slug:"hector-flores-breceda",fullName:"Héctor Flores Breceda"},{id:"252026",title:"Dr.",name:"Humberto",middleName:null,surname:"Rodríguez-Fuentes",slug:"humberto-rodriguez-fuentes",fullName:"Humberto Rodríguez-Fuentes"},{id:"299825",title:"Dr.",name:"Julia Mariana",middleName:null,surname:"Márquez Reyes",slug:"julia-mariana-marquez-reyes",fullName:"Julia Mariana Márquez Reyes"},{id:"303920",title:"Prof.",name:"Urbano",middleName:null,surname:"Luna Maldonado",slug:"urbano-luna-maldonado",fullName:"Urbano Luna Maldonado"}]},{id:"50248",title:"Relationship between Population and Agricultural Land in Amasya",slug:"relationship-between-population-and-agricultural-land-in-amasya",totalDownloads:1559,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Mustafa Ergen",authors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",middleName:null,surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}]},{id:"67079",title:"Introductory Chapter: Agricultural Economics",slug:"introductory-chapter-agricultural-economics",totalDownloads:626,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"agricultural-economics-current-issues",title:"Agricultural Economics",fullTitle:"Agricultural Economics - Current Issues"},signatures:"Surendra N. Kulshreshtha",authors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}]},{id:"50063",title:"Urban Agriculture Case Studies in Central Texas: From the Ground to the Rooftop",slug:"urban-agriculture-case-studies-in-central-texas-from-the-ground-to-the-rooftop",totalDownloads:1746,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Bruce D. Dvorak and Ahmed K. Ali",authors:[{id:"178373",title:"Dr.",name:"Ahmed K.",middleName:"Kamal",surname:"Ali",slug:"ahmed-k.-ali",fullName:"Ahmed K. Ali"},{id:"179542",title:"Prof.",name:"Bruce",middleName:null,surname:"Dvorak",slug:"bruce-dvorak",fullName:"Bruce Dvorak"}]},{id:"50109",title:"Water Quality Modeling and Control in Recirculating Aquaculture Systems",slug:"water-quality-modeling-and-control-in-recirculating-aquaculture-systems",totalDownloads:2189,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Marian Barbu, Emil Ceangă and Sergiu Caraman",authors:[{id:"21470",title:"Dr.",name:"Sergiu",middleName:null,surname:"Caraman",slug:"sergiu-caraman",fullName:"Sergiu Caraman"},{id:"22039",title:"Prof.",name:"Marian",middleName:null,surname:"Barbu",slug:"marian-barbu",fullName:"Marian Barbu"},{id:"180348",title:"Prof.",name:"Emil",middleName:null,surname:"Ceanga",slug:"emil-ceanga",fullName:"Emil Ceanga"}]},{id:"50067",title:"Urban Gardening: From Cost Avoidance to Profit Making — Example from Ljubljana, Slovenia",slug:"urban-gardening-from-cost-avoidance-to-profit-making-example-from-ljubljana-slovenia",totalDownloads:1793,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Matjaž Glavan, Majda Černič Istenič, Rozalija Cvejić and Marina\nPintar",authors:[{id:"61187",title:"Prof.",name:"Marina",middleName:null,surname:"Pintar",slug:"marina-pintar",fullName:"Marina Pintar"},{id:"82604",title:"Dr.",name:"Matjaž",middleName:null,surname:"Glavan",slug:"matjaz-glavan",fullName:"Matjaž Glavan"},{id:"178797",title:"Dr.",name:"Rozalija",middleName:null,surname:"Cvejić",slug:"rozalija-cvejic",fullName:"Rozalija Cvejić"},{id:"179170",title:"Prof.",name:"Majda",middleName:null,surname:"Černič Istenič",slug:"majda-cernic-istenic",fullName:"Majda Černič Istenič"}]},{id:"71024",title:"Implication of Urban Agriculture and Vertical Farming for Future Sustainability",slug:"implication-of-urban-agriculture-and-vertical-farming-for-future-sustainability",totalDownloads:683,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Anwesha Chatterjee, Sanjit Debnath and Harshata Pal",authors:[{id:"312477",title:"Dr.",name:"Harshata",middleName:null,surname:"Pal",slug:"harshata-pal",fullName:"Harshata Pal"},{id:"316680",title:"Dr.",name:"Anwesha",middleName:null,surname:"Chatterjee",slug:"anwesha-chatterjee",fullName:"Anwesha Chatterjee"},{id:"316681",title:"Dr.",name:"Sanjit",middleName:null,surname:"Debnath",slug:"sanjit-debnath",fullName:"Sanjit Debnath"}]},{id:"50648",title:"Introductory Chapter",slug:"introductory-chapter-urban-agriculture",totalDownloads:1013,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"M. Samer",authors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}]}],onlineFirstChaptersFilter:{topicSlug:"urban-agriculture",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"profile.detail",path:"/profiles/292205/alexandru-sin-schneider",hash:"",query:{},params:{id:"292205",slug:"alexandru-sin-schneider"},fullPath:"/profiles/292205/alexandru-sin-schneider",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()