Direct metal deposition (DMD) has become very popular within the space of rapid manufacturing and repair. Its capability of producing fully dense metal parts with complex internal geometries, which could not be easily achieved by traditional manufacturing approaches, has been well demonstrated. However, the DMD process usually comes with high thermal gradients and high heating and cooling rates, leading to residual stresses and the associated deformation, which can have negative effect on product integrity. This paper studies the features of thermal stress and deformation involved in the DMD process by constructing a 3-D, sequentially coupled, thermomechanical, finite element model to predict both the thermal and mechanical behaviors of the DMD process of Stainless Steel 304 (SS 304). A set of experiments were then conducted to validate deformation using a laser displacement sensor. Comparisons between the simulated and experimental results show good agreement. This model can be used to predict the mechanical behavior of products fabricated by the DMD process and to help with the optimization of design and manufacturing parameters.
Part of the book: New Challenges in Residual Stress Measurements and Evaluation