Laser interstitial thermal therapy (LITT) is a novel minimally invasive neurosurgical procedure in which laser light is delivered through a stereotactically positioned probe to an intracranial lesion for controlled thermal ablation of the pathological tissue. LITT is considered for patients who are poor candidates for open surgical resection due to (1) location of lesion (e.g., deep-seated or near critical structures), (2) history of intracranial interventions or medical comorbidities that increase surgical risk, or (3) lesion refractoriness to prior conventional therapies. The use of LITT was initially limited by concerns over off-target thermal damage; however, recent advances in magnetic resonance imaging-based thermal imaging have enabled real-time monitoring of tissue ablation dynamics, thereby improving its safety profile. Accordingly, the past two decades have seen a rapid expansion in the use of LITT for a variety of intracranial pathologies, including neoplasms, radiation necrosis, and epilepsy. This chapter focuses on the novel application of LITT to both newly diagnosed and recurrent glioblastoma multiforme (GBM). We first review the technological developments that enabled the safe use of LITT for GBM. We then review recent evidence regarding the indications, outcomes, and limitations of LITT as a novel adjuvant treatment for GBM.
Part of the book: Brain and Spinal Tumors
Minimally invasive technologies for intracranial lesions are a rapidly growing area of surgical neuro-oncology. Magnetic resonance (MR)-guided laser interstitial thermal therapy (LITT) is novel adjunctive therapy for patients who are poor candidates for open surgical resection. Recent developments in modern stereotaxy, fiber optics, and MR thermography imaging have improved the safety profile of LITT, enabling its emergence as an attractive alternative adjunct therapy for intracranial lesions which are deep-seated, refractory to standard therapies, or in patients with multiple comorbidities. In this chapter, we review the technological principles underlying LITT and provide a comprehensive, up-to-date summary of the evidence regarding the indications, outcomes, and limitations of LITT for a diverse array of intracranial tumors, including dural-based lesions, metastases, gliomas, and radiation necrosis.
Part of the book: Neurosurgical Procedures