This chapter presents a new technique called entropy volume-based scale-invariant feature transform for correct face recognition post cosmetic surgery. The comparable features taken are the key points and volume of the Difference of Gaussian (DOG) structure for those points the information rate is confirmed. The information extracted has a minimum effect on uncertain changes in the face since the entropy is the higher-order statistical feature. Then the extracted corresponding entropy volume-based scale-invariant feature transform features are applied and provided to the support vector machine for classification. The normal scale-invariant feature transform feature extracts the key points based on dissimilarity which is also known as the contrast of the image, and the volume-based scale-invariant feature transform (V-SIFT) feature extracts the key points based on the volume of the structure. However, the EV-SIFT method provides both the contrast and volume information. Thus, EV-SIFT provides better performance when compared with principal component analysis (PCA), normal scale-invariant feature transform (SIFT), and V-SIFT-based feature extraction. Since it is well known that the artificial neural network (ANN) with Levenberg-Marquardt (LM) is a powerful computation tool for accurate classification, it is further used in this technique for better classification results.
Part of the book: Visual Object Tracking with Deep Neural Networks