Structural characteristics and corresponding advantages of FRPMM.
\r\n\t
",isbn:"978-1-83969-234-5",printIsbn:"978-1-83969-233-8",pdfIsbn:"978-1-83969-235-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",bookSignature:"Dr. Basel I. Ismail",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",keywords:"Thermodynamics, Heat Transfer Analyses, Geothermal Power Generation, Economics, Geothermal Systems, Geothermal Heat Pump, Green Energy Buildings, Exploration Methods, Geologic Fundamentals, Geotechnical, Geothermal System Materials, Sustainability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University, owner of a Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada and postdoctoral researcher (2004 to 2005) at McMaster University.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"62122",title:"Dr.",name:"Basel",middleName:"I.",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail",profilePictureURL:"https://mts.intechopen.com/storage/users/62122/images/system/62122.jpg",biography:"Dr. B. Ismail is currently an Associate Professor and Chairman of the Department of Mechanical Engineering, Lakehead University, Thunder Bay, Ontario, Canada. In 2004, Prof. Ismail earned his Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada. From 2004 to 2005, he worked as a Postdoctoral researcher at McMaster University. His specialty is in engineering heat transfer, engineering thermodynamics, and energy conversion and storage engineering. Dr. Ismail’s research activities are theoretical and applied in nature. Currently, his research areas of interest are focused on green engineering technologies related to alternative and renewable energy systems for power generation, heating and cooling. Dr. Ismail was the leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University. This innovative project was state-of-the-art in geothermal heat pump technology applied in Northwestern Ontario, Canada. Dr. Ismail has published many technical reports and articles related to his research areas in reputable International Journals and Conferences. During his research activities, Dr. Ismail has supervised and trained many graduate students and senior undergraduate students in Mechanical Engineering with projects and theses related to innovative renewable and alternative energy engineering, and technologies.",institutionString:"Lakehead University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Lakehead University",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5084",title:"Advances in Geothermal Energy",subtitle:null,isOpenForSubmission:!1,hash:"d4647f1f9dae170acf327283d55abbf1",slug:"advances-in-geothermal-energy",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5084.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5602",title:"Renewable Hydropower Technologies",subtitle:null,isOpenForSubmission:!1,hash:"15ea891d96b6c9f2d3f28d5a21c09203",slug:"renewable-hydropower-technologies",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5602.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7504",title:"Renewable Geothermal Energy Explorations",subtitle:null,isOpenForSubmission:!1,hash:"d47d551b0fcf11a4328c8a38f2499844",slug:"renewable-geothermal-energy-explorations",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7504.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"788",title:"Developments in the Control Loops Benchmarking",doi:"10.5772/5390",slug:"developments_in_the_control_loops_benchmarking",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/788.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/788",previewPdfUrl:"/chapter/pdf-preview/788",totalDownloads:2197,totalViews:85,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"May 1st 2008",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/788",risUrl:"/chapter/ris/788",book:{slug:"new_approaches_in_automation_and_robotics"},signatures:"Grzegorz Bialic and Marian B??achuta",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3605",title:"New Approaches in Automation and Robotics",subtitle:null,fullTitle:"New Approaches in Automation and Robotics",slug:"new_approaches_in_automation_and_robotics",publishedDate:"May 1st 2008",bookSignature:"Harald Aschemann",coverURL:"https://cdn.intechopen.com/books/images_new/3605.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"11584",title:"Prof.",name:"Harald",middleName:null,surname:"Aschemann",slug:"harald-aschemann",fullName:"Harald Aschemann"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"783",title:"A Model Reference Based 2-DOF Robust Observer-Controller Design Methodology",slug:"a_model_reference_based_2-dof_robust_observer-controller_design_methodology",totalDownloads:2998,totalCrossrefCites:0,signatures:"Salva Alcantara, Carles Pedret and Ramon Vilanova",authors:[null]},{id:"784",title:"Nonlinear Model-Based Control of a Parallel Robot Driven by Pneumatic Muscle Actuators",slug:"nonlinear_model-based_control_of_a_parallel_robot_driven_by_pneumatic_muscle_actuators",totalDownloads:2688,totalCrossrefCites:4,signatures:"Harald Aschemann and Dominik Schindele",authors:[null]},{id:"785",title:"Neural-Based Navigation Approach for a Bi-Steerable Mobile Robot",slug:"neural-based_navigation_approach_for_a_bi-steerable_mobile_robot",totalDownloads:2399,totalCrossrefCites:0,signatures:"Azouaoui Ouahiba, Ouadah Noureddine, Aouana Salem and Chabi Djeffer",authors:[null]},{id:"786",title:"On the Estimation of Asymptotic Stability Region of Nonlinear Polynomial Systems: Geometrical Approaches",slug:"on_the_estimation_of_asymptotic_stability_region_of_nonlinear_polynomial_systems__geometrical_approa",totalDownloads:2463,totalCrossrefCites:2,signatures:"Anis Bacha, Houssem Jerbi and Naceur Benhadj Braiek",authors:[null]},{id:"787",title:"Networked Control Systems for Electrical Drives",slug:"networked_control_systems_for_electrical_drives",totalDownloads:3802,totalCrossrefCites:0,signatures:"Baluta Gheorghe and Lazar Corneliu",authors:[null]},{id:"788",title:"Developments in the Control Loops Benchmarking",slug:"developments_in_the_control_loops_benchmarking",totalDownloads:2197,totalCrossrefCites:0,signatures:"Grzegorz Bialic and Marian B??achuta",authors:[null]},{id:"789",title:"Bilinear Time Series in Signal Analysis",slug:"bilinear_time_series_in_signal_analysis",totalDownloads:2153,totalCrossrefCites:0,signatures:"Bielinska Ewa",authors:[null]},{id:"790",title:"Nonparametric Identification of Nonlinear Dynamics of Systems Based on the Active Experiment",slug:"nonparametric_identification_of_nonlinear_dynamics_of_systems_based_on_the_active_experiment",totalDownloads:1809,totalCrossrefCites:0,signatures:"Magdalena Bockowska and Adam Zuchowski",authors:[null]},{id:"791",title:"Group Judgement with Ties. Distance-Based Methods",slug:"group_judgement_with_ties__distance-based_methods",totalDownloads:1644,totalCrossrefCites:2,signatures:"Hanna Bury and Dariusz Wagner",authors:[null]},{id:"792",title:"An Innovative Method for Robots Modeling and Simulation",slug:"an_innovative_method_for_robots_modeling_and_simulation",totalDownloads:1701,totalCrossrefCites:0,signatures:"Laura Celentano",authors:[null]},{id:"793",title:"Models for Simulation and Control of Underwater Vehicles",slug:"models_for_simulation_and_control_of_underwater_vehicles",totalDownloads:3386,totalCrossrefCites:4,signatures:"Jorge Silva and Joao Sousa",authors:[null]},{id:"794",title:"Fuzzy Stabilization of Fuzzy Control Systems",slug:"fuzzy_stabilization_of_fuzzy_control_systems",totalDownloads:3625,totalCrossrefCites:0,signatures:"Mohamed M. Elkhatib and John J. Soraghan",authors:[null]},{id:"795",title:"Switching Control in the Presence of Constraints and Unmodeled Dynamics",slug:"switching_control_in_the_presence_of__constraints_and_unmodeled_dynamics",totalDownloads:1531,totalCrossrefCites:1,signatures:"Vojislav Filipovic",authors:[null]},{id:"796",title:"Advanced Torque Control",slug:"advanced_torque_control",totalDownloads:5647,totalCrossrefCites:1,signatures:"C. Fritzsche and H.-P. Deunow",authors:[null]},{id:"797",title:"Design, Simulation and Development of Software Modules for the Control of Concrete Elements Production Plant",slug:"design__simulation_and_development_of_software_modules_for_the_control_of_concrete_elements_producti",totalDownloads:4796,totalCrossrefCites:1,signatures:"Georgia Garani and George K. Adam",authors:[null]},{id:"798",title:"Operational Amplifiers and Active Filters: A Bond Graph Approach",slug:"operational_amplifiers_and_active_filters__a_bond_graph_approach",totalDownloads:4209,totalCrossrefCites:2,signatures:"Gilberto Gonzalez and Roberto Tapia",authors:[null]},{id:"799",title:"Hypermobile Robots",slug:"hypermobile_robots",totalDownloads:2939,totalCrossrefCites:3,signatures:"Grzegorz Granosik",authors:[null]},{id:"800",title:"Time-Scaling of SISO and MIMO Discrete-Time Systems",slug:"time-scaling_of_siso_and_mimo_discrete-time_systems",totalDownloads:2619,totalCrossrefCites:0,signatures:"Bogdan Grzywacz",authors:[null]},{id:"801",title:"Models of Continuous-Time Linear Time-Varying Systems with Fully Adaptable System Modes",slug:"models_of_continuous-time_linear_time-varying_systems_with_fully_adaptable_system_modes",totalDownloads:3286,totalCrossrefCites:0,signatures:"Miguel Angel Gutierrez de Anda, Arturo Sarmiento Reyes, Roman Kaszynski and Jacek Piskorowski",authors:[null]},{id:"802",title:"Directional Change Issues in Multivariable State-Feedback Control",slug:"directional_change_issues_in_multivariable_state-feedback_control",totalDownloads:1868,totalCrossrefCites:2,signatures:"Dariusz Horla",authors:[null]},{id:"803",title:"A Smith Factorization Approach to Robust Minimum Variance Control of Nonsquare LTI MIMO Systems",slug:"a_smith_factorization_approach_to_robust_minimum_variance_control_of_nonsquare_lti_mimo_systems",totalDownloads:2135,totalCrossrefCites:0,signatures:"Wojciech P. Hunek and Krzysztof J. Latawiec",authors:[null]},{id:"804",title:"The Wafer Alignment Algorithm Regardless of Rotational Center",slug:"the_wafer_alignment_algorithm_regardless_of_rotational_center",totalDownloads:2922,totalCrossrefCites:0,signatures:"HyungTae Kim, HaeJeong Yang and SungChul Kim",authors:[null]}]},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36273",title:"Introduction to Infrared Spectroscopy",slug:"introduction-to-infrared-spectroscopy",signatures:"Theophile Theophanides",authors:[{id:"37194",title:"Dr.",name:"Theophanides",middleName:null,surname:"Theophile",fullName:"Theophanides Theophile",slug:"theophanides-theophile"}]},{id:"36166",title:"Using Infrared Spectroscopy to Identify New Amorphous Phases - A Case Study of Carbonato Complex Formed by Mechanochemical Processing",slug:"using-infrared-spectroscopy-to-identify-new-amorphous-phases-a-case-study-of-carbonato-complexes-fo",signatures:"Tadej Rojac, Primož Šegedin and Marija Kosec",authors:[{id:"25116",title:"Prof.",name:"Marija",middleName:null,surname:"Kosec",fullName:"Marija Kosec",slug:"marija-kosec"},{id:"105876",title:"Dr.",name:"Tadej",middleName:null,surname:"Rojac",fullName:"Tadej Rojac",slug:"tadej-rojac"},{id:"111754",title:"Prof.",name:"Primoz",middleName:null,surname:"Segedin",fullName:"Primoz Segedin",slug:"primoz-segedin"}]},{id:"36167",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",fullName:"Suedina Maria Silva",slug:"suedina-maria-silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",fullName:"Carla R. C. Braga",slug:"carla-r.-c.-braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",fullName:"Marcus Vinícius Lia Fook",slug:"marcus-vinicius-lia-fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",fullName:"Claudia Maria De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",fullName:"Laura Hecker De Carvalho",slug:"laura-hecker-de-carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",fullName:"Eduardo Luis Canedo",slug:"eduardo-luis-canedo"}]},{id:"36168",title:"Structural and Optical Behavior of Vanadate-Tellurate Glasses Containing PbO or Sm2O3",slug:"structural-and-optical-behavior-of-vanadate-tellurate-glasses",signatures:"E. Culea, S. Rada, M. Culea and M. Rada",authors:[{id:"114650",title:"Dr",name:"Eugen",middleName:null,surname:"Culea",fullName:"Eugen Culea",slug:"eugen-culea"},{id:"114653",title:"Dr.",name:"Simona",middleName:null,surname:"Rada",fullName:"Simona Rada",slug:"simona-rada"}]},{id:"36169",title:"Water in Rocks and Minerals - Species, Distributions, and Temperature Dependences",slug:"water-in-rocks-and-minerals-species-distributions-and-temperature-dependences",signatures:"Jun-ichi Fukuda",authors:[{id:"105384",title:"Dr.",name:"Jun-Ichi",middleName:null,surname:"Fukuda",fullName:"Jun-Ichi Fukuda",slug:"jun-ichi-fukuda"}]},{id:"36170",title:"Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study",slug:"attenuated-total-reflection-infrared-spectroscopy-applied-to-the-study-of-mineral-aqueous-el",signatures:"Grégory Lefèvre, Tajana Preočanin and Johannes Lützenkirchen",authors:[{id:"108416",title:"Dr.",name:"Johannes",middleName:null,surname:"Lützenkirchen",fullName:"Johannes Lützenkirchen",slug:"johannes-lutzenkirchen"},{id:"111675",title:"Dr.",name:"Gregory",middleName:null,surname:"Lefevre",fullName:"Gregory Lefevre",slug:"gregory-lefevre"},{id:"111676",title:"Prof.",name:"Tajana",middleName:null,surname:"Preocanin",fullName:"Tajana Preocanin",slug:"tajana-preocanin"}]},{id:"36171",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",fullName:"Liga Berzina-Cimdina",slug:"liga-berzina-cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",fullName:"Natalija Borodajenko",slug:"natalija-borodajenko"}]},{id:"36172",title:"FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts",slug:"ftir-spectroscopy-of-adsorbed-probe-molecules-for-analyzing-the-surface-properties-of-supported-pt-p",signatures:"Olga B. Belskaya, Irina G. Danilova, Maxim O. Kazakov, Roman M. Mironenko, Alexander V. Lavrenov and Vladimir A. Likholobov",authors:[{id:"107715",title:"Dr.",name:"Olga",middleName:null,surname:"Belskaya",fullName:"Olga Belskaya",slug:"olga-belskaya"},{id:"140198",title:"Dr.",name:"Irina",middleName:null,surname:"Danilova",fullName:"Irina Danilova",slug:"irina-danilova"},{id:"140200",title:"Dr.",name:"Maxim",middleName:null,surname:"Kazakov",fullName:"Maxim Kazakov",slug:"maxim-kazakov"},{id:"140202",title:"Mr.",name:"Roman",middleName:"Mikhailovich",surname:"Mironenko",fullName:"Roman Mironenko",slug:"roman-mironenko"},{id:"140203",title:"Dr.",name:"Alexander",middleName:null,surname:"Lavrenov",fullName:"Alexander Lavrenov",slug:"alexander-lavrenov"},{id:"140204",title:"Prof.",name:"Vladimir",middleName:null,surname:"Likholobov",fullName:"Vladimir Likholobov",slug:"vladimir-likholobov"}]},{id:"36173",title:"Hydrothermal Treatment of Hokkaido Peat - An Application of FTIR and 13C NMR Spectroscopy on Examining of Artificial Coalification Process and Development",slug:"hydrothermal-treatment-of-hokkaido-peat-an-application-of-ftir-and-13c-nmr-spectroscopy-on-examinin",signatures:"Anggoro Tri Mursito and Tsuyoshi Hirajima",authors:[{id:"104786",title:"Dr.",name:"Anggoro Tri",middleName:null,surname:"Mursito",fullName:"Anggoro Tri Mursito",slug:"anggoro-tri-mursito"},{id:"110978",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Hirajima",fullName:"Tsuyoshi Hirajima",slug:"tsuyoshi-hirajima"}]},{id:"36174",title:"FTIR - An Essential Characterization Technique for Polymeric Materials",slug:"ftir-an-essential-characterization-technique-for-polymeric-materials",signatures:"Vladimir A. Escobar Barrios, José R. Rangel Méndez, Nancy V. Pérez Aguilar, Guillermo Andrade Espinosa and José L. Dávila Rodríguez",authors:[{id:"12709",title:"Dr.",name:"Jose Rene",middleName:null,surname:"Rangel-Mendez",fullName:"Jose Rene Rangel-Mendez",slug:"jose-rene-rangel-mendez"},{id:"12711",title:"Dr.",name:"Vladimir Alonso",middleName:null,surname:"Escobar Barrios",fullName:"Vladimir Alonso Escobar Barrios",slug:"vladimir-alonso-escobar-barrios"},{id:"112164",title:"Dr",name:"Guillermo",middleName:null,surname:"Andrade-Espinosa",fullName:"Guillermo Andrade-Espinosa",slug:"guillermo-andrade-espinosa"},{id:"112165",title:"Dr.",name:"José Luis",middleName:null,surname:"Dávila-Rodríguez",fullName:"José Luis Dávila-Rodríguez",slug:"jose-luis-davila-rodriguez"},{id:"112167",title:"Dr.",name:"Nancy Verónica",middleName:null,surname:"Pérez-Aguilar",fullName:"Nancy Verónica Pérez-Aguilar",slug:"nancy-veronica-perez-aguilar"}]},{id:"36175",title:"Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique",slug:"preparation-and-characterization-of-pvdf-pmma-graphene-polymer-blend-nanocomposites-by-using-ft-ir-t",signatures:"Somayeh Mohamadi",authors:[{id:"108556",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohamadi",fullName:"Somayeh Mohamadi",slug:"somayeh-mohamadi"}]},{id:"36176",title:"Reflectance IR Spectroscopy",slug:"fundamental-of-reflectance-ir-spectroscopy",signatures:"Zahra Monsef Khoshhesab",authors:[{id:"111629",title:"Dr.",name:"Zahra",middleName:null,surname:"Monsef Khoshhesab",fullName:"Zahra Monsef Khoshhesab",slug:"zahra-monsef-khoshhesab"}]},{id:"36177",title:"Evaluation of Graft Copolymerization of Acrylic Monomers Onto Natural Polymers by Means Infrared Spectroscopy",slug:"evaluation-of-graft-copolymerization-of-acrylic-monomers-onto-natural-polymers-by-means-infrared-spe",signatures:"José Luis Rivera-Armenta, Cynthia Graciela Flores-Hernández, Ruth Zurisadai Del Angel-Aldana, Ana María Mendoza-Martínez, Carlos Velasco-Santos and Ana Laura Martínez-Hernández",authors:[{id:"37761",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martinez-Hernandez",fullName:"Ana Laura Martinez-Hernandez",slug:"ana-laura-martinez-hernandez"},{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",fullName:"Cynthia Graciela Flores-Hernández",slug:"cynthia-graciela-flores-hernandez"},{id:"108896",title:"MSc.",name:"Ruth Zurisadai",middleName:null,surname:"Del Angel Aldana",fullName:"Ruth Zurisadai Del Angel Aldana",slug:"ruth-zurisadai-del-angel-aldana"},{id:"108898",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",fullName:"Carlos Velasco-Santos",slug:"carlos-velasco-santos"},{id:"108905",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Mendoza-Martínez",fullName:"Ana Maria Mendoza-Martínez",slug:"ana-maria-mendoza-martinez"}]},{id:"36178",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",fullName:"Juan Baselga",slug:"juan-baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",fullName:"María González",slug:"maria-gonzalez"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",fullName:"Juan C. Cabanelas",slug:"juan-c.-cabanelas"}]},{id:"36179",title:"Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins",slug:"use-of-ft-ir-analysis-to-control-the-self-healing-functionality-of-epoxy-resins",signatures:"Liberata Guadagno and Marialuigia Raimondo",authors:[{id:"106836",title:"Prof.",name:"Liberata",middleName:null,surname:"Guadagno",fullName:"Liberata Guadagno",slug:"liberata-guadagno"}]},{id:"36180",title:"Infrared Analysis of Electrostatic Layer-By-Layer Polymer Membranes Having Characteristics of Heavy Metal Ion Desalination",slug:"infrared-analysis-of-electrostatic-layer-by-layer-polymer-membranes-having-characteristics-of-heavy",signatures:"Weimin Zhou, Huitan Fu and Takaomi Kobayashi",authors:[{id:"110384",title:"Dr.",name:"Takaomi",middleName:null,surname:"Kobayashi",fullName:"Takaomi Kobayashi",slug:"takaomi-kobayashi"}]},{id:"36181",title:"Infrared Spectroscopy as a Tool to Monitor Radiation Curing",slug:"infrared-spectroscopy-as-a-tool-to-monitor-radiation-curing",signatures:"Marco Sangermano, Patrick Meier and Spiros Tzavalas",authors:[{id:"112286",title:"Dr.",name:"Spiros",middleName:null,surname:"Tzavalas",fullName:"Spiros Tzavalas",slug:"spiros-tzavalas"},{id:"114382",title:"Prof.",name:"Marco",middleName:null,surname:"Sangermano",fullName:"Marco Sangermano",slug:"marco-sangermano"},{id:"114384",title:"Dr",name:"Patrick",middleName:null,surname:"Meier",fullName:"Patrick Meier",slug:"patrick-meier"}]},{id:"36182",title:"Characterization of Compositional Gradient Structure of Polymeric Materials by FTIR Technology",slug:"characterization-of-compositional-gradient-structure-of-polymeric-materials-by-ft-ir-technology",signatures:"Alata Hexig and Bayar Hexig",authors:[{id:"20867",title:"Dr.",name:"Bayar",middleName:null,surname:"Hexig",fullName:"Bayar Hexig",slug:"bayar-hexig"},{id:"111986",title:"Dr.",name:"Alata",middleName:null,surname:"Hexig",fullName:"Alata Hexig",slug:"alata-hexig"}]},{id:"36183",title:"Fourier Transform Infrared Spectroscopy - Useful Analytical Tool for Non-Destructive Analysis",slug:"fourier-trasform-infrared-spectroscopy-useful-analytical-tool-for-non-destructive-analysis",signatures:"Simona-Carmen Litescu, Eugenia D. Teodor, Georgiana-Ileana Truica, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",fullName:"Simona Carmen Litescu",slug:"simona-carmen-litescu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",fullName:"Gabriel-Lucian Radu",slug:"gabriel-lucian-radu"},{id:"108318",title:"Dr.",name:"Eugenia D.",middleName:null,surname:"Teodor",fullName:"Eugenia D. Teodor",slug:"eugenia-d.-teodor"},{id:"108323",title:"Dr.",name:"Georgiana-Ileana",middleName:null,surname:"Badea",fullName:"Georgiana-Ileana Badea",slug:"georgiana-ileana-badea"},{id:"136337",title:"Ms.",name:"Andreia",middleName:null,surname:"Tache",fullName:"Andreia Tache",slug:"andreia-tache"}]},{id:"36184",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",fullName:"Lucia J Fernández",slug:"lucia-j-fernandez"}]},{id:"36185",title:"Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics",slug:"infrared-spectroscopy-techniques-in-the-characterization-of-sofc-functional-ceramics",signatures:"Daniel A. Macedo, Moisés R. Cesário, Graziele L. Souza, Beatriz Cela, Carlos A. Paskocimas, Antonio E. Martinelli, Dulce M. A. Melo and Rubens M. Nascimento",authors:[{id:"102015",title:"MSc.",name:"Daniel",middleName:null,surname:"Macedo",fullName:"Daniel Macedo",slug:"daniel-macedo"},{id:"112309",title:"MSc",name:"Moisés",middleName:"Romolos",surname:"Cesário",fullName:"Moisés Cesário",slug:"moises-cesario"},{id:"112310",title:"Ms.",name:"Graziele",middleName:null,surname:"Souza",fullName:"Graziele Souza",slug:"graziele-souza"},{id:"112311",title:"MSc.",name:"Beatriz",middleName:null,surname:"Cela",fullName:"Beatriz Cela",slug:"beatriz-cela"},{id:"112312",title:"Prof.",name:"Carlos",middleName:null,surname:"Paskocimas",fullName:"Carlos Paskocimas",slug:"carlos-paskocimas"},{id:"112314",title:"Prof.",name:"Antonio",middleName:null,surname:"Martinelli",fullName:"Antonio Martinelli",slug:"antonio-martinelli"},{id:"112315",title:"Prof.",name:"Dulce",middleName:null,surname:"Melo",fullName:"Dulce Melo",slug:"dulce-melo"},{id:"112316",title:"Dr.",name:"Rubens",middleName:"Maribondo Do",surname:"Nascimento",fullName:"Rubens Nascimento",slug:"rubens-nascimento"}]},{id:"36186",title:"Infrared Spectroscopy of Functionalized Magnetic Nanoparticles",slug:"infrared-spectroscopy-of-functionalized-magnetic-nanoparticles",signatures:"Perla E. García Casillas, Claudia A. Rodriguez Gonzalez and Carlos A. Martínez Pérez",authors:[{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",fullName:"Perla E. García Casillas",slug:"perla-e.-garcia-casillas"},{id:"112440",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Martínez Pérez",fullName:"Carlos A. Martínez Pérez",slug:"carlos-a.-martinez-perez"},{id:"112441",title:"Dr.",name:"Claudia A.",middleName:null,surname:"Rodriguez Gonzalez",fullName:"Claudia A. Rodriguez Gonzalez",slug:"claudia-a.-rodriguez-gonzalez"}]},{id:"36187",title:"Determination of Adsorption Characteristics of Volatile Organic Compounds Using Gas Phase FTIR Spectroscopy Flow Analysis",slug:"determination-of-adsorption-characteristics-of-volatile-organic-compounds-using-gas-phase-ftir-spect",signatures:"Tarik Chafik",authors:[{id:"107310",title:"Prof.",name:"Tarik",middleName:null,surname:"Chafik",fullName:"Tarik Chafik",slug:"tarik-chafik"}]},{id:"36188",title:"Identification of Rocket Motor Characteristics from Infrared Emission Spectra",slug:"identification-of-rocket-motor-characteristics-from-infrared-emission-spectra",signatures:"N. Hamp, J.H. Knoetze, C. Aldrich and C. Marais",authors:[{id:"112229",title:"Prof.",name:"Chris",middleName:null,surname:"Aldrich",fullName:"Chris Aldrich",slug:"chris-aldrich"},{id:"112232",title:"Prof.",name:"Hansie",middleName:null,surname:"Knoetze",fullName:"Hansie Knoetze",slug:"hansie-knoetze"},{id:"135327",title:"Ms.",name:"Corne",middleName:null,surname:"Marais",fullName:"Corne Marais",slug:"corne-marais"}]},{id:"36189",title:"Optical Technologies for Determination of Pesticide Residue",slug:"optical-technology-for-determination-of-pesticide-residue",signatures:"Yankun Peng, Yongyu Li and Jingjing Chen",authors:[{id:"113343",title:"Prof.",name:"Yankun",middleName:null,surname:"Peng",fullName:"Yankun Peng",slug:"yankun-peng"},{id:"116636",title:"Dr.",name:"Yongyu",middleName:null,surname:"Li",fullName:"Yongyu Li",slug:"yongyu-li"},{id:"116637",title:"Dr.",name:"Jingjing",middleName:null,surname:"Chen",fullName:"Jingjing Chen",slug:"jingjing-chen"}]},{id:"36190",title:"High Resolution Far Infrared Spectra of the Semiconductor Alloys Obtained Using the Synchrotron Radiation as Source",slug:"high-resolution-spectra-of-semiconductor-s-alloys-obtained-using-the-far-infrared-synchrotron-radi",signatures:"E.M. Sheregii",authors:[{id:"102655",title:"Prof.",name:"Eugen",middleName:null,surname:"Sheregii",fullName:"Eugen Sheregii",slug:"eugen-sheregii"}]},{id:"36191",title:"Effective Reaction Monitoring of Intermediates by ATR-IR Spectroscopy Utilizing Fibre Optic Probes",slug:"effective-reaction-monitoring-of-intermediates-by-atr-ir-spectroscopy-utilizing-fibre-optic-probes",signatures:"Daniel Lumpi and Christian Braunshier",authors:[{id:"109019",title:"Dr.",name:"Christian",middleName:null,surname:"Braunshier",fullName:"Christian Braunshier",slug:"christian-braunshier"},{id:"111798",title:"MSc.",name:"Daniel",middleName:null,surname:"Lumpi",fullName:"Daniel Lumpi",slug:"daniel-lumpi"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"72125",title:"Flux Reversal Machine Design",doi:"10.5772/intechopen.92428",slug:"flux-reversal-machine-design",body:'The topology of FRPMM is depicted in Figure 1. As can be seen, it has a slotted rotor without any windings or PMs, and a stator with armature windings and PMs mounted on each stator teeth. First of all, the structural characteristics of FRPMMs and the corresponding performance advantages need to be explained:
FRPMMs are excited by PMs instead of the excitation windings, which are different with asynchronous motors and brushed DC motors. So, for FRPMMs, the rotor will not have copper losses, and the efficiency is relatively higher [1, 2].
The rotor of FRPMMs has no windings or permanent magnets, thus is suitable for high-speed operation and high-temperature operating conditions [3]. Moreover, the no excitation winding will keep away from the problems of friction noise and electric spark. So, FRPMMs are more reliable and require less maintenance [4, 5]. In addition, the rotor of FRPMMs is light in weight and has a small rotational inertia [6]; hence, the acceleration and deceleration response is faster.
The stator windings of FRPMMs are mostly concentrated windings, which are easy to manufacture. Moreover, the electromagnetic isolation of the concentrated windings is better than regular distributed windings, which means that if one winding has faults, the fault is not likely to spread to other windings, and thus the fault tolerance is good [7, 8]. In addition, the concentrated winding has a smaller winding factor, inductance, and a shorter electrical time constant than the distributed windings [9], and thus the dynamic response of concentrated winding is faster.
Compared to other stator-PM machines, that is, flux switching PM machines and doubly salient PM machines, FRPMMs have a simpler structure. The PMs of the flux switching PM machines and doubly salient PM machines are inserted into the stator core, which is not convenient for installation. In the flux switching PM machine, putting permanent magnets in the middle of the teeth will reduce the slot area and affect the output torque. In the doubly salient PM machine, placing PMs in the yoke will increase the volume of the motor and reduce the torque density. In the FRPMMs, the PMs are pasted on the inner surface of the stator teeth, thus eliminating the above problems [10].
Cross section of a FRPMM.
Finally, the structural characteristics and performance advantages of the flux-reverse motor can be summarized in Table 1.
No. | Structural characteristic | Advantages |
---|---|---|
1 | Use rare-earth PMs |
|
2 | No windings or PMs in the rotor |
|
3 | Often use concentrated windings |
|
4 | PMs attached to the stator teeth surface |
|
Structural characteristics and corresponding advantages of FRPMM.
It can be seen that the FRPMMs have many performance advantages, and these advantages can be utilized in different applications. First of all, the high efficiency, the large torque density, the rapid acceleration, and deceleration response make FRPMMs suitable for various high-speed rotation areas, such as electric vehicles [11, 12, 13], electric spindle [14], fans [15, 16], etc. Secondly, the number of rotor pole pairs is usually high, which is also suitable for low-speed areas, meanwhile its torque density is high at the low speeds, making FRPMMs suitable for various low-speed direct-drive occasions [17], for example wind power [18, 19, 20], direct drive servo system [21], wave power generation [22], etc. In addition, linear FRPMM has no PMs and copper windings in the secondary, which saves cost and is also very suitable for long rail transit linear motion applications [23, 24].
In most existing literatures, the design of FRPMMs is mainly based on the classical design method [25] with low accuracy or time-consuming finite element algorithm (FEA) [26]. Therefore, in this chapter, the specialized sizing equations for FRPMMs will be deduced and the analytical design method will be introduced, which can be directly employed in the initial design of FRPMMs and allows for fast calculations of machine dimensions.
This chapter is organized as follows. First, the structure and operation principles are introduced in Section 2. Then in Section 3, the magnetic circuit model is built and the sizing equations are analytically derived. After that, in Section 4, the influences of several key parameters (slot-pole combination, airgap radius, electric loading, and equivalent magnetic loading) in the sizing equation on the torque density are analyzed. Also, the effects of the airgap structural parameters on the pulsating torque, power factor, and PM demagnetization performances are investigated. Moreover, in Section 5, the geometric design of stator and rotor are introduced. And in Section 6, the design procedure is illustrated. Besides, to make the analytical design method more readable, a case study is presented and a FRPMM prototype is tested. Finally, conclusions are drawn in Section 7.
To clearly exhibit the operating principle, a three-phase FRPMM with two pole windings, six stator slots, and eight rotor teeth is cited as an example. The flux distributions at different rotor positions are illustrated in Figure 2. The magnetic flux field is excited only by the PMs, and the difference of each rotor movement is 11.25 mech. degrees (i.e., 1/4 rotor slot pitch). Taking flux linkage of phase A winding as an example, when the rotor position is 0 degree, the flux linkage is 0; when the rotor position is 11.25 mech. degree (90 elec. degree), the flux linkage reaches the positive maximum value; when the rotor position is 22.5 mech. degree (180 elec. degree), the flux linkage is 0; when the rotor position is 33.75 mech. degree (270 elec. degree), the flux linkage reaches the negative maximum value. Therefore, in the duration of one rotor slot pitch (360 elec. degrees), the winding flux linkage reverses the polarity, thus it is called “flux reversal machine.” Then, after obtaining the bipolar flux linkage, as shown in Figure 3, the winding can produce a bipolar back-electromagnetic motive force (EMF). If the armature windings are injected with currents having the same frequency and phase with the back-EMF, a steady torque can be yielded.
No-load flux lines of the FRPMM excited by the PMs: (a) rotor position =0 elec. degree; (b) rotor position =90 elec. degree; (c) rotor position =180 elec. degree; (d) rotor position =270 elec. degree.
Variation of flux linkage of phase a winding at different rotor positions.
In order to derive the sizing equation of FRPMMs, the magnetic circuit model should be built at first; then, based on the model, the analytical equations of airgap flux density, back-EMF, and torque will be deduced.
The equivalent magnetic circuit model can be plotted as Figure 4. At No.1 stator tooth, its magnetic field distribution corresponds to the position shown in Figure 2(b), that is, the rotor tooth is closer to the S-pole magnet. The S-pole magnetic generates two paths of magnetic flux, one is pole leakage flux Φpl, which goes through the adjacent N-pole magnet, the other is main flux Φm, which goes through the stator tooth, stator yoke, rotor tooth, and rotor yoke, thus can provide winding flux linkage and back-EMF. At No. 2 stator tooth, its magnetic field distribution corresponds to the position shown in Figure 2(c), that is, the rotor axis is at the same distance from the S-pole and N-pole magnets. Thus, at this time, the two magnets can only generate one magnetic flux path, that is, the pole leakage flux Φpl. At No. 3 stator tooth, its magnetic field distribution corresponds to the position shown in Figure 2(d), that is, the rotor tooth is closer to the N-pole magnet. The N-pole magnetic generates two paths of magnetic flux, one is pole leakage flux Φpl, which goes through the adjacent S-pole magnet, the other is main flux Φm, which goes through the stator tooth, stator yoke, rotor tooth, and rotor yoke, thus can provide winding flux linkage and back-EMF. It should be noted that the magnetic flux path of No. 1 stator tooth is just opposite to that of No. 3 stator tooth, so winding flux polarity in these two cases is just opposite to each other.
Equivalent magnetic model of FRPMMs.
As mentioned above, Figure 4 provides the magnetic circuit of FRPMMs, which can help analyze the flux distribution of FRPMMs at different rotor positions. However, the magnetic circuit requires the establishment of the whole FRPMM magnetic path, which is rather complex. Besides, the pole leakage flux, main flux, and the reluctance at each rotor positions should be calculated, which needs high workload. Therefore, a simplified magnetic circuit should be built. Observing Figure 2, it can be seen that a small rotor displacement brings a large rotation in stator flux field. This phenomenon is called as flux modulation effect, i.e. a high-pole slow-speed magnetic field becomes a low-pole high-speed magnetic field through the modulation effect of iron teeth. Therefore, the physical nature of FRPMM is indeed the flux modulation effect. The research of some flux modulation machines are usually based on the PM magnetic motive force (MMF)-airgap permeance model, such as the Vernier machine in [27]. So, this chapter will use this model to analyze FRPMMs.
In PM MMF-airgap permeance model, the no-load airgap flux density B(θs,θ) can be written as the product of PM MMF FPM(θs) and specific airgap permeance Λ(θs,θ):
where the definitions of angles θs and θ are shown in Figure 5. Then, the simplified magnetic circuit model can be given in Figure 6. Once knowing the PM MMF and airgap permeance, the no-load airgap flux density can be obtained. Then, the stator flux linkage λph(θ) can be deduced using winding function theory:
Definitions of different angles in FRPMM.
Simplified equivalent magnetic model of FRPMMs.
where N(θs) is the phase winding function. After that, the phase back-EMF Eph(t) and average torque Te can be calculated as:
where Iph is the peak value of phase current. Therefore, from Eqs. (1–4), it can be found that if the torque equation need to be calculated, the key is to obtain the equation of airgap flux density B(θs,θ), which is further determined by the PM MMF FPM(θs) and specific airgap permeance Λ(θs,θ). Therefore, in the next parts, the equations of the PM MMF FPM(θs) and specific airgap permeance Λ(θs,θ) will be deduced in detail.
As aforementioned, to derive the torque equation, the no-load airgap flux density B(θs,θ) should firstly be known, whose equation can be given as Eq. (1). Then, the next step is to derive the expressions of FPM(θs) and Λ(θs,θ). The PM MMF waveform excited by the magnets is shown in Figure 7, which can be given as:
Magnet MMF waveform.
where FC is:
Then, it can be written in Fourier series as follows:
where the magnitude Fi is
Then, the next step is to derive the specific airgap permeance Λ(θs,θ) in Eq. (1). Since the stator slotting effect has already been considered in Eqs. (5–8), the specific airgap permeance Λ(θs,θ) can be replaced by the airgap permeance with smoothed stator and slotted rotor Λr(θs,θ). The model of smoothed stator and slotted rotor is shown in Figure 8. Then, the Λr(θs,θ) can be expressed by:
Schematic of single-side salient structure on rotor.
The coefficients of the airgap permeance function Λ0r and Λ1r in Eq. (9) can be obtained using the conformal mapping method [28, 29]:
where bo is the rotor slot opening width and t is the rotor slot pitch, as shown in Figure 8. Combining Eq. (1), Eqs. (5–13), the no-load airgap flux density B(θs,θ) can be finally calculated as:
where the magnitude Bi is
As can be seen in Eq. (14), the number of pole pairs in the air gap flux density is iZs/2 ± Zr, i = 1,3,5… Then, in order to make the flux density induce EMF in the armature windings, the pole pair number of the armature windings P should be equal to iZs/2 ± Zr, i = 1,3,5… Besides, for three phase symmetry, the winding pole pair number must also meet the following requirement:
All in all, the slot-pole combination of three-phase FRPMMs is ruled by the following equation:
where min means to select the minimum number of these qualified harmonic orders so as to obtain a maximal pole ratio of FRPMMs. Therefore, the feasible slot-pole combinations can be summarized as Table 2. Non-overlapping windings (i.e., concentrated windings) are usually used in FRPMMs because of the higher fault tolerance and easier manufacture than regular overlapping windings. However, some FRPMMs are suggested to employ overlapping windings in order to have a larger winding factor and thus a higher torque density. Therefore, both winding factors, that is, kwn (using non-overlapping winding) and kwr (using overlapping winding) are calculated for each FRPMM so as to see the difference of using different winding types.
Zs | Zr | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | P | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | ||||
SPP | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | |||||
PR | 2 | 4 | 2.5 | 3.5 | 8 | 10 | 5.5 | 6.5 | 14 | 16 | |||||
kwn | 0.5 | 0.5 | 0.866 | 0.866 | 0.5 | 0.5 | 0.866 | 0.866 | 0.5 | 0.5 | |||||
kwr | 1 | 1 | 0.866 | 0.866 | 1 | 1 | 0.866 | 0.866 | 1 | 1 | |||||
12 | P | 4 | 2 | 1 | 1 | 2 | 4 | 5 | 5 | 4 | 2 | ||||
SPP | 0.5 | 1 | 2 | 2 | 1 | 0.5 | 0.4 | 0.4 | 0.5 | 1 | |||||
PR | 0.5 | 2 | 5 | 7 | 4 | 2.5 | 2.2 | 2.6 | 3.5 | 8 | |||||
kwn | 0.866 | 0.5 | 0.25 | 0.25 | 0.5 | 0.866 | 0.933 | 0.933 | 0.866 | 0.5 | |||||
kwr | 0.866 | 1 | 0.966 | 0.966 | 1 | 0.866 | 0.933 | 0.933 | 0.866 | 1 | |||||
18 | P | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
SPP | 3/7 | 0.5 | 0.6 | 0.75 | 1 | 1.5 | 3 | 3 | 1.5 | 1 | 0.75 | 0.6 | 0.5 | 3/7 | |
PR | 2/7 | 0.5 | 0.8 | 1.25 | 2 | 3.5 | 8 | 10 | 5.5 | 4 | 3.25 | 2.8 | 2.5 | 16/7 | |
kwn | 0.902 | 0.866 | 0.735 | 0.617 | 0.5 | 0.492 | 0.167 | 0.167 | 0.492 | 0.5 | 0.617 | 0.735 | 0.866 | 0.902 | |
kwr | 0.902 | 0.866 | 0.945 | 0.945 | 1 | 0.945 | 0.96 | 0.96 | 0.945 | 1 | 0.945 | 0.945 | 0.866 | 0.902 | |
PS: | Non-overlapping winding is recommended. | Other: Overlapping winding is recommended. |
Slot-pole combinations of three-phase FRPMM.
kwn and kwr are fundamental winding factors calculated based on non-overlapping winding type and recommended winding types, respectively.
Once the stator winding pole pair is selected, the stator flux linkage can be deduced using winding function theory, just as mentioned in Eq. (2). The winding function N(θs) in Eq. (2) can be written as:
where Ni is the ith harmonics of the winding function and kwi is the winding factor of the ith harmonics. As can be seen in Eq. (17), the pole pair number is iZs/2 ± Zr (i = 1,3,5…). So, the sum or difference of any two pole pair harmonics Pi1 and Pi2 is a multiple of stator slot number, that is,
Therefore, all the flux density harmonics are tooth harmonics of each other, that is, they have the same absolute values of winding factors, and their absolute winding factor equals the fundamental winding factor kw1:
Then, combining Eq. (2), Eq. (3), Eqs. (18–21), the back-EMF can be finally obtained as:
where
Since the reluctance torque of FRPMM is negligible, the electromagnetic torque under id = 0 control can be expressed as Eq. (4). Then, combining Eq. (4) and Eq. (22), the average torque Te is able to be calculated as:
So far, the general torque equation has been obtained as Eq. (24), but in this equation, some parameters such as Bi, Iph cannot be determined in the initial design stage of FRPMMs, so it is desirable that Eq. (24) can be transformed to a combination of several basic parameters, such as electric loading, magnetic loading, which can be easily determined in the initial design stage.
As known for electrical machines, the electric loading Ae can be written as:
Then, the equivalent magnetic loading of three-phase FRPMM Bm is defined as:
So, the torque expression in Eq. (24) can be rewritten as:
Thus, the rotor volume Vr, which equals πlstkr2g, can be obtained:
and then the airgap radius rg and the stack length lstk can be derived as:
where klr is the aspect ratio, equals to the ratio of rg to lstk. It can be found in Eq. (27) that the key parameters affecting the torque density are the airgap radius rg, stack length lstk, winding factor kw, rotor slot number Zr, electric loading Ae, and equivalent magnetic loading Bm, among which the stack length lstk can be determined by the volume requirement, and winding factor kw is approximate to 1. So, the remaining parameters rg, Zr, Ae, Bm should be determined at the initial stage of the design process. Thus, the influences of the above key parameters on important performances, such as average torque, pulsating torque, power factor, PM demagnetization performance, will be investigated in the following parts.
As aforementioned, the rotor slot number Zr is one of key parameters that should be determined in the first design stage. How to determine the rotor slot number is a question. In this part, the influence of Zr on the torque performance will be investigated, giving instruction on how to select Zr. The parameters of the FRPMM models are listed in Table 3. These parameters are kept the same for the FRPMMs in order to have a reasonable comparison of their torque performance. That is to say, the airgap radius rg, stack length lstk, and electric loading Ae are the same.
Parameter | Value | Parameter | Value |
---|---|---|---|
Stator outer diameter | 170 mm | Stator inner diameter | 105 m |
Stator slot opening ratio | 0.25 | Remanent permeability | 1.065 |
Stack length | 100 mm | PM thickness | 2.5 mm |
Series turns per phase | 80 | Airgap length | 0.5 mm |
Rotor slot opening ratio | 0.65 | Rated current | 5.3A |
Rated speed | 600 rpm | Magnet remanence | 1.21 T |
Parameters of the three-phase FRPMM models.
Figure 9 shows the influence of rotor slot number on the output torque when non-overlapping windings and recommended windings are used respectively. For Figure 9(a), when non-overlapping windings are adopted, the average torque is mainly related to the product of winding factor and rotor slot number, that is, kw*Zr*Bm. Since the machine volume and PM usage are kept the same, the equivalent magnet loading Bm is mainly determined by the pole ratio (PR). So, the variation trend of torque is similar to that of kw*Zr*PR. It can be seen that the torque achieves the maximum value when the rotor slot number is 8, 14, and 21 for 6 stator slots, 12 stator slots, and 18 stator slots, respectively. When the recommend windings are used, which means that the winding factor are maximized, the main factor that affects the torque is the Zr*PR. As shown in Table 2, the variation of PR is irregular, hence the variation of torque with rotor slot number is irregular. As can be seen, for recommended winding types, the torque achieves the maximal value when the rotor slot number is 8, 10 and 17 for 6 stator slots, 12 stator slots, and 18 stator slots, respectively.
Effect of combinations of stator slots and rotor slots on torque: (a) non-overlapping windings; (b) recommended windings.
As shown in Eq. (27), the airgap radius rg is also very important for the output torque. Figure 10 investigates the effect of optimal rotor slot number Zr at different rg. For 6, 12, 18 stator slots, their rotor slot numbers are selected as 8, 14, and 21, respectively. Moreover, non-overlapping windings are used in these models because non-overlapping winding is simple and has the same end winding length. It can be seen that when the airgap radius is small, the optimal rotor slot number is small. This is because when the airgap radius is small, the leakage flux between adjacent rotor teeth occupies a large percent, so the optimal rotor slot number should be small to reduce the leakage flux as much as possible. When the airgap radius gets larger and larger, the leakage flux decreases gradually. Hence, the optimal rotor slot number increases.
Effect of rg on optimal Zr when split ratio is 0.6.
Then, keeping the stator outer diameter as a constant, that is, 170 mm, the effects of airgap radius of average torque are analyzed in Figure 11. It indicates that when the airgap radius increases, the output torque goes up. This is because the torque is proportional to the square of airgap radius. The larger the airgap radius, the higher the torque. However, the torque is not only influenced by the airgap radius, but also the electric loading Ae. With the increase of airgap radius, the inner diameter of the stator increases, and thus the slot area decreases, leading to the decrease of winding turns per slot and the electric loading. Therefore, as the airgap radius keeps increasing, the output torque decreases afterwards.
Effect of rg on torque when stator outer diameter is 170 mm.
In addition to the rotor slot number Zr, airgap radius rg, the rest of key parameters affecting the torque in Eq. (27) are the electric loading Ae and the equivalent magnetic loading Bm. Figure 12 analyzes the influence of Ae and Bm on the average torque at different stator slot number. For these models, the airgap radius is fixed as 55 mm and their rotor slot number is chosen as their corresponding optimal value. Also, non-overlapping windings are adopted. As can be seen, the output torque increases with the electric loading. This reason is very simple, that is, a larger current, a higher torque. But for the equivalent magnetic loading, the variation trend of torque does not monotonically increase with the equivalent magnetic loading. This is due to the saturation effect of the iron core. Moreover, it can be seen that the knee point of the equivalent magnet loading increases with the stator slot number. Since the winding pole pair of the 18-stator-slot FRPMM is 6, which is larger than 1-winding-pole-pair of the 6-stator-slot and 4-winding-pole-pair of the 12-stator-slot FRPMM, the stator iron of the 18-stator-slot FRPMM is less likely to saturate than the others.
Effect of equivalent magnetic loading and electric loading on torque: (a) Zs = 6; (b) Zs = 12; (c) Zs = 18.
Apart from the torque density, pulsating torque is also very important because a large pulsating torque will increase the vibration and noise of machines. Figure 13 shows the cogging torque and ripple torque waveforms of 13-, 14-, 16-, 17-, and 19-rotor-slot FRPMMs. The stator slot number of these models is all chosen as 12. For the rated torque, we can see in Figure 13(b) that the 14-rotor-slot FRPMM yields the largest among the five models. As for the pulsating torque, we can see that the cogging torque and ripple torque of 16-rotor-slot FRPMM are the largest, and that of 19-rotor-slot FRPMM is the least. This phenomenon is related to the least common multiple of stator slot number and rotor slot number. The larger least common multiple, the lower pulsating torque. The least common multiples of the 13-, 14-, 16-, 17-, and 19-rotor-slot FRPMMs are 156, 84, 48, 204, and 228, respectively. Therefore, the 19-rotor-slot FRPMM exhibit the lowest cogging torque and ripple torque. However, attentions should be paid to use odd rotor number because it will cause other problems such as eccentricity stress. Figure 14 compares the radial stress of the five FRPMM models. It can be seen that for the even rotor slot number FRPMMs, that is, 14 and 16 rotor slots, the stress harmonics only have even orders, which will not lead to eccentricity. However, for the odd rotor slot number FRPMMs, that is, 13, 17, and 19 rotor slots, there are many odd stress harmonics. Since the first-order harmonic is dominant for the eccentricity, the 13-rotor-slot FRPMM has a large eccentricity stress. Therefore, 13-rotor-slot is not recommended. The first-order stress harmonic for 17 and 19 rotor slots are very small, so their eccentricity can be neglected.
Effect of slot-pole combination on pulsating torque performances: (a) cogging torque waveforms (%); (b) rated torque waveforms.
Radial stress analysis of the FRPMMs: (a) 13-rotor-slot; (b) 14-rotor-slot; (c) 16-rotor-slot; (d) 17-rotor-slot; (e) 19-rotor-slot.
The influences of split ratio and PM thickness on cogging torque and ripple torque of FRPMMs are also analyzed in Figure 15. This figure is plotted based on the 14-rotor-slot, which is chosen because it has the largest torque density and a relatively low pulsating torque, as shown in Figure 13. It can be found in Figure 15(a) that the cogging torque increases with the PM thickness and the split ratio. When the PM thickness increases, the airgap flux density increases, and thus the interaction between the PMs and slot-teeth becomes greater, which leads to a higher cogging torque. As the split ratio increases, the airgap radius increases, hence the cogging torque increases with the split ratio [30]. As for the ripple torque, the ripple torque has the maximum value when the split ratio is around 0.66. This is because the ripple torque is not only related to the slot structure but also influenced by the electric loading. As aforementioned, the pulsating torque resulting from the slot structure is increased with the split ratio. However, as the split ratio increases, the slot area is reduced and the electric loading gets smaller and smaller, so the ripple torque resulting from the electric loading becomes lower. Considering these two impacts, the ripple torque has a maximal value when the split ratio changes.
Effect of split ratio and PM thickness on pulsating torque performances: (a) cogging torque (%); (b) ripple torque (%).
As we know, the airgap structure is significant for the pulsating torque because the pulsating torque results from the interaction between the two sides of the airgap, that is, stator and rotor. Therefore, this chapter also analyzes the influences of stator slot opening ratio and rotor slot opening ratio on cogging torque and ripple torque. Here, the stator/rotor slot opening ratio is defined as the ratio of stator/rotor slot opening width to the stator/rotor slot pitch. Figure 16 shows the variation of cogging torque and ripple torque with the two slot opening ratios. It can be seen that the cogging torque increases with the stator slot opening ratio. The reason is that a larger stator slot opening ratio reduces the PM width and the smoothness of PM MMF, thus the changing of the PM MMF along the tangential direction increases the cogging torque. As for the rotor slot opening ratio, which simultaneously influences all the harmonic contents of the airgap permeance, it has great and nonlinear impact on the pulsating torque. Since the pulsating torque results from the interaction of multi permeance harmonics, the variation of pulsating torque changes nonlinearly with the rotor slot opening ratio. It can be seen in Figure 16 that the optimal cogging torque and ripple torque can be achieved when the stator slot opening ratio and rotor slot opening ratio are around 0.25 and 0.7, respectively.
Effect of stator slot opening ratio and rotor slot opening ratio on pulsating torque: (a) cogging torque (%); (b) ripple torque (%).
Since the power factor of FRPMMs is usually low, which is around 0.4–0.7, meanwhile a low power factor will increase the converter capacity and cost, the influences of key parameters on the power factor should be also analyzed to achieve a relatively high power factor. The power factor can be given as:
where Is is the winding current, Ls is the synchronous inductance (because the saliency ratio is approximate to 1, Ld ≈ Lq), and ψm is the PM flux linkage. Then, the effect of stator inner diameter on power factor is shown in Figure 17. Here, the stator outer diameter is kept as 124 mm, and the airgap length is fixed as 0.5 mm. It can be found that with the increase of stator inner diameter, the power factor increases continuously. The reason is that with the increase of stator inner diameter, the slot area decreases, so the winding turns per phase decreases, thus leading to the reduction of the synchronous inductance Ls. The lower Ls, the higher power factor, as shown in Eq. (31). Apart from the stator inner diameter, another important parameter affecting the power factor is the PM thickness hm. Figure 18 investigates the variation of power factor with respect to the PM thickness. It indicates that the power factor initially increases with the PM thickness but then decreases. The reason is explained as follows. As the PM thickness increases, the PM flux linkage ψm becomes larger, so the power factor increases. However, the synchronous inductance Ls also increases with the PM thickness, which leads to the reduction of power factor afterwards. Therefore, there is an optimal PM thickness for a maximum achievable power factor.
Effect of stator inner diameter/airgap length on power factor.
Effect of PM thickness/airgap length on power factor.
Another important parameter that influences the airgap structure is the slot opening ratio. Hence, Figures 19 and 20 analyzes the effect of stator slot opening ratio and rotor slot opening ratio on pulsating torque performances, respectively. It can be seen in Figure 19 that the maximum power factor can be obtained when the stator slot opening ratio is approximately to 0.3. The explanation is as follows. When the stator slot opening ratio is too small, the slot leakage flux between the stator tips is large, thus the main flux is reduced, and the back-EMF is lowered, resulting in smaller back-EMF. And when the stator slot opening ratio is too large, the PM width will be narrower. Although the slot leakage flux is reduced, the main flux is not high due to the narrower PMs, thus the back-EMF is lowered. Therefore, the stator slot opening ratio cannot be too small or too large, that is, there is an optimal value for the stator slot opening ratio.
Effect of stator slot opening ratio on power factor.
Effect of rotor slot opening ratio on power factor.
Then, the influences of rotor slot opening ratio on power factor can be seen in Figure 20. It indicates that when the rotor slot opening ratio is around 0.7, the power factor reaches the maximal value. This is because the power factor is mainly influenced by the back-EMF. When the rotor slot opening ratio increases, the effective airgap length becomes smaller, thus the main flux is increased and the back-EMF is improved. As a result, the power factor is increased. When the rotor slot opening ratio keeps increasing, the flux modulation effect of the rotor teeth becomes weaker and weaker, thus the smaller modulated flux, and the lower back-EMF. Therefore, there is also an optimal value for rotor slot opening ratio when a high power factor is demanded.
For PM machines, PM demagnetization performances are very important because it is highly related to the safe operation and machine reliability. Therefore, the PM demagnetization performances of FRPMMs should be analyzed in this chapter. Since the magnetic properties of PM materials are sensitive to temperature, and the temperature coefficient of NdFeB magnet is as high as −0.126%K−1. When the current of FRPMMs is large, the winding heating can easily affect the PMs attached to the stator teeth surface, causing the decrease of PM magnetic performances. On the other hand, when the winding current is large, the demagnetizing effect of the armature field is enhanced, and thus the PMs have the possibility to be demagnetized. Therefore, it is of great importance to investigate the PM demagnetization performances of FRPMMs at different conditions.
Figure 21 shows the demagnetization curve of the magnets. The upper half is a straight line, and lower half under the knee point Bknee is a curved line. When the FRPMM works on the straight line (such as point P1), the return line coincides with the demagnetization curve, and the magnetic performance of the magnets will not be lost. However, when the armature equivalent MMF Ha´ is too large at load condition, or the knee point is too high, the working point Bknee is moved to P2. At this time, the recovery line does not coincide with the original demagnetization line, thus the intersection of the B-axis changes from Br to Br1, causing the irreversible demagnetization. Then, the PM properties and machine performances will no longer return to the original. So, the PM flux density should be examined in order to check the risk of irreversible demagnetization. As we know, the PM flux density is determined by the design parameters such as electric loading Ae, PM thickness hm, rotor slot opening ratio, etc. So, in this chapter, the effects of electric loading Ae, PM thickness hm, rotor slot opening ratio bo/t on PM demagnetization performances of FRPMMs will be studied. For instance, the PM material is selected as N38SH, and knee point of the PM flux density at 100°C is 0.35 T.
PM demagnetization curve.
Figure 22 shows the PM flux density of a 12-stator-slot/14-rotor-slot FRPMM when the electric loading Ae is 1600A/cm, the PM thickness hm is 3 mm, rotor slot opening ratio bo/t is 0.65. It can be seen that the PM flux density distribution varies with the rotor position. When the rotor position is 140°, the PM does not demagnetize, while at 0° and 340°, the PM will demagnetize. Hence, in the following analysis, the PM flux density at the most severe moment of demagnetization is selected.
PM demagnetization at different rotor positions: (a) rotor position = 0°; (b) rotor position = 140°; (c) rotor position = 340°.
Figure 23 studies the magnetic flux density distribution in the PMs under different electric loadings. It can be found that the larger electric loading Ae, the smaller minimum flux density. This is because the larger electric loading, the higher armature MMF Ha´, and the more left operating point P2, so the lower flux density in the magnets. When the electric loading Ae is 1400A/cm, the PM irreversible demagnetization just occurs. In addition, it can be seen that the entire magnetic flux density map is skewed to the right. This is because the N-pole magnet is intercepted in this analysis, and there is an S-pole magnet next to the N-pole magnet. There is PM pole leakage flux between the S-pole magnet (negative axis) and the N-pole magnet (positive axis), so the magnetic flux density around the 0 position is lower, and away from the 0 position, the magnetic flux density gradually rises.
Influence of Ae on PM demagnetization.
Figure 24 analyzes the effect of PM thickness hm on the PM demagnetization performances. At this time, the electric loading is chosen as 800 A/cm, and the rotor slot opening ratio is selected as 0.65. It can be seen in Figure 24 that when the PM thickness hm is less than 2.5 mm, the irreversible demagnetization will happen, while when the PM thickness hm is larger than 2.5 mm, the irreversible demagnetization will not. In this model, the airgap length is 0.5 mm. Therefore, in the design stage, the PM thickness should be better to set as five times or more the airgap length. Considering the back-EMF, it is claimed in [3] that when the PM thickness is about three times the airgap length, the back-EMF will reach the maximum. But considering both back-EMF and PM demagnetization risk, it is safer to set the PM thickness as about five times airgap length.
Influence of hm on PM demagnetization.
Figure 25 shows the influences of rotor slot opening ratio bo/t on the flux density distribution inside the PMs. At this time, the electric loading is chosen as 800 A/cm, and the PM thickness is selected as five times the airgap length, that is, 3 mm. The larger rotor slot opening ratio, the narrower rotor teeth, thus the more saturated rotor teeth, and the smaller magnetic reluctance. As shown in Figure 20, when the magnetic gets smaller, the more left operating point P2, and thus the lower PM flux density. It can be seen in Figure 25 that when the rotor slot opening ratio bo/t is 0.9, the irreversible PM demagnetization just occurs. In Ref. [28], it is claimed that the maximum back-EMF can be achieved when the rotor slot opening ratio bo/t is around 0.6. So, during the design process, the optimal rotor slot opening ratio can be directly applied without consideration of the PM demagnetization risk.
Influence of bo/t on PM demagnetization.
The geometrical parameters of stator and rotor are shown in Figure 26. The no-load flux of each winding pole could be calculated as:
Geometry of stator and rotor.
where λw is the winding pitch. If full-pitch winding is adopted, the winding pitch is able to be written as:
Then, the no-load flux of each winding pole ϕm in Eq. (32) could change to:
Defining the average flux density at the stator yoke as By, the stator yoke thickness hy can therefore be deduced as:
Similarly, defining the average flux density at the middle of stator tooth as Bt, the stator tooth width is able to be worked out:
Moreover, in order to simultaneously maintain a relatively large torque density as well as reduce the risk of PM demagnetization, the PM thickness is recommended to be:
where g is the airgap length. Since the optimal torque density is often obtained when the slot opening ratio is approximate to 0.25 [28], the stator slot opening width wo could be written as:
Then, next step is to calculate the stator outer radius ro. Firstly, the total slot area of all the stator slots Aslot can be written based on the winding electric loading Ae and the current density Je:
where Sfg is the slot fill factor. Meanwhile, the total slot area of all the stator slots Aslot can be also derived out using the structural parameters:
Combining the Eqs. (39) and (40), the slot depth hs can be determined. Then, the stator outer radius ro can be given as:
Defining the average flux density of each rotor yoke and middle of rotor tooth as Bry, and Brt, respectively, the rotor yoke thickness hry and rotor tooth width wrt are able to be achieved using the similar derivation procedure as Eq. (35) and Eq. (36). Finally, the hry and wrt are given as:
Then, the rotor slot depth hrs is determined as:
Based on the analytical equations and the investigations of key performances in the former parts, a quick and accurate analytical design of a FRPMM can be realized by following these procedures (as depicted in Figure 27):
Based on the performance investigations in Figures 9–24, the initial design values, including combination of stator slot and rotor slot number, electric loading, equivalent magnetic loading, airgap length, materials of active parts, etc. can be firstly selected.
Then, assuming an appropriate aspect ratio klr, the airgap radius rg, and the stack length lstk can be worked out using Eqs. (29) and (30).
Based on Eqs. (32–44), the detailed geometric parameters of the stator core and the rotor core are able to be obtained. Therefore, the stator outer diameter ro and machine total length lo can be finally determined.
After that, check if the stator outer diameter and the machine total length satisfy the required design specifications. If so, proceed to the FEA verifications of machine performances. If not, reset the initial values such as combination of stator slot and rotor slot number, electric loading, equivalent magnetic loading, etc.
Conducting FEA simulations, the electromagnetic performances such as back-EMF, average torque, pulsating torque, power factor, efficiency, etc. can be obtained. Check if all the performances satisfy the design specifications. If not, adjust the design parameters in the former steps and iterate the design flow until every output meets the requirement.
Finally, it is the result output.
Design flow of FRPMM.
In order show the effectiveness of the introduced analytical method, a FRPMM is designed based on the method. Table 4 shows the specifications of the FRPMM, which mainly includes the rated torque, machine volume, cooling method, rated power, and speed. According to the rated torque, a design margin of 5% is suggested so as to make sure the torque output. Therefore, the requirement of the torque is 8.4 Nm for this design. Then, the combination of stator slots and rotor slots is determined in the first place. This combination is selected due to its high torque density and low pulsating torque, as shown in Figure 13. Then, since the cooling method is natural cooling, the electric loading and the equivalent magnetic loading are chosen as 300A/cm and 0.2 T, respectively. After that, based on the output torque value 8.4 Nm and Eq. (29), the airgap radius is determined as 38.5 mm. Furthermore, assuming the yoke flux density of stator core and rotor core as 1.0 T, and the teeth flux density of stator core and rotor core as 1.2 T, the detailed geometric parameters can all be determined. At last, the stator outer diameter is worked out as 124 mm, which is less than the requirement 130 mm. So far, this design is effective. Table 5 summarizes the design parameters of the FRPMM. Finally, in order to verify the accuracy of the proposed analytical design method, the FEA model is built, and the simulated performances are compared to the analytical designed values. It can be seen in Table 6 that the FEA simulated results match well with the analytical method. More importantly, the simulated performance output satisfies the design specifications. Therefore, this analytical design is successful.
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated torque | 8 Nm | Rated speed | 300 rpm |
Rotor inner diameter | 32 mm | PM material | N38SH |
Stator outer diameter | 130 mm | Stack length | 120 mm |
Airgap length | 0.6 mm | Iron material | 50WW470 |
Cooling method | Natural cooling | Rated power | 0.25 kW |
Design specifications of a three-phase FRPMM.
Parameter | Value | Parameter | Value | |
---|---|---|---|---|
Stator | Outer diameter | 124 mm | Inner diameter | 79 mm |
Turns per phase | 300 | Teeth width | 11.5 mm | |
Slot number | 12 | Yoke thickness | 6 mm | |
Slot depth | 13.5 mm | Yoke flux density | 1.0 T | |
Winding pole pair | 1 | Teeth flux density | 1.1 T | |
Magnet | PM thickness | 3 mm | Magnet width | 7.8 mm |
Rotor | Outer diameter | 77.8 mm | Slot depth | 10.4 mm |
Teeth flux density | 1.2 T | Yoke thickness | 12.5 mm | |
Inner diameter | 32 mm | Yoke flux density | 1.0 T | |
Teeth width | 4 mm | Slot number | 17 |
Design parameters of the FRPMM using the design method.
Parameter | Analytical design method | FEA |
---|---|---|
PM flux linkage | 1.43 Wb | 1.35 Wb |
Back-EMF | 44.8 V | 42.4 V |
Torque | 8.4 Nm | 7.97 Nm |
Results comparison of the design method and 2D FEA.
To verify the calculated results by the analytical method and FEA, the FRPMM prototype has been built. Its major parameters are listed in Table 4. The structure and test bed of the prototype are shown in Figures 28 and 29, respectively.
12-slot/17-pole FRPMM prototype: (a) stator; (b) rotor.
Test bed of the FRPMM prototype.
Figure 30 compares the phase back-EMF waveform and spectrum at 300 rpm. It can be seen that the back-EMF waveforms are very sinusoidal. This is because the total harmonic distortion (THD) of FEA and experiments are only 1.26% and 2.63%, respectively. The sinusoidal back-EMF is inherent without any special design techniques such as skewing or pole shaping. Then, Figure 31 shows the FEA simulated and experimental results of average torque at different winding current values. In addition, the analytical design value is also plotted as the blue triangle. It indicates that the simulated, analytical and experimental results have reached good agreements. Finally, Table 7 compares the electromagnetic performances by FEA and experiments. Thus, the feasibility of the analytical design method can be seen.
Back-EMF waveforms at rated speed 300 rpm: (a) waveform; (b) FFT analysis.
Output torque vs. phase current.
Parameter | FEA | Experiment |
---|---|---|
Average torque at rated current | 7.97 Nm | 7.24 Nm |
Torque per weight | 0.66 Nm/kg | 0.60 Nm/kg |
Phase back-EMF magnitude at 300 rpm | 42.4 V | 41.2 V |
THD of the phase back-EMF at 300 rpm | 1.26% | 2.63% |
Total losses | 99.5 W | 116.7 W |
Efficiency | 60.3% | 57.3% |
Power factor | 0.756 | 0.746 |
Result comparison of FEA and experiment of the FRPMM prototype.
The design of FRPMMs is usually based on time-stepping FEA, which are accurate but time-consuming. To save the design time meanwhile maintain the accuracy, this chapter proposes an analytical design method of FRPMMs. First, the sizing equation is derived, and then the dimensional parameters of stator and rotor are calculated. Finally, based on the above equations, an analytical design procedure is established. Moreover, in order to help to choose the initial design parameters in the sizing equation, including number of stator slots and rotor slots, airgap radius, electrical loading, and equivalent magnetic loading, their effects on the average torque, cogging torque, torque ripple, and power factor are investigated, providing reliable guidance for designers. At last, in order to make the introduced design methodology easier to understand, a FRPMM is designed and tested.
This work was supported by National Natural Science Foundation of China (NSFC) under Project Number 51807076, and Alexander von Humboldt Foundation.
remanent flux density relative permeability of magnets effective airgap length considering PM thickness PM height along the magnetization direction stator slot opening ratio (=slot opening width/slot pitch) airgap length airgap radius number of series turns per phase number of stator winding pole pairs active stack length number of rotor teeth mechanical angular speed of rotor number of stator teeth slot per pole per phase angular position of rotor axis with respect to the axis of phase a particular position in the stator reference frame measured from the axis of phase a pole ratio (=rotor pole number/winding pole pair)
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:117316},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,11,12,14"},books:[{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10374",title:"Advances in Micro- and Nanofluidics",subtitle:null,isOpenForSubmission:!0,hash:"b7ba9cab862a9bca2fc9f9ee72ba5eec",slug:null,bookSignature:"Prof. S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10374.jpg",editedByType:null,editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10597",title:"Electric Grid Modernization",subtitle:null,isOpenForSubmission:!0,hash:"62f0e391662f7e8ae35a6bea2e77accf",slug:null,bookSignature:"Dr. Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",editedByType:null,editors:[{id:"183482",title:"Dr.",name:"Mahmoud",surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10412",title:"Transition Metals",subtitle:null,isOpenForSubmission:!0,hash:"bd7287b801dc0ac77e01f66842dc1d99",slug:null,bookSignature:"Dr. Sajjad Haider and Dr. Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/10412.jpg",editedByType:null,editors:[{id:"110708",title:"Dr.",name:"Sajjad",surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10216",title:"Paraffin - Thermal Energy Storage Applications",subtitle:null,isOpenForSubmission:!0,hash:"456090b63f5ba2290e24e655abd119bf",slug:null,bookSignature:"Dr. Elsayed Zaki and Dr. Abdelghaffar S. Dhmees",coverURL:"https://cdn.intechopen.com/books/images_new/10216.jpg",editedByType:null,editors:[{id:"220156",title:"Dr.",name:"Elsayed",surname:"Zaki",slug:"elsayed-zaki",fullName:"Elsayed Zaki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10506",title:"Liquid Metals",subtitle:null,isOpenForSubmission:!0,hash:"a1c30d83631953e1c8905554d937bb10",slug:null,bookSignature:"Dr. Samson Jerold Samuel Chelladurai, Dr. S. Gnanasekaran and Dr. Suresh Mayilswamy",coverURL:"https://cdn.intechopen.com/books/images_new/10506.jpg",editedByType:null,editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10491",title:"Anaerobic Digestion in Natural and Built Environments",subtitle:null,isOpenForSubmission:!0,hash:"082ec753a05d6c7ed8cc5559e7dac432",slug:null,bookSignature:"Dr. Anna Sikora and Dr. Anna Detman",coverURL:"https://cdn.intechopen.com/books/images_new/10491.jpg",editedByType:null,editors:[{id:"146985",title:"Dr.",name:"Anna",surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10573",title:"Fluid-Structure Interaction",subtitle:null,isOpenForSubmission:!0,hash:"3950d1f9c82160d23bc594d00ec2ffbb",slug:null,bookSignature:"Dr. Khaled Ghaedi",coverURL:"https://cdn.intechopen.com/books/images_new/10573.jpg",editedByType:null,editors:[{id:"190572",title:"Dr.",name:"Khaled",surname:"Ghaedi",slug:"khaled-ghaedi",fullName:"Khaled Ghaedi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10609",title:"Zeolites",subtitle:null,isOpenForSubmission:!0,hash:"90681a8fef45a03f68f4b9276acba2d3",slug:null,bookSignature:"Dr. Pavel Krivenko",coverURL:"https://cdn.intechopen.com/books/images_new/10609.jpg",editedByType:null,editors:[{id:"180922",title:"Dr.",name:"Pavel",surname:"Krivenko",slug:"pavel-krivenko",fullName:"Pavel Krivenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10495",title:"Insights Into Global Engineering Education After the Birth of Industry 5.0",subtitle:null,isOpenForSubmission:!0,hash:"e83ddb1aa8017926d0635bbe8a90feca",slug:null,bookSignature:"Dr.Ing. Montaha Bouezzeddine",coverURL:"https://cdn.intechopen.com/books/images_new/10495.jpg",editedByType:null,editors:[{id:"313464",title:"Dr.Ing.",name:"Montaha",surname:"Bouezzeddine",slug:"montaha-bouezzeddine",fullName:"Montaha Bouezzeddine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:null,isOpenForSubmission:!0,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:null,bookSignature:"Dr. Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:null,editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:10},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:55},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5150},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1078",title:"Gastrointestinal Oncology",slug:"gastrointestinal-oncology",parent:{title:"Oncology",slug:"medicine-oncology"},numberOfBooks:23,numberOfAuthorsAndEditors:661,numberOfWosCitations:140,numberOfCrossrefCitations:105,numberOfDimensionsCitations:246,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"gastrointestinal-oncology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7963",title:"Multidisciplinary Approach for Colorectal Cancer",subtitle:null,isOpenForSubmission:!1,hash:"26c69f53c47aad19e8281c81438c62e3",slug:"multidisciplinary-approach-for-colorectal-cancer",bookSignature:"Keun-Yeong Jeong",coverURL:"https://cdn.intechopen.com/books/images_new/7963.jpg",editedByType:"Edited by",editors:[{id:"258919",title:"Dr.",name:"Keun-Yeong",middleName:null,surname:"Jeong",slug:"keun-yeong-jeong",fullName:"Keun-Yeong Jeong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8230",title:"Bile Duct Cancer",subtitle:null,isOpenForSubmission:!1,hash:"b21783ac190bd8f0142876c2ddd46951",slug:"bile-duct-cancer",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/8230.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6626",title:"Gastric Cancer",subtitle:"An Update",isOpenForSubmission:!1,hash:"05109614e450de698cd6a6af930fc4f8",slug:"gastric-cancer-an-update",bookSignature:"Hajime Orita, Hiroshi Maekawa and Michael Gibson",coverURL:"https://cdn.intechopen.com/books/images_new/6626.jpg",editedByType:"Edited by",editors:[{id:"83561",title:"Prof.",name:"Hajime",middleName:null,surname:"Orita",slug:"hajime-orita",fullName:"Hajime Orita"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8118",title:"Advances in the Molecular Understanding of Colorectal Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3c483eb99b78dc443e7ae16633f79d9d",slug:"advances-in-the-molecular-understanding-of-colorectal-cancer",bookSignature:"Eva Segelov",coverURL:"https://cdn.intechopen.com/books/images_new/8118.jpg",editedByType:"Edited by",editors:[{id:"235057",title:"Prof.",name:"Eva",middleName:null,surname:"Segelov",slug:"eva-segelov",fullName:"Eva Segelov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6341",title:"Hepatocellular Carcinoma",subtitle:"Advances in Diagnosis and Treatment",isOpenForSubmission:!1,hash:"0980aba87ca523d4b6224cfa2d44beeb",slug:"hepatocellular-carcinoma-advances-in-diagnosis-and-treatment",bookSignature:"Costin Teodor Streba, Cristin Constantin Vere and Ion Rogoveanu",coverURL:"https://cdn.intechopen.com/books/images_new/6341.jpg",editedByType:"Edited by",editors:[{id:"55546",title:"Dr.",name:"Costin Teodor",middleName:"Teodor",surname:"Streba",slug:"costin-teodor-streba",fullName:"Costin Teodor Streba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7044",title:"Liver Cancer",subtitle:null,isOpenForSubmission:!1,hash:"6eba0444c02b59c08c06a5f0c54a113c",slug:"liver-cancer",bookSignature:"Ahmed Lasfar",coverURL:"https://cdn.intechopen.com/books/images_new/7044.jpg",editedByType:"Edited by",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6740",title:"Advances in Pancreatic Cancer",subtitle:null,isOpenForSubmission:!1,hash:"500360b038bf8561a30993b0ccb6de91",slug:"advances-in-pancreatic-cancer",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6740.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5394",title:"Updates in Liver Cancer",subtitle:null,isOpenForSubmission:!1,hash:"a502cea22e6d113a70f609c947235665",slug:"updates-in-liver-cancer",bookSignature:"Hesham Mohamed Abdeldayem",coverURL:"https://cdn.intechopen.com/books/images_new/5394.jpg",editedByType:"Edited by",editors:[{id:"72383",title:"Prof.",name:"Hesham",middleName:null,surname:"Abdeldayem",slug:"hesham-abdeldayem",fullName:"Hesham Abdeldayem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3851",title:"Pancreatic Cancer",subtitle:"Insights into Molecular Mechanisms and Novel Approaches to Early Detection and Treatment",isOpenForSubmission:!1,hash:"047e84bc385b452417fde8f3d96394be",slug:"pancreatic-cancer-insights-into-molecular-mechanisms-and-novel-approaches-to-early-detection-and-treatment",bookSignature:"Kelly McCall",coverURL:"https://cdn.intechopen.com/books/images_new/3851.jpg",editedByType:"Edited by",editors:[{id:"69494",title:"Dr.",name:"Kelly D.",middleName:null,surname:"McCall",slug:"kelly-d.-mccall",fullName:"Kelly D. McCall"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3520",title:"Hepatocellular Carcinoma",subtitle:"Future Outlook",isOpenForSubmission:!1,hash:"32ad39a83fad1d2adde008eb058d32cf",slug:"hepatocellular-carcinoma-future-outlook",bookSignature:"Ahmed O. Kaseb",coverURL:"https://cdn.intechopen.com/books/images_new/3520.jpg",editedByType:"Edited by",editors:[{id:"159941",title:"Dr.",name:"Ahmed",middleName:null,surname:"Kaseb",slug:"ahmed-kaseb",fullName:"Ahmed Kaseb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3401",title:"Advances in the Scientific Evaluation of Bladder Cancer and Molecular Basis for Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"db12d9fb9793bf86edb8b4dfa03e388a",slug:"advances-in-the-scientific-evaluation-of-bladder-cancer-and-molecular-basis-for-diagnosis-and-treatment",bookSignature:"Raj Persad and Weranja Ranasinghe",coverURL:"https://cdn.intechopen.com/books/images_new/3401.jpg",editedByType:"Edited by",editors:[{id:"70414",title:"Mr.",name:"Raj",middleName:null,surname:"Persad",slug:"raj-persad",fullName:"Raj Persad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3451",title:"Liver Tumors",subtitle:"Epidemiology, Diagnosis, Prevention and Treatment",isOpenForSubmission:!1,hash:"1439fe7ebfbac8775de34085d2c86df5",slug:"liver-tumors-epidemiology-diagnosis-prevention-and-treatment",bookSignature:"Helen Reeves, Derek M. Manas and Rajiv Lochan",coverURL:"https://cdn.intechopen.com/books/images_new/3451.jpg",editedByType:"Edited by",editors:[{id:"156769",title:"Dr.",name:"Helen",middleName:null,surname:"Reeves",slug:"helen-reeves",fullName:"Helen Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:23,mostCitedChapters:[{id:"28097",doi:"10.5772/29559",title:"Characterization of the Cell Membrane During Cancer Transformation",slug:"characterization-of-the-cell-membrane-during-cancer-transformation",totalDownloads:2518,totalCrossrefCites:6,totalDimensionsCites:21,book:{slug:"colorectal-cancer-biology-from-genes-to-tumor",title:"Colorectal Cancer Biology",fullTitle:"Colorectal Cancer Biology - From Genes to Tumor"},signatures:"Barbara Szachowicz-Petelska, Izabela Dobrzyńska, Stanisław Sulkowski and Zbigniew A. Figaszewski",authors:[{id:"78361",title:"Prof.",name:"Zbigniew",middleName:null,surname:"Figaszewski",slug:"zbigniew-figaszewski",fullName:"Zbigniew Figaszewski"},{id:"78379",title:"Prof.",name:"Barbara",middleName:null,surname:"Szachowicz-Petelska",slug:"barbara-szachowicz-petelska",fullName:"Barbara Szachowicz-Petelska"},{id:"78745",title:"Dr.",name:"Izabela",middleName:null,surname:"Dobrzynska",slug:"izabela-dobrzynska",fullName:"Izabela Dobrzynska"},{id:"78746",title:"Dr.",name:"Stanislaw",middleName:null,surname:"Sulkowski",slug:"stanislaw-sulkowski",fullName:"Stanislaw Sulkowski"}]},{id:"27578",doi:"10.5772/31137",title:"Ultrasound Imaging of Liver Tumors – Current Clinical Applications",slug:"ultrasound-imaging-of-liver-tumors-current-clinical-applications",totalDownloads:23605,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"liver-tumors",title:"Liver Tumors",fullTitle:"Liver Tumors"},signatures:"R. Badea and Simona Ioanitescu",authors:[{id:"85739",title:"Prof.",name:"Radu",middleName:"Ion",surname:"Badea",slug:"radu-badea",fullName:"Radu Badea"},{id:"128118",title:"Dr.",name:"Simona",middleName:null,surname:"Ioanitescu",slug:"simona-ioanitescu",fullName:"Simona Ioanitescu"}]},{id:"28020",doi:"10.5772/27158",title:"Modulation of Cell Proliferation Pathways by the Hepatitis B Virus X Protein: A Potential Contributor to the Development of Hepatocellular Carcinoma",slug:"modulation-of-cell-proliferation-pathways-in-hepatocytes-by-the-hepatitis-b-virus-x-protein-a-potent",totalDownloads:1489,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"hepatocellular-carcinoma-basic-research",title:"Hepatocellular Carcinoma",fullTitle:"Hepatocellular Carcinoma - Basic Research"},signatures:"Jessica C. Casciano, Sumedha Bagga, Bei Yang and Michael J. Bouchard",authors:[{id:"68997",title:"Dr.",name:"Michael",middleName:null,surname:"Bouchard",slug:"michael-bouchard",fullName:"Michael Bouchard"}]}],mostDownloadedChaptersLast30Days:[{id:"64803",title:"BRAF Mutation and Its Importance in Colorectal Cancer",slug:"braf-mutation-and-its-importance-in-colorectal-cancer",totalDownloads:1638,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances-in-the-molecular-understanding-of-colorectal-cancer",title:"Advances in the Molecular Understanding of Colorectal Cancer",fullTitle:"Advances in the Molecular Understanding of Colorectal Cancer"},signatures:"Lee-Jen Luu and Timothy J. Price",authors:null},{id:"27578",title:"Ultrasound Imaging of Liver Tumors – Current Clinical Applications",slug:"ultrasound-imaging-of-liver-tumors-current-clinical-applications",totalDownloads:23605,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"liver-tumors",title:"Liver Tumors",fullTitle:"Liver Tumors"},signatures:"R. Badea and Simona Ioanitescu",authors:[{id:"85739",title:"Prof.",name:"Radu",middleName:"Ion",surname:"Badea",slug:"radu-badea",fullName:"Radu Badea"},{id:"128118",title:"Dr.",name:"Simona",middleName:null,surname:"Ioanitescu",slug:"simona-ioanitescu",fullName:"Simona Ioanitescu"}]},{id:"63142",title:"What Chinese Medicine Can Do for Liver Cancer?",slug:"what-chinese-medicine-can-do-for-liver-cancer-",totalDownloads:544,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"liver-cancer",title:"Liver Cancer",fullTitle:"Liver Cancer"},signatures:"Feiyu Chen, Ning Wang and Yibin Feng",authors:[{id:"14428",title:"Prof.",name:"Yibin",middleName:null,surname:"Feng",slug:"yibin-feng",fullName:"Yibin Feng"},{id:"175059",title:"Dr.",name:"Ning",middleName:null,surname:"Wang",slug:"ning-wang",fullName:"Ning Wang"},{id:"262796",title:"MSc.",name:"Feiyu",middleName:null,surname:"Chen",slug:"feiyu-chen",fullName:"Feiyu Chen"}]},{id:"64491",title:"Perihilar or (Hilar) Cholangiocarcinoma: Interventional to Surgical Management",slug:"perihilar-or-hilar-cholangiocarcinoma-interventional-to-surgical-management",totalDownloads:698,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bile-duct-cancer",title:"Bile Duct Cancer",fullTitle:"Bile Duct Cancer"},signatures:"Pankaj Prasoon, Kohei Miura, Kizuki Yuza, Yuki Hirose, Jun Sakata and Toshifumi Wakai",authors:[{id:"79381",title:"Dr.",name:"Toshifumi",middleName:null,surname:"Wakai",slug:"toshifumi-wakai",fullName:"Toshifumi Wakai"},{id:"266766",title:"Dr.",name:"Pankaj",middleName:null,surname:"Prasoon",slug:"pankaj-prasoon",fullName:"Pankaj Prasoon"},{id:"266770",title:"Dr.",name:"Yuki",middleName:null,surname:"Hirose",slug:"yuki-hirose",fullName:"Yuki Hirose"},{id:"266772",title:"Prof.",name:"Jun",middleName:null,surname:"Sakata",slug:"jun-sakata",fullName:"Jun Sakata"},{id:"279993",title:"Dr.",name:"Kohei",middleName:null,surname:"Miura",slug:"kohei-miura",fullName:"Kohei Miura"},{id:"279994",title:"Dr.",name:"Kizuki",middleName:null,surname:"Yuza",slug:"kizuki-yuza",fullName:"Kizuki Yuza"}]},{id:"27581",title:"Treatment Strategy for Recurrent Hepatocellular Carcinoma",slug:"treatment-strategy-for-recurrent-hepatocellular-carcinoma",totalDownloads:4726,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"liver-tumors",title:"Liver Tumors",fullTitle:"Liver Tumors"},signatures:"Charing Ching Ning Chong and Paul Bo San Lai",authors:[{id:"93095",title:"Dr.",name:"Charing",middleName:"Ching Ning",surname:"Chong",slug:"charing-chong",fullName:"Charing Chong"},{id:"93117",title:"Prof.",name:"Paul Bo San",middleName:null,surname:"Lai",slug:"paul-bo-san-lai",fullName:"Paul Bo San Lai"}]},{id:"60754",title:"Drug Discovery from Natural Products for Pancreatic Cancer",slug:"drug-discovery-from-natural-products-for-pancreatic-cancer",totalDownloads:638,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-pancreatic-cancer",title:"Advances in Pancreatic Cancer",fullTitle:"Advances in Pancreatic Cancer"},signatures:"Maria C. Ramos, Olga Genilloud, Fernando Reyes and Francisca\nVicente",authors:[{id:"141411",title:"Dr.",name:"Olga",middleName:null,surname:"Genilloud",slug:"olga-genilloud",fullName:"Olga Genilloud"},{id:"237178",title:"Dr.",name:"Maria C",middleName:null,surname:"Ramos",slug:"maria-c-ramos",fullName:"Maria C Ramos"},{id:"246631",title:"Dr.",name:"Fernando",middleName:null,surname:"Reyes",slug:"fernando-reyes",fullName:"Fernando Reyes"},{id:"246634",title:"Dr.",name:"Francisca",middleName:null,surname:"Vicente",slug:"francisca-vicente",fullName:"Francisca Vicente"}]},{id:"61199",title:"Pancreatic Cancer, Leptin, and Chemoresistance: Current Challenges",slug:"pancreatic-cancer-leptin-and-chemoresistance-current-challenges",totalDownloads:566,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-pancreatic-cancer",title:"Advances in Pancreatic Cancer",fullTitle:"Advances in Pancreatic Cancer"},signatures:"Adriana Harbuzariu, Gabriela Oprea-Ilies and Ruben R. Gonzalez-\nPerez",authors:[{id:"69859",title:"Prof.",name:"Ruben Rene",middleName:null,surname:"Gonzalez-Perez",slug:"ruben-rene-gonzalez-perez",fullName:"Ruben Rene Gonzalez-Perez"},{id:"179958",title:"Dr.",name:"Gabriela",middleName:null,surname:"Oprea-Ilies",slug:"gabriela-oprea-ilies",fullName:"Gabriela Oprea-Ilies"},{id:"239151",title:"Dr.",name:"Adriana",middleName:null,surname:"Harbuzariu",slug:"adriana-harbuzariu",fullName:"Adriana Harbuzariu"}]},{id:"28087",title:"Colorectal Cancer: It Starts and It Runs",slug:"colorectal-cancer-it-starts-and-it-runs",totalDownloads:1341,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"colorectal-cancer-biology-from-genes-to-tumor",title:"Colorectal Cancer Biology",fullTitle:"Colorectal Cancer Biology - From Genes to Tumor"},signatures:"Rajunor Ettarh",authors:[{id:"78549",title:"Dr.",name:"Rajunor",middleName:null,surname:"Ettarh",slug:"rajunor-ettarh",fullName:"Rajunor Ettarh"}]},{id:"57982",title:"Minimally Invasive Therapies for Hepatocellular Carcinoma: Mechanisms of Local Control and Systemic Immunologic Response",slug:"minimally-invasive-therapies-for-hepatocellular-carcinoma-mechanisms-of-local-control-and-systemic-i",totalDownloads:399,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hepatocellular-carcinoma-advances-in-diagnosis-and-treatment",title:"Hepatocellular Carcinoma",fullTitle:"Hepatocellular Carcinoma - Advances in Diagnosis and Treatment"},signatures:"Andrew W. Ritchey, Joshua D. Kuban and Rahul A. Sheth",authors:[{id:"188220",title:"Dr.",name:"Rahul",middleName:null,surname:"Sheth",slug:"rahul-sheth",fullName:"Rahul Sheth"},{id:"188923",title:"Dr.",name:"Joshua",middleName:null,surname:"Kuban",slug:"joshua-kuban",fullName:"Joshua Kuban"},{id:"214784",title:"Dr.",name:"Andrew",middleName:null,surname:"Ritchey",slug:"andrew-ritchey",fullName:"Andrew Ritchey"}]},{id:"17212",title:"A Double-Edged Sword: Roles of Helicobacter Pylori in Gastric Carcinoma",slug:"a-double-edged-sword-roles-of-helicobacter-pylori-in-gastric-carcinoma",totalDownloads:1717,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"gastric-carcinoma-molecular-aspects-and-current-advances",title:"Gastric Carcinoma",fullTitle:"Gastric Carcinoma - Molecular Aspects and Current Advances"},signatures:"Li-Jun Xue, Quan-Sheng Su, Xiao-Bei Mao, Xiao-Bei Liu, Qing Lin, Chang Liu, Yong Lin, Ji-Hong Yang, Hong-Ju Yu and Xiao-Yuan Chu",authors:[{id:"26040",title:"Dr.",name:"Li-Jun",middleName:null,surname:"Xue",slug:"li-jun-xue",fullName:"Li-Jun Xue"},{id:"107984",title:"Prof.",name:"Quan-Sheng",middleName:null,surname:"Su",slug:"quan-sheng-su",fullName:"Quan-Sheng Su"},{id:"107985",title:"Ms.",name:"Xiao-Bei",middleName:null,surname:"Mao",slug:"xiao-bei-mao",fullName:"Xiao-Bei Mao"},{id:"107986",title:"Ms.",name:"Xiao-Bei",middleName:null,surname:"Liu",slug:"xiao-bei-liu",fullName:"Xiao-Bei Liu"},{id:"107987",title:"Ms.",name:"Qing",middleName:null,surname:"Lin",slug:"qing-lin",fullName:"Qing Lin"},{id:"107988",title:"Ms.",name:"Chang",middleName:null,surname:"Liu",slug:"chang-liu",fullName:"Chang Liu"},{id:"107990",title:"Prof.",name:"Yong",middleName:null,surname:"Lin",slug:"yong-lin",fullName:"Yong Lin"},{id:"107992",title:"Prof.",name:"Ji-Hong",middleName:null,surname:"Yang",slug:"ji-hong-yang",fullName:"Ji-Hong Yang"},{id:"107993",title:"Ms.",name:"Hong-Ju",middleName:null,surname:"Yu",slug:"hong-ju-yu",fullName:"Hong-Ju Yu"},{id:"107995",title:"Prof.",name:"Xiao-Yuan",middleName:null,surname:"Chu",slug:"xiao-yuan-chu",fullName:"Xiao-Yuan Chu"}]}],onlineFirstChaptersFilter:{topicSlug:"gastrointestinal-oncology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/289597/rainer-nerger",hash:"",query:{},params:{id:"289597",slug:"rainer-nerger"},fullPath:"/profiles/289597/rainer-nerger",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()