The increasing needs to power trillions of sensors and devices for the Internet of Things require effective technology to harvest small-scale energy from renewable natural resources. As a new energy technology, triboelectric nanogenerators (TENGs) can harvest ambient mechanical energy and convert it into electricity for powering small electronic devices continuously. In this chapter, the fundamental working mechanism and fundamental modes of a TENG will be presented. It can harvest all kinds of mechanical energy, especially at low frequencies, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, moving automobile, flowing water, rain drops, ocean waves, and so on. Such variety of energy harvesting methods promises TENG as a new approach for small-scale energy harvesting.
Part of the book: A Guide to Small-Scale Energy Harvesting Techniques
Electrical discharge is generally considered as a negative effect in the electronic industry and often causes electrostatic discharge (ESD) and thus failure of electronic components and integrated circuits (IC). However, this effect was recently used to develop a new energy-harvesting technology, direct-current triboelectric nanogenerator (DC-TENG). In this chapter, its fundamental mechanism and the working modes of the nanogenerator will be presented. They are different from the general alternating current TENG (AC-TENG) invented in 2012, which is based on triboelectrification and electrostatic induction. Taking advantage of the electrostatic discharge, it can not only promote the miniaturization trend of TENG and self-powered systems, but also provide a paradigm shifting technique to in situ gain electrical energy.
Part of the book: Electrostatic Discharge