The development and progression of many diseases is related with an inflammatory process, which could affect different organs or tissues. Currently, many drugs are used to treat inflammation. However, some of these compounds induce severe side effects. For this reason, the search of new therapeutic options for the treatment of inflammation is very desirable. Medicinal plants have been an interesting source for obtaining new active compounds, including several terpenes and terpenoids with anti-inflammatory activity. This book chapter includes 62 sesquiterpenes, 34 diterpenes, and 22 triterpenes with anti-inflammatory activity. The anti-inflammatory effect was evaluated using in vitro, in vivo, and both models. These terpenes were obtained from 44 plant species belonging to 25 botanical families. Eight of theses species belong to the Asteraceae family and four to Lamiaceae family, respectively, and the other species belong to 13 different botanical families, one sesquiterpene was obtained from a sponge and two diterpenes were isolated from corals.
Part of the book: Terpenes and Terpenoids
Nanomedicine plays an important role in the diagnosis, treatment, monitoring and control of biological systems in the area of nanotechnology and has been referred by the National Institute of Health (NIH) as an emergent way of medicine. Nanoparticles are new delivery vehicles with the ability to release drugs to a specific cell type or tissue, which may also improve the pharmacological activity of those drugs by controlling their release, as well as prolonging their short half-lives in blood. The aim of this review is to gather several options of MOFs and nanotubes synthesised with different nanoparticles and processes, some including compound loading and release studies, with particular focus on 13 anti-cancer compounds e.g. doxorubicin, curcumin, methotrexate, etc.; 3 anti-inflammatory compounds, namely ibuprofen, salicylic acid and chlorogenic acid; and with 5 miscellaneous bioactive compounds, including rifampicin, griseofulvin, enoxacin, etc. Finally, other biomedical applications for these composites are shown, like being enzyme immobilisation agents, for water treatment e.g. in swimming pools, and other becoming support to carry & secure integrity of drugs.
Part of the book: Biochemical Toxicology