Nowadays, due to the environmental stress factors that limit the production of crops, it has become very difficult to find suitable areas to enable the plant to reach its optimum product potential. Abiotic stress is very effective in decreasing agricultural production. Factors such as drought, salinity, high and low temperature, flood, radiation, heavy metals, oxidative stress, and nutrient deficiency can be considered as abiotic stress factors, and these sources of stress negatively affect plant growth, quality and productivity. Melatonin (MEL) was first identified in plants in 1995 and is increasingly becoming important for its role and effects in the plant system. MEL has been shown to have a substantial role in plant response to growth, reproduction, development, and different stress factors. In addition to its regulatory role, MEL also plays a protective role against different abiotic stresses such as metal toxicity, temperature, drought, and salinity. In plants, an important role of MEL is to alleviate the effects of abiotic stresses. In this review, the effects of MEL on plant growth, photosynthetic activity, metabolism, physiology, and biochemistry under abiotic stress conditions as a plant growth regulator will be examined.
Part of the book: Abiotic and Biotic Stress in Plants