Generation of SAA fragments.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"549",leadTitle:null,fullTitle:"Antihypertensive Drugs",title:"Antihypertensive Drugs",subtitle:null,reviewType:"peer-reviewed",abstract:'Hypertension, known as a "silent killer" is widely prevalent and a major risk factor for cardiovascular diseases. It afflicts more than one billion population worldwide and is a leading cause of morbidity and mortality. The authors of the chapters look from different angles to hypertension, sharing their new knowledge and experience in the direction of deep understanding and more clarification of the disease providing an invaluable resource not only for clinicians, but also for all medical sciences students and health providers.',isbn:null,printIsbn:"978-953-51-0462-9",pdfIsbn:"978-953-51-6949-9",doi:"10.5772/1059",price:119,priceEur:129,priceUsd:155,slug:"antihypertensive-drugs",numberOfPages:162,isOpenForSubmission:!1,isInWos:1,hash:"876ded2432bdba8db384bc19409c11c4",bookSignature:"Hossein Babaei",publishedDate:"March 28th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/549.jpg",numberOfDownloads:40724,numberOfWosCitations:8,numberOfCrossrefCitations:4,numberOfDimensionsCitations:11,hasAltmetrics:0,numberOfTotalCitations:23,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 18th 2011",dateEndSecondStepPublish:"June 15th 2011",dateEndThirdStepPublish:"October 20th 2011",dateEndFourthStepPublish:"November 19th 2011",dateEndFifthStepPublish:"March 18th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"106830",title:"Prof.",name:"Hossein",middleName:"-",surname:"Babaei",slug:"hossein-babaei",fullName:"Hossein Babaei",profilePictureURL:"https://mts.intechopen.com/storage/users/106830/images/2190_n.jpg",biography:"Hossein Babaei obtained his Pharm D from Tabriz University of Medical Sciences in 1987 and his PhD in Cardiovascular Pharmacology from Bradford University (United Kingdom) in 1998. He is a professor of pharmacology in School of Pharmacy, Tabriz University of Medical Sciences, Iran. He has been appointed as dean of Drug Applied Research Center, Tabriz University of Medical Sciences, in May 2003. Since then the research center has had greater academic achievements and according to Iranian Razi Research Festival, has been selected several times as top ranking among Iranian Biomedical Research Centers.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tabriz University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1201",title:"Pharmacokinetics",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-pharmacokinetics"}],chapters:[{id:"34157",title:"New Therapeutics in Hypertension",doi:"10.5772/36050",slug:"new-therapeutics-in-hypertension-",totalDownloads:2448,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Jorge Luis León Alvarez",downloadPdfUrl:"/chapter/pdf-download/34157",previewPdfUrl:"/chapter/pdf-preview/34157",authors:[{id:"106904",title:"Prof.",name:"Jorge Luis",surname:"Leon Alvarez",slug:"jorge-luis-leon-alvarez",fullName:"Jorge Luis Leon Alvarez"}],corrections:null},{id:"34158",title:"Dual L/N-Type Ca2+ Channel Blocker: Cilnidipine as a New Type of Antihypertensive Drug",doi:"10.5772/38143",slug:"dual-l-n-type-ca2-channel-blocker-cilnidipine",totalDownloads:9863,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Akira Takahara",downloadPdfUrl:"/chapter/pdf-download/34158",previewPdfUrl:"/chapter/pdf-preview/34158",authors:[{id:"115776",title:"Prof.",name:"Akira",surname:"Takahara",slug:"akira-takahara",fullName:"Akira Takahara"}],corrections:null},{id:"34159",title:"Hypertension and Chronic Kidney Disease: Cause and Consequence – Therapeutic Considerations",doi:"10.5772/36916",slug:"hypertension-in-chronic-kidney-disease-cause-and-consequence-therapeutic-considerations-",totalDownloads:9941,totalCrossrefCites:3,totalDimensionsCites:9,signatures:"Elsa Morgado and Pedro Leão Neves",downloadPdfUrl:"/chapter/pdf-download/34159",previewPdfUrl:"/chapter/pdf-preview/34159",authors:[{id:"110437",title:"Prof.",name:"Pedro Leão",surname:"Neves",slug:"pedro-leao-neves",fullName:"Pedro Leão Neves"},{id:"110449",title:"Dr.",name:"Elsa",surname:"Morgado",slug:"elsa-morgado",fullName:"Elsa Morgado"}],corrections:null},{id:"34160",title:"Potassium-Sparing Diuretics in Hypertension",doi:"10.5772/36236",slug:"potassium-sparing-diuretics-in-essential-and-endocrine-hypertension",totalDownloads:3810,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Cristiana Catena, GianLuca Colussi and Leonardo A. Sechi",downloadPdfUrl:"/chapter/pdf-download/34160",previewPdfUrl:"/chapter/pdf-preview/34160",authors:[{id:"107596",title:"Dr.",name:"Leonardo",surname:"Sechi",slug:"leonardo-sechi",fullName:"Leonardo Sechi"},{id:"111841",title:"Dr.",name:"GianLuca",surname:"Colussi",slug:"gianluca-colussi",fullName:"GianLuca Colussi"},{id:"111843",title:"Dr.",name:"Cristiana",surname:"Catena",slug:"cristiana-catena",fullName:"Cristiana Catena"}],corrections:null},{id:"34161",title:"Hypertension and Renin-Angiotensin System",doi:"10.5772/36723",slug:"hypertension-and-renin-angiotensin-system",totalDownloads:4667,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Roberto de Barros Silva",downloadPdfUrl:"/chapter/pdf-download/34161",previewPdfUrl:"/chapter/pdf-preview/34161",authors:[{id:"109495",title:"MSc.",name:"Roberto",surname:"Silva",slug:"roberto-silva",fullName:"Roberto Silva"}],corrections:null},{id:"34162",title:"Pharmacokinetic Interactions of Antihypertensive Drugs with Citrus Juices",doi:"10.5772/37494",slug:"pharmacokinetic-interactions-of-antihypertensive-drugs-with-citrus-juices",totalDownloads:4235,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yoshihiro Uesawa",downloadPdfUrl:"/chapter/pdf-download/34162",previewPdfUrl:"/chapter/pdf-preview/34162",authors:[{id:"112986",title:"Dr.",name:"Yoshihiro",surname:"Uesawa",slug:"yoshihiro-uesawa",fullName:"Yoshihiro Uesawa"}],corrections:null},{id:"34163",title:"Drug Interaction Exposures in an Intensive Care Unit: Population Under Antihypertensive Use",doi:"10.5772/36305",slug:"drug-interaction-exposures-in-an-intensive-care-unit-population-under-antihypertensive-use",totalDownloads:3336,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Érica Freire de Vasconcelos-Pereira, Mônica Cristina Toffoli-Kadri,\r\nLeandro dos Santos Maciel Cardinal and Vanessa Terezinha Gubert de Matos",downloadPdfUrl:"/chapter/pdf-download/34163",previewPdfUrl:"/chapter/pdf-preview/34163",authors:[{id:"107795",title:"MSc.",name:"Vanessa",surname:"De Matos",slug:"vanessa-de-matos",fullName:"Vanessa De Matos"},{id:"114992",title:"MSc.",name:"Érica",surname:"Pereira",slug:"erica-pereira",fullName:"Érica Pereira"},{id:"114995",title:"BSc.",name:"Leandro",surname:"Cardinal",slug:"leandro-cardinal",fullName:"Leandro Cardinal"},{id:"115001",title:"Dr.",name:"Monica",surname:"Kadri",slug:"monica-kadri",fullName:"Monica Kadri"}],corrections:null},{id:"34164",title:"The Use of Antihypertensive Medicines in Primary Health Care Settings",doi:"10.5772/36167",slug:"the-use-of-antihypertensive-medicines-in-primary-health-care-settings",totalDownloads:2425,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marc Twagirumukiza, Jan De Maeseneer, Thierry Christiaens, Robert Vander Stichele and Luc Van Bortel",downloadPdfUrl:"/chapter/pdf-download/34164",previewPdfUrl:"/chapter/pdf-preview/34164",authors:[{id:"107326",title:"Dr.",name:"Marc",surname:"Twagirumukiza",slug:"marc-twagirumukiza",fullName:"Marc Twagirumukiza"},{id:"116370",title:"Prof.",name:"Jan",surname:"De Maeseneer",slug:"jan-de-maeseneer",fullName:"Jan De Maeseneer"},{id:"116371",title:"Prof.",name:"Thierry",surname:"Christiaens",slug:"thierry-christiaens",fullName:"Thierry Christiaens"},{id:"116373",title:"Prof.",name:"Robert",surname:"Vander Stichele",slug:"robert-vander-stichele",fullName:"Robert Vander Stichele"},{id:"116375",title:"Prof.",name:"Luc",surname:"Van Bortel",slug:"luc-van-bortel",fullName:"Luc Van Bortel"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"672",title:"Topics on Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"bd8cec6a42109231eaa7a07ed1d58c71",slug:"topics-on-drug-metabolism",bookSignature:"James Paxton",coverURL:"https://cdn.intechopen.com/books/images_new/672.jpg",editedByType:"Edited by",editors:[{id:"67175",title:"Dr.",name:"James",surname:"Paxton",slug:"james-paxton",fullName:"James Paxton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1515",title:"Readings in Advanced Pharmacokinetics",subtitle:"Theory, Methods and Applications",isOpenForSubmission:!1,hash:"19852157f4023e3c603cf420d40092d8",slug:"readings-in-advanced-pharmacokinetics-theory-methods-and-applications",bookSignature:"Ayman Noreddin",coverURL:"https://cdn.intechopen.com/books/images_new/1515.jpg",editedByType:"Edited by",editors:[{id:"98260",title:"Dr.",name:"Ayman",surname:"Noreddin",slug:"ayman-noreddin",fullName:"Ayman Noreddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4491",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",subtitle:null,isOpenForSubmission:!1,hash:"734981bb43ff02efc24997bed7e09853",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",bookSignature:"Tarek A Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/4491.jpg",editedByType:"Edited by",editors:[{id:"175649",title:"Dr.",name:"Tarek A",surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10143",title:"Molecular Pharmacology",subtitle:null,isOpenForSubmission:!1,hash:"2b2fce4ff393dff0d0f0581c7818087c",slug:"molecular-pharmacology",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8700",title:"Anticoagulation Drugs",subtitle:"the Current State of the Art",isOpenForSubmission:!1,hash:"436d368db26a1bb7c56a32524819feb2",slug:"anticoagulation-drugs-the-current-state-of-the-art",bookSignature:"Mina Kelleni",coverURL:"https://cdn.intechopen.com/books/images_new/8700.jpg",editedByType:"Edited by",editors:[{id:"247606",title:"Dr.",name:"Mina",surname:"Kelleni",slug:"mina-kelleni",fullName:"Mina Kelleni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"1532",leadTitle:null,title:"Semiconductor Laser Diode",subtitle:"Technology and Applications",reviewType:"peer-reviewed",abstract:"This book represents a unique collection of the latest developments in the rapidly developing world of semiconductor laser diode technology and applications. An international group of distinguished contributors have covered particular aspects and the book includes optimization of semiconductor laser diode parameters for fascinating applications. \nThis collection of chapters will be of considerable interest to engineers, scientists, technologists and physicists working in research and development in the field of semiconductor laser diode, as well as to young researchers who are at the beginning of their career.",isbn:null,printIsbn:"978-953-51-0549-7",pdfIsbn:"978-953-51-4996-5",doi:"10.5772/1999",price:139,priceEur:155,priceUsd:179,slug:"semiconductor-laser-diode-technology-and-applications",numberOfPages:390,isOpenForSubmission:!1,hash:"67c029e3a582411c5f9ab3a7dc28884f",bookSignature:"Dnyaneshwar Shaligram Patil",publishedDate:"April 25th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1532.jpg",keywords:null,numberOfDownloads:58399,numberOfWosCitations:29,numberOfCrossrefCitations:5,numberOfDimensionsCitations:17,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 2nd 2011",dateEndSecondStepPublish:"May 30th 2011",dateEndThirdStepPublish:"October 4th 2011",dateEndFourthStepPublish:"November 3rd 2011",dateEndFifthStepPublish:"March 2nd 2012",remainingDaysToSecondStep:"10 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"106345",title:"Prof.",name:"Dnyaneshwar",middleName:"Shaligram",surname:"Patil",slug:"dnyaneshwar-patil",fullName:"Dnyaneshwar Patil",profilePictureURL:"https://mts.intechopen.com/storage/users/106345/images/2754_n.jpg",biography:"Dr. D. S. Patil has been graduated from Poona University with a rank. He received the M.Sc. degree in Electronics Science with a first class in 1986 from the Poona university department of Electronics-Science. He secured M.C.M. degree with A+ grade from Poona University and the Ph.D. degree in Electronics from the North Maharashtra University, Jalgaon [Maharashtra], India. He qualified state eligibility test in Electronics in 1995. Since 1991, he has been working in the North Maharashtra University, Jalgaon and presently working as a Professor. He secured high school scholarship, national merit scholarship and received Rashtriya gaurav award sponsored by India International Friendship Society. He successfully completed a major Young scientist project from Department of Science and Technology, India. His name has been considered in the Steering committee as a member for the International Conference on Nanoscience and Technology 2008, Colarado, United States of America, International vacuum Congress, China 2010. He worked on the various committees of the universities. He has published about 157 papers in reputed journals and proceedings of the conferences. His research interests include the computer simulation of semiconductor, nano and optoelectronics devices, nano-electronics, Materials development and characterization for the nano-technological and optoelectronics applications, process automation using advanced microcontrollers and embedded systems, organic electronics and computer simulation of nanostructures including quantum dots and superlattice. He has developed with his research student a novel model of probability density spreading in GaN quantum wells. He has developed with research students, computer controlled dip coating system and microcontroller based spin coating system for the deposition of nano-materials. He has guided many students for their innovative research. He visited France and Germany to attend international conferences and present his papers. Moreover, he visited Technical University, Zurich, Switzerland to know the various activities and research carried out in Electronics Technology department. He worked as a reviewer for many reputed international journals. He has delivered many invited talks and popular lectures. He developed the Electronics Practical laboratory and curriculum as a first member of Electronics Department and framed syllabus of M.Phil. (Electronics) and M.Sc.(Electronics). Despite of this, he taught various courses to M.Tech. (VLSI Technology), M.C.A and B.Tech.(Chemical Technology). Recently, his name has been considered in Marscue Who’s who in the world.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"North Maharashtra University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"35899",title:"Effect of Cavity Length and Operating Parameters on the Optical Performance of Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.89N MQW Laser Diodes",slug:"effect-of-cavity-length-and-operating-parameters-on-the-optical-performance-of-al0-08in0-08ga0-84n-a",totalDownloads:3587,totalCrossrefCites:0,authors:[{id:"104427",title:"Dr.",name:"Alaa J.",surname:"Ghazai",slug:"alaa-j.-ghazai",fullName:"Alaa J. Ghazai"}]},{id:"35900",title:"Electrical Transport in Ternary Alloys: AlGaN and InGaN and Their Role in Optoelectronic",slug:"electrical-transport-in-ternary-alloys-algan-and-ingan-and-their-role-in-optoelectronic",totalDownloads:4838,totalCrossrefCites:0,authors:[{id:"100925",title:"Dr.",name:"Nadia",surname:"Bachir",slug:"nadia-bachir",fullName:"Nadia Bachir"},{id:"109209",title:"Prof.",name:"Chabane Sari",surname:"Nasr Eddine",slug:"chabane-sari-nasr-eddine",fullName:"Chabane Sari Nasr Eddine"},{id:"109215",title:"Dr.",name:"Hamdoune",surname:"Abdelkader",slug:"hamdoune-abdelkader",fullName:"Hamdoune Abdelkader"}]},{id:"35901",title:"Carrier Transport Phenomena in Metal Contacts to AlInGaN-Based Laser Diodes",slug:"carrier-transport-phenomena-in-metal-contacts-to-alingan-based-laser-diodes",totalDownloads:2121,totalCrossrefCites:0,authors:[{id:"103499",title:"Prof.",name:"Joon Seop",surname:"Kwak",slug:"joon-seop-kwak",fullName:"Joon Seop Kwak"}]},{id:"35902",title:"Characterization Parameters of (InGaN/InGaN) and (InGaN/GaN) Quantum Well Laser Diode",slug:"characterization-parameters-of-ingan-ingan-and-ingan-gan-quantum-well-laser-diode",totalDownloads:3442,totalCrossrefCites:0,authors:[{id:"106453",title:"Dr.",name:"Sabah",surname:"Thahab",slug:"sabah-thahab",fullName:"Sabah Thahab"}]},{id:"35903",title:"Analysis of Coherence-Collapse Regime of Semiconductor Lasers Under External Optical Feedback by Perturbation Method",slug:"analysis-of-coherence-collapse-regime-of-semiconductor-lasers-under-external-optical-feedback-by-per",totalDownloads:2447,totalCrossrefCites:0,authors:[{id:"111141",title:"Dr.",name:"Qin",surname:"Zou",slug:"qin-zou",fullName:"Qin Zou"}]},{id:"35904",title:"DFB Laser Diode Dynamics with Optoelectronic Feedback",slug:"dfb-laser-diode-dynamics-with-optoelectronic-feedback",totalDownloads:3677,totalCrossrefCites:0,authors:[{id:"102474",title:"Dr.",name:"M. H.",surname:"Shahine",slug:"m.-h.-shahine",fullName:"M. H. Shahine"}]},{id:"35905",title:"Ultra-Wideband Multiwavelength Light Source Utilizing Rare Earth Doped Femtosecond Fiber Oscillator",slug:"ultra-wideband-multiwavelength-light-source-utilizing-rare-earth-doped-femtosecond-fiber-oscillator",totalDownloads:2204,totalCrossrefCites:0,authors:[{id:"14201",title:"Dr.",name:"Sulaiman Wadi",surname:"Harun",slug:"sulaiman-wadi-harun",fullName:"Sulaiman Wadi Harun"},{id:"102667",title:"MSc.",name:"Nurul Shahrizan",surname:"Shahabuddin",slug:"nurul-shahrizan-shahabuddin",fullName:"Nurul Shahrizan Shahabuddin"},{id:"110438",title:"Dr.",name:"Marinah",surname:"Othman",slug:"marinah-othman",fullName:"Marinah Othman"}]},{id:"35906",title:"Low Frequency Noise Characteristics of Multimode and Singlemode Laser Diodes",slug:"low-frequency-noise-characteristics-of-multimode-and-singlemode-laser-diodes",totalDownloads:2032,totalCrossrefCites:2,authors:[{id:"104384",title:"Dr.",name:"Sandra",surname:"Pralgauskaite",slug:"sandra-pralgauskaite",fullName:"Sandra Pralgauskaite"},{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"}]},{id:"35907",title:"Investigation of High-Speed Transient Processes and Parameter Extraction of InGaAsP Laser Diodes",slug:"investigation-of-high-speed-transient-processes-and-parameter-extraction-of-ingaasp-laser-diodes",totalDownloads:1961,totalCrossrefCites:0,authors:[{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"},{id:"105381",title:"Prof.",name:"Juozas",surname:"Vysniauskas",slug:"juozas-vysniauskas",fullName:"Juozas Vysniauskas"},{id:"105392",title:"MSc.",name:"Tomas",surname:"Vasiliauskas",slug:"tomas-vasiliauskas",fullName:"Tomas Vasiliauskas"},{id:"105396",title:"Dr.",name:"Emilis",surname:"Sermuksnis",slug:"emilis-sermuksnis",fullName:"Emilis Sermuksnis"}]},{id:"35908",title:"Spectral Narrowing and Brightness Increase in High Power Laser Diode Arrays",slug:"spectral-narrowing-and-brightness-increase-in-high-power-laser-diode-arrays",totalDownloads:3256,totalCrossrefCites:0,authors:[{id:"105997",title:"Dr.",name:"Niklaus",surname:"Wetter",slug:"niklaus-wetter",fullName:"Niklaus Wetter"}]},{id:"35909",title:"Tunable Dual-Wavelength Laser Scheme by Optical-Injection Fabry-Perot Laser Diode",slug:"tunable-dual-wavelength-laser-scheme-by-optical-injection-fabry-perot-laser-diode",totalDownloads:2217,totalCrossrefCites:0,authors:[{id:"106255",title:"Prof.",name:"Chien-Hung",surname:"Yeh",slug:"chien-hung-yeh",fullName:"Chien-Hung Yeh"}]},{id:"35910",title:"The Coherent Coupled Output of a Laser Diode Array Using a Volume Bragg Grating",slug:"the-coherent-coupled-output-of-a-laser-diode-array-using-a-volume-bragg-grating",totalDownloads:2334,totalCrossrefCites:0,authors:[{id:"111287",title:"Dr.",name:"Bo",surname:"Liu",slug:"bo-liu",fullName:"Bo Liu"}]},{id:"35933",title:"Laser Diode Pump Technology for Space Applications",slug:"laser-diode-pump-technology-for-space-applications",totalDownloads:3793,totalCrossrefCites:1,authors:[{id:"109008",title:"Dr.",name:"Anthony W.",surname:"Yu",slug:"anthony-w.-yu",fullName:"Anthony W. Yu"},{id:"110631",title:"Ms.",name:"Elisavet",surname:"Troupaki",slug:"elisavet-troupaki",fullName:"Elisavet Troupaki"},{id:"110632",title:"Dr.",name:"Mark A.",surname:"Stephen",slug:"mark-a.-stephen",fullName:"Mark A. Stephen"},{id:"110633",title:"Dr.",name:"Aleksey A.",surname:"Vasilyev",slug:"aleksey-a.-vasilyev",fullName:"Aleksey A. Vasilyev"}]},{id:"35934",title:"Monitoring of Welding Using Laser Diodes",slug:"monitoring-of-welding-using-laser-diodes",totalDownloads:2404,totalCrossrefCites:1,authors:[{id:"107571",title:"Dr.",name:"Badr",surname:"Abdullah",slug:"badr-abdullah",fullName:"Badr Abdullah"}]},{id:"35935",title:"The Development of Laser Diode Arrays for Printing Applications",slug:"the-development-of-laser-diode-arrays-for-printing-applications",totalDownloads:3033,totalCrossrefCites:0,authors:[{id:"106897",title:"Dr.",name:"Olek",surname:"Kowalski",slug:"olek-kowalski",fullName:"Olek Kowalski"}]},{id:"35936",title:"High-Power Pulsed 2-μm Tm3+-Doped Fiber Laser",slug:"high-power-pulsed-2-m-tm3-doped-fiber-laser",totalDownloads:2883,totalCrossrefCites:0,authors:[{id:"5449",title:"Prof.",name:"Jianqiu",surname:"Xu",slug:"jianqiu-xu",fullName:"Jianqiu Xu"},{id:"110808",title:"Dr.",name:"Yulong",surname:"Tang",slug:"yulong-tang",fullName:"Yulong Tang"}]},{id:"35937",title:"Advances in High-Power Laser Diode Packaging",slug:"advances-in-high-power-laser-diode-packaging",totalDownloads:7249,totalCrossrefCites:1,authors:[{id:"113389",title:"Dr.",name:"Ronnie",surname:"Teo",slug:"ronnie-teo",fullName:"Ronnie Teo"}]},{id:"35938",title:"Laser Diode Gas Spectroscopy",slug:"laser-diode-gas-spectroscopy",totalDownloads:2025,totalCrossrefCites:0,authors:[{id:"103920",title:"Dr.",name:"Pablo",surname:"Pineda-Vadillo",slug:"pablo-pineda-vadillo",fullName:"Pablo Pineda-Vadillo"}]},{id:"35939",title:"CW THz Wave Generation System with Diode Laser Pumping",slug:"cw-thz-wave-generation-system-with-diode-laser-pumping",totalDownloads:2907,totalCrossrefCites:0,authors:[{id:"106244",title:"Dr.",name:"Srinivasa",surname:"Ragam",slug:"srinivasa-ragam",fullName:"Srinivasa Ragam"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3581",title:"Recent Optical and Photonic Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-optical-and-photonic-technologies",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"525",title:"Optoelectronics",subtitle:"Devices and Applications",isOpenForSubmission:!1,hash:"f444b982565b0c4be6117a35f7810047",slug:"optoelectronics-devices-and-applications",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/525.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"64034",title:"Serum Amyloid A and Immunomodulation",doi:"10.5772/intechopen.81617",slug:"serum-amyloid-a-and-immunomodulation",body:'
Serum amyloid A (SAA) was identified in early studies as the precursor of amyloid A (AA), the tissue deposit of which causes secondary amyloidosis [1, 2, 3, 4]. SAA was also found as one of the major acute-phase proteins that are produced in large quantities by hepatocytes and released to blood circulation in response to trauma, infection, late-stage malignancy and severe stress [5, 6]. Extending from these early findings, increased levels of SAA were found both in plasma and in injured and inflammatory tissues. A large body of literature reports SAA as a biomarker in a variety of diseases ranging from acute inflammation, chronic inflammation, type-2 diabetes, malignancy and postsurgical complications [7, 8, 9]. However, the biological functions of SAA remained largely unknown for many years [10] despite efforts in it biochemical characterization, gene cloning of its isoforms, studies of the interactions between SAA and high-density lipoprotein (HDL), and delineation of its regulatory activities in inflammation and immunity. The widespread use of recombinant human SAA proteins has accelerated the characterization of the biological functions of SAA in vitro, but at the same time produced data that are not fully compatible with those obtained from in vivo studies. In the past decade, mice with genetically altered genes were prepared and their use in a number of diseases models has begun to delineate the pathophysiological functions of SAA in vivo. This chapter provides an overview of the studies of SAA that have been published and summarizes recent findings of the immunomodulatory functions of different SAA proteins. For other functions of SAA, the interested reader is referred to several excellent reviews that have been published recently [9, 11, 12, 13, 14, 15].
SAA is the general name of a family of proteins with high sequence homology but encoded by distinct genes [16]. Both humans and mice have 4 SAA genes, but in human the SAA3 is a pseudogene that does not express [17]. SAA4 is constitutively expressed in both humans and mice. In contrast, the expression of SAA1, SAA2 and in mice, SAA3, is highly inducible [18]. These SAA proteins are therefore termed acute-phase SAAs based on their induced expression during the acute-phase response [18, 19]. The human SAA genes are located on chromosome 11 while the mouse SAA genes are found in a cluster on chromosome 7 [20, 21].
At the primary sequence level, the human and mouse SAA proteins share high sequence homology (Figure 1), suggesting that these proteins may have similar functions although their modes of expression vary. Of note, although mouse SAA3 has an expression profile different from that of SAA1 and SAA2, its sequence is as homologous to human SAA1 as mouse SAA1 and SAA2 (Figure 1). The sequence homology suggests that the functions of SAA3, expressed upon induction by inflammatory cues in various mouse tissues, may be similar to those of human SAA1 and SAA2.
Comparison of the amino acid sequence of human and mouse inducible SAA proteins. The amino acid sequences of mature SAA protein (without signal peptides) are shown, and identical amino acids are marked with asterisks (*). Inset shows the percent of sequence homology between the 3 inducible mouse SAA proteins and human SAA1.
Human SAA1 has been widely studied for its functions. SAA1 was first identified as a serum component recognized by antibodies raised against the amyloid fibril protein known as amyloid A (AA). In one of the studies, antisera were prepared against the major nonimmunoglobulin component of secondary amyloidosis. The antisera were able to detect a serum component that was present at much higher levels in more than half of the pathological samples collected from patients compared to only 7% of normal controls [1]. Husby and Natvig found that the serum component detected by the antisera against AA was larger and its circulation level was increased with age and during pregnancy [2]. The protein immuoprecipitated by the antisera was of low molecular weight with similar but not identical amino acid composition of the AA fibrils [22]. It was thought that AA could be a subunit of the SAA protein [22], which was identified as a cleavage product of SAA.
Amyloidosis develops when insoluble amyloid fibrils accumulate in the extracellular space of the tissues and organs in the body. Patients with chronic inflammatory diseases may develop AA amyloidosis, also termed secondary amyloidosis [23, 24]. SAA as an amyloid protein has the propensity of fibril formation. However, how SAA forms fibril is not fully understood. A number of observations suggest that SAA produced in inflammatory tissues is endocytosed into macrophages [25], where the acidic environment of lysosome promotes fibril formation [26]. The small amount of fibril formed is then exocytosed to the cell surface, prompting a nucleation-dependent incorporation of additional SAA into fibrils [27]. More recent studies have shown that SAA forms stable oligomers at pH of 3.5–4.5, that are resistant to proteolysis and undergo α-helix to β-sheet conversion. The SAA accumulated in lysosomes eventually escape from the cells [28]. Based on these studies, AA fibril formation is a biphasic process [27, 29] that involves an intracellular phase and an extracellular phase. Proteolysis is involved probably in both phases [27, 30]. In the second phase, additional SAA proteins may be recruited with nucleation of AA fibrils, and cleavage of SAA may be a post-fibrillogenic event [31].
Recent delineation of the crystal structure of human SAA1 provides a structural basis for AA amyloidosis [32]. Despite high levels of sequence homology, different SAA isoforms have different propensity in forming AA fibrils. Human SAA1.1 has a high tendency of amyloidogenicity, whereas SAA2.2 found in the CE/J mice did not form amyloid fibrils [33, 34] despite sequence homology as high as 94% with SAA1.1. It was found that the structural determinants for amyloidogenicity reside in the first 10–15 residues of mature SAA protein [35]. In a more recent study, SAA2.2 was found to form small fibrils within a few hours, in contrast to the long lag time of SAA1.1 that was characteristically oligomer-rich [36]. These fibrils exhibited different morphology and the fibrils of SAA1.1 were found to be pathogenic. The results of this study suggest that fibrillation kinetics and prefibrillar oligomers of different SAA isoforms may determine their pathogenicity even though they all possess intrinsic amyloidogenicity.
In AA amyloidosis, the insoluble AA amyloid protein is derived from the proteolytic cleavage of SAA, generating an N-terminal fragment of SAA. In some cases, this AA amyloid protein lacks amino acids at both N- and C-terminus compared to the full-length SAA. One reported study found that the AA fibril protein purified from rheumatoid arthritis patients with secondary amyloidosis contained 2 fragments with residues 1–50 and 1–45 [37]. However, a SAA fragment with residues 1–76 (or 2–76) was most commonly found in amyloid fibrils, such as those from the livers and spleens of patients with familial Mediterranean fever (FMF), tuberculosis, Hodgkin’s diseases and bronchiectasis [24, 38].
In patients with rheumatoid arthritis, higher serum levels of metalloproteinases (MMPs)-1, -2, -3 and -9 were detected compared to healthy controls [39, 40], and the production of these enzymes could be stimulated by SAA [41, 42]. Besides, these MMPs were shown to cleave SAA and AA amyloid protein in vitro to produce various sizes of SAA fragments (see Table 1). In addition to generating the AA fragments commonly identified in secondary amyloidosis, MMP-1, -2 and -3 cleaved SAA into fragments with residues 1–57, 1–51 and 8–55, respectively [43]. The spanning region (residues 51–57) contains sites that may be cleaved by all three MMPs. In addition, MMP-2 and MMP-3 can also cleave at other residues including residues 7–8 (MMP-2 and -3), 16–17 (MMP-3) and 23–24 (MMP-3). In other species studied, MMP-1 and -3 are able to cleave rabbit SAA3 at residues 50–57, showing conservation between the rabbit SAA3 and human SAA1 [44]. Therefore it was suggested that these MMPs might contribute to the pathogenesis of AA amyloidosis by generating SAA fragments.
Generation of SAA fragments.
The table lists known SAA fragments and synthetic peptides that have been identified. References are provided on the column to the right.
In addition to their roles in AA amyloidosis, SAA-derived fragments may have other biological functions. A recent study demonstrated that MMP-9 could rapidly cleave human SAA1 within 30 minutes in vitro to produce COOH-terminal fragments, SAA1 (58–104), SAA1 (52–104) and SAA1 (57–104) [46]. These fragments account for 50, 30 and 20% of the total cleaved fragments by MMP-9, respectively. The synthetic peptides of these fragments failed to induce CXCL8 production in human monocytes and diploid fibroblasts, as well as neutrophil chemotaxis; however they potentiated CXCL8-induced neutrophil chemotaxis in a dose-dependent manner via FPR2 [46]. The authors of this report suggested that intact SAA first initiates the inflammatory response and induces the release of MMP-9, which cleaves SAA and modulates the response of SAA by potentiating activities of selected chemokines to prolong the inflammation process. In addition to MMPs, cathepsins, endosomal and lysosomal proteases, were also shown to cleave SAA and might also be involved in AA amyloidosis. Cathepsin B was shown to cleave SAA at residues 76–77 to produce the most common form of AA found in amyloidosis [49]. Another study also reported that both cathepsin B and L completely cleaved SAA, and cathepsin B could produce 9 AA amyloid-like proteins; however, cathepsin L produced no fragments resembling AA amyloid proteins by cleaving within the N-terminus [45]. All amyloid-like SAA fragments described to date have either an intact N-terminus or one that only lacks 1–2 amino acids. Elastase and cathepsin D that cleave SAA further along the N-terminus can prevent the formation of AA amyloid protein [35, 49, 50].
Accumulating evidence suggests that some of the observed biological functions of SAA, other than those related to amyloidosis, may be attributed to SAA-derived fragments rather than the intact protein. In some of these studies, synthetic peptides based on SAA protein sequence were prepared to verify or identify the potential functions. SAA-derived peptides with IFNγ-inducing capability were found in human rheumatic synovial fluid [51]. An SAA2-derived peptide with chemotactic activity for B lymphocytes was found in cow milk [52]. In a recent study, a fragment of SAA1 (46–112) was found in bovine serum and is equivalent to human SAA1 (47–104). The synthetic peptides of this fragment failed to directly induce chemotaxis and chemokine production (CXCL8 and CCL3) in human neutrophils and monocytes, but it synergized with CXCL8 or CCL3 to induce chemotaxis via FPR2 [47]. Studies were also conducted to examine potential functions of SAA and its peptides in LPS-induced inflammatory response. SAA-derived fragments lacking both N- and C-terminal residues were expressed as recombinant proteins and texted for their activities in vitro. Fragments such as one with amino acids 11–58 of human SAA1 exhibited minimal proinflammatory activity but enhanced ability to induce IL-10 expression and to counteract LPS-induced inflammation and lung injury [48]. In a recent study, a peptide consisting amino acids 32–47 of human SAA1 was found to disrupt the binding of SAA1 to LPS, suggesting the involvement of this region of SAA1 in LPS binding [53].
Recombinant SAA was used in an early study that identified the SAA protein as a chemoattractant for phagocytes [54]. Xu et al. reported that SAA also induced the migration and adhesion of lymphocytes [55]. These studies were among the first to identify leukocyte-activating activities of the recombinant SAA protein. SAA differs from chemokines as it lacks the characteristic cysteine residues that form disulfide bonds for structural stabilization. It was not until 2014 when the crystal structures of two SAA proteins were solved [32, 56]. The 4-helix bundle structure of the SAA monomers and the propensity of forming multimers [32, 56] are strikingly different from the known structural properties of chemokines [57].
Studies conducted by Patel et al. [58] and Fulaneto et al. [59] revealed cytokine-like activities of SAA for its induction of IL-1β, TNFα, IL-1RA and IL-8. Of note, the study conducted by Patel and coworkers used both the recombinant human SAA (rhSAA) and purified SAA-HDL complex, although they found that the cytokine-inducing activity of the SAA-HDL complex was much lower than that of rhSAA. These studies were followed by reports that SAA in neutrophils could induce IL-8 expression through one of the chemoattractant receptors [60] that also mediates anti-inflammatory activities when stimulated by the eicosanoid lipoxin A4 [61, 62]. In addition to proinflammatory cytokines, rhSAA was found to stimulate monocyte expression of tissue factor [63]. Injection of rhSAA to mice increased G-CSF production and neutrophil expansion [64]. SAA also induced the expression of immunomodulatory cytokines including selective induction of IL-23 over IL-12 [65] and the induction of IL-33 expression [66]. The transcription factors NF-κB, IRF4 and IRF7 have been implicated in SAA-induced gene expression [66, 67]. In addition, SAA appears to be involved in epigenetic regulation of gene expression [68].
One of the cellular targets of SAA is macrophages, a major source of cytokines and most if not all SAA receptors. Macrophages may be differentiated into M1 or M2 phenotypes. Studies have shown that SAA may influence macrophage differentiation. Anthony et al. examined the effects of SAA in vitro, using human blood monocytes from chronic obstructive pulmonary disease patients and healthy controls, and in vivo using a mouse model with airway SAA challenge [69]. Their work showed that SAA-rendered human monocytes secrete IL-6 and IL-1β concurrently with the M2 markers CD163 and IL-10. Moreover, these cells responded to subsequent LPS stimulation with markedly higher levels of IL-6 and IL-1β. In the mouse model, SAA induced a CD11chigh CD11bhigh macrophage population in a CSF-1R signaling-dependent manner, with concurrent inhibition of neutrophilic inflammation. Sun et al. investigated the potential effect of SAA on macrophage plasticity, and found that SAA treatment led to increased expression of macrophage M2 markers including IL-10, Ym1, Fizz-1, MRC1, IL-1Rn, and CCL17 [67]. Moreover, SAA enhanced efferocytosis of mouse macrophages. Silencing IRF4 by small interfering RNA abrogated the SAA-induced expression of M2 markers, suggesting a potential role for SAA to alter macrophage phenotype and modulate macrophage functions.
SAA has been identified as an endogenous activator of the NLRP3 inflammasome, which is critical to the process of pro-IL-1β. Niemi et al. reported that SAA provided a signal for pro-IL-1β expression and for inflammasome activation [70]. At least 3 SAA receptors, including TLR2, TLR4 and the ATP receptor P2X7, were involved. Interestingly, inflammasome activation was dependent on the activity of cathepsin B, the expression of which was induced by SAA. Therefore, SAA-induced secretion of cathepsin B could facilitate extracellular processing of SAA and development of AA amyloidosis. Ather et al. showed SAA3 expression in the lungs of mice exposed to mixed Th2/Th17-polarizing allergic sensitization regimens [71]. SAA instillation into the lungs elicited pulmonary neutrophilic inflammation and activation of the NLRP3 inflammasome, thereby promoting IL-1β secretion by dendritic cells and macrophages. SAA administered into the lungs also served as an adjuvant that sensitized mice to inhaled OVA, promoting IL-17 production from restimulated splenocytes and leukocyte influx. Collectively, these findings illustrate a stimulatory function of SAA in the induced expression of IL-1β.
It has long been suspected that the diverse functions of SAA are mediated by cell surface receptors. Studies conducted in the past 20 years have led to the identification of several cell surface receptors for SAA in addition to a number of binding proteins (Figure 2). In 1999, Su et al. reported the involvement of formyl peptide receptor 2 (FPR2, also termed FPRL1 [72, 73]), in the chemotactic activity of SAA [74]. FPR2 is a G protein-coupled chemoattractant receptor initially identified as a homolog of human FPR1 with low-affinity binding of formylated peptide [75, 76, 77]. The identification of FPR2 as a receptor for SAA is consistent with reports that SAA induces migration of phagocytes and to a lesser extent, lymphocytes [54, 55]. Subsequent studies have shown that a number of biological functions of SAA, ranging from chemotaxis and superoxide generation to induced expression of proinflammatory cytokines and matrix metalloproteases, are mediated through FPR2 [47, 60, 78, 79, 80, 81, 82, 83, 84, 85].
SAA receptors. The major receptors of human and mouse SAA proteins and their projected functions are listed. Also shown in the figure are selected binding partners of SAA. OmpA, bacterial outer membrane protein a; HDL, high-density lipoprotein. Permission from the publisher was obtained for the use of the crystal structure of SAA1 [32].
The identification of cytokine-like activities of recombinant SAA protein suggests the involvement of receptors that typically mediate phagocyte cytokine production. The finding that SAA selectively induces IL-23 but not IL-12 expression suggests a pattern similar to that of Toll-like receptor (TLR)-mediated cytokine induction [65]. In 2008, two of the TLRs were identified as SAA receptors. TLR2, and more specifically the TLR2-TLR1 heterodimer, was found to mediate SAA-induced NF-κB activation leading to the expression of several proinflammatory cytokines and chemokines [86]. TLR2 is also responsible for SAA-induced neutrophil expansion through upregulation of G-CSF [64]. TLR4 was found to mediate SAA-induced expression of iNOS and activation of the related signaling pathways [87]. Despite differences in primary and high-level structures between SAA and the microbial ligands for these receptors, the two TLRs mediate SAA functions both in transfected cells expressing the receptors and in vivo [48, 71, 79, 88, 89, 90, 91, 92]. The identification of the two TLRs as SAA receptors illustrates the possible roles for TLRs in detecting host-derived molecules as a mechanism for alerting immune cells upon exposure to environmental stress.
RAGE (receptor for advanced glycation end product) is a multiligand immunoglobulin superfamily cell surface molecule. In a study of AA amyloidosis, RAGE was identified as a receptor of SAA [93]. The expression of RAGE and its interaction with SAA coincide with cell stress, and RAGE has been shown to mediate the NF-κB activating effect of SAA [93, 94]. SAA also binds to soluble RAGE [63]. NF-κB activation induced by SAA interaction with RAGE apparently contributed to the expression of tissue factor in monocytes through MAP kinase activation. Inhibition of RAGE by a RAGE competitor, by soluble RAGE, and by anti-RAGE IgG reduced the SAA-stimulated tissue factor expression [63]. RAGE is also reported to mediate the proinflammatory activity of SAA in uremia-related atherosclerosis, based on a study using the Apoe−/− and Ager−/− mice [95]. These studies identify RAGE as an endothelial and monocyte-expressed molecule that mediates selected activities of SAA.
Scavenger receptors on macrophages play important roles in the removal of debris during tissue injury and in macrophage transport of lipids. The scavenge-receptor SR-BI has been known for mediating cholesterol efflux, in which SAA plays a role [96]. Two independent studies published in the same year reported the identification of SR-BI as an SAA receptor [97, 98]. Direct binding assays using radiolabeled SAA found its interaction with SR-B1 in cells that express this receptor [97]. SR-BI and its human homolog CLA-I mediate SAA uptake and its downstream signaling, including the activation of ERK and p38 MAPK that leads to IL-8 expression [98]. A more recent study reported that SR-BII, a splice variant of SR-BI, also serves as a SAA receptor for uptake and proinflammatory signaling through MAP kinase signaling [99].
The human P2X7 purinergic receptor is an ionotropic receptor found at high expression levels in immune cells such as macrophages and microglia. Activation of P2X7 receptor by extracellular ATP opens a cation channel, allowing K+ efflux that is associated with processing of pro-interleukin IL-1β and IL-18. Christenson et al. found that SAA, either recombinant or purified from the plasma of rheumatoid arthritis patients, could suppress apoptosis of human neutrophils, an effect abrogated by antagonizing the nucleotide receptor P2X7 [100]. Niemi et al. reported that the P2X7 receptor plays a role in SAA-mediated activation of NLRP3, thereby explaining the involvement of SAA in the processing of pro-IL-1β [70]. However, a recently published work indicates that in murine J774 and bone marrow-derived macrophages, SAA stimulates IL-1β secretion through a mechanism that depends on NLRP3 expression and caspase-1 activity but not the P2X7 receptor [101].
Collectively, published reports have identified several functional receptors that mediate SAA signaling. It is likely that these receptors and their downstream signaling pathways have substantial cross-talk that together contributes to the diverse immunomodulatory and homeostatic functions of SAA.
Recent studies have shown that recombinant human SAA, which has been widely used in in vitro studies throughout the last two decades, has properties that differ from those of native SAA purified from human samples [102, 103, 104]. The rhSAA differs from human SAA1 in two sites, with amino acid substitutions at positions 60 and 71 in addition to gaining a methionine at the N-terminus. Since the rhSAA is made by Escherichia coli expression, the bacterial contaminants in the preparation may contribute to the observed cytokine-like activity. This is especially a concern because the contaminating bacterial products can activate the two TLRs that are known as the SAA receptors. A careful analysis of published literature found evidence that both support the use of the two TLRs by SAA and detract from the claim. Many of the published studies have included controls for LPS contamination, showing that the SAA protein is necessary for the reported biological functions. A recent study has shown that the bacterial contaminants may not be LPS that acts through TLR4 but lipoproteins that activate TLR2 [105]. The study also showed that adding bacterial lipopeptides into mammalian cell-expressed SAA1 protein could restore the cytokine-like activity that otherwise was missing from the SAA1 protein [105]. It is however unclear how much lipoproteins are carried by the E. coli-derived recombinant SAA. The E. coli expression system has been widely used in the production of reagents including proinflammatory cytokines such as TNFα and IL-1β, and there were not previous concerns over bacterial product contamination with these cytokines. Whereas the authors attributed the previously reported NLRP3 inflammasome-activating property of SAA to bacterial lipoprotein contaminants in the E. coli-derived SAA [105], another recent study demonstrated that SAA purified from human samples was able to stimulate NLRP3 inflammasome activation [101]. Taken together, these findings raise the possibility that bacterial contaminants may modify the biological properties of human SAA1 for a potent cytokine-inducing effect. Exactly how much bacterial contaminant is associated with a recombinant human SAA1 is still unknown, but published studies have shown that E. coli-produced SAA proteins can be processed to sufficient purity so they can form crystals [32, 56]. Moreover, CHO cell-derived SAA in the form of secreted Fc fusion protein has been shown to bind to the ectodomain of TLR2 [86]. While the contaminating lipoproteins may contribute to the cytokine-inducing activity through TLR2, these contaminants have not been known to stimulate the G protein-coupled FPR2 that mediates some of the biological activities of SAA [47, 60, 74, 78, 79, 80, 81, 82, 83, 84, 85]. Based on available data, it is postulated that some of the observed functions of rhSAA are attributable to bacterial contaminants. In vivo studies conducted in various models of diseases are therefore important for confirming the biological functions of SAA under physiologically relevant conditions.
Since most of the early studies were conducted using cell lines and isolated primary cells such as monocytes and neutrophils, these experimental findings are now examined in an in vivo setting. An early model created for the in vivo studies of SAA employed adenoviral expression of human SAA1, raising the circulatory levels of human SAA1 in the infected mice [106]. This approach was used in studies of the involvement of SAA1 in lipid metabolism [106] and fibril formation [107]. In a more recent study, the same group that created the adenoviral approach found a role for SAA3 in atherosclerosis [108].
Transgenic expression of human SAA1 in mice is another approach used in studies of the in vivo functions of SAA. Ji et al. reported transgenic expression of human SAA1 in mouse liver [89]. These mice exhibited more severe liver injury, increased hepatocyte apoptosis, and higher levels of hepatic enzymes than in their wildtype controls. After induction of hepatitis, liver infiltration of CD4+ T cells and macrophages was also increased more in the transgenic mice than in wildtype mice, along with elevated expression of several chemokines. The aggravated liver injury, increased hepatocyte apoptosis and elevated levels of hepatic enzymes in the transgenic mice were eased with the use of a TLR2 antagonist, suggesting that TLR2 mediates the effects of the transgenic SAA1. In a more recent study, Cheng et al. placed the human SAA1 under an inducible promoter of SR-A receptor, generating transgenic mice with elevated local production of SAA1 upon inflammatory stimulation [53]. The transgenic SAA1 was most abundant in mouse lungs and protected mice against acute lung injury caused by LPS administration and cecal ligation and puncture (CLP). Transgenic expression of SAA1 did not protect mice against acute lung injury induced by intratracheal instillation of TNFα. Binding studies showed that human SAA1, purified from either E. coli or transfected HEK293 cells, bound to LPS and formed a complex that promoted LPS clearance by macrophages. As a result, serum endotoxin concentration was significantly reduced in the transgenic mice than in their wildtype controls that went through the CLP procedure. Of note, injection of a SAA1-derived peptide that disrupted LPS-SAA1 interaction diminished the endotoxin-lowering effect in the SAA1 transgenic mice and increased serum endotoxin level in wildtype mice after CLP [53]. These findings suggest a mechanism by which acute-phase SAA protects host against bacterial infection-induced injury.
SAA gene knockout mice were generate to examine the physiological functions of the individual SAA proteins. After observing SAA1 and SAA2 expression in intestinal epithelial cells and conforming their cell-protecting effect in epithelial cell line co-cultured with E. coli, Eckhardt et al. examined the effect of Saa1/2 double knockout (DKO) in dextran sodium sulfate (DSS) induced colitis model [109]. They found that that epithelial expression of SAA1 and SAA2 protected colonic epithelium against bacterial infection. A more recent study using Saa3 gene knockout mice found that SAA3 is the predominant isoform of inducible SAA proteins in colonic epithelium following chemical injury [92]. Compared to wildtype mice, Saa3−/− mice exposed to DSS showed more severe damage to the colonic epithelial structure, significantly reduced expression of the anti-microbial peptides Reg3β and Reg3γ, and reduced lifespan of afflicted mice if not treated. Administration of exogenous SAA3 protein or adoptive transfer of SAA3-treated neutrophils partially ameliorated symptoms of DSS-induced colitis in part due to SAA3-induced neutrophil expression of IL-22, a cytokine with epithelia-protection function [110]. Together, these results suggest that epithelial expression of SAA1 and SAA2 in healthy mice may be important for homeostasis of gut functions including host defense, whereas inducible expression of SAA3 serves to combat acute injury to the colonic epithelium.
A role for SAA as a mediator of local immune response has been reported recently. In a study of segmented filamentous bacteria (SFB) for its involvement in mucosal defenses and autoimmune diseases through RORγ+ Th17 cells, Sano et al. found that direct contact of SFB with epithelium in the ileum could induce SAA1 and SAA2 expression and promote local IL-17A expression in RORγ(+) T cells. The mechanisms involved an IL-23R/IL-22 circuit and the participation of type 3 innate lymphoid cells (ILC3) that secretes IL-22 [111]. Likewise, Atarashi et al. investigated a group of intestinal microbes for their ability to induce Th17 response, and found that SFB could stimulate intestinal epithelial cells to generate SAA and ROS, creating an amplification loop for sustained production of SAA by both epithelial cells and myeloid cells that led to local Th17 response [112]. These findings provide direct evidence for the contribution of epithelial SAA to intestinal homeostasis in an environment where host interaction with gut microbiota influences the health states of individuals.
In addition to studies of the in vivo functions of SAA in innate immunity and inflammation, mice with genetically altered SAA genes were used in the investigation of these acute-phase proteins in animal models of atherosclerosis, osteoclast activation, adipogenesis, and neurodegenerative disorders such as Alzheimer’s disease. Ahlin et al. generated transgenic mouse model expressing human SAA1 in the adipose tissue, and used the hSAA1+/− mice in studies of the effect of SAA1 on glucose metabolism and insulin resistance [114]. They found no evidence that adipose tissue-derived hSAA1 could influence the development of insulin resistance or obesity-related inflammation. The potential involvement of SAA in atherogenesis was investigated using the Saa1/2 DKO mice in the Apoe−/− background [115]. Surprisingly, the absence of Saa1.1 and Saa2.1 did not affect atherosclerotic lesion in the ApoE-deficient mice that were fed with Western diets. It was later reported that SAA3, instead of SAA1/2, is pro-atherogenic based on experiments using adeno-associated virus for overexpression of SAA3 and antisense oligonucleotide-mediated suppression of Saa3 expression [108]. Using SAA3 KO mice, Liu et al. reported elevated Tau phosphorylation (hyperphosphorylation) compared to wildtype mice upon systemic LPS administration. Overexpression of SAA by intracerebral injection attenuated tau hyperphosphorylation in the brain, suggesting that SAA3 may be neuroprotective in the mouse AD model [116].
Several studies of the in vivo functions of SAA were conducted in wildtype mice. De Santo et al. reported that systemic SAA1 plays a role in the regulation of neutrophil plasticity through induction of the anti-inflammatory IL-10 and promotion of the interaction of invariant natural killer T cells (iNKT cells) with neutrophils. As a result, SAA1 indirectly limits the suppressive activity by diminishing IL-10 production and enhancing IL-12 production [113].
Collectively, results from the studies of SAA proteins in mice identified important functions of SAA that were previous unknown from in vitro studies. There are other functions revealed from the in vivo studies using genetically altered mice that are consistent with the in vitro findings. For example, the ability of SAA to interact with Gram-negative bacterial wall components [117] is consistent with the in vivo findings that SAA1 protects mice against LPS- and CLP-induced acute lung injury [53]. The in vivo findings strongly suggest that acute-phase SAA protects host against environmental insults such as chemical-induced intestinal epithelial injury and bacterial infection. Four of the animal models used in studies of SAA are summarized in Figure 3. Due to page limitation, in vivo studies on SAA functions other than those related to immunomodulation are not discussed in this chapter.
Immunomodulatory functions of SAA in selected mouse models. Left: transgenic expression of human SAA1 in the lung tissue protects mice against LPS-induced acute lung injury [53]. The protection is conferred in part through SAA binding to LPS, forming a complex that promotes LPS clearance by macrophages. Middle: SAA1 and SAA2 expressed in epithelium of the ileum serves as a mediator of segmented filamentous bacteria-induced local Th17 response [111, 112], contributing to homeostasis of the microenvironment in the intestine [109]. In response to acute injury such as dextran sodium sulfate (DSS) treatment, SAA3 is induced in mouse colonic epithelium and serves as an inducer for neutrophil IL-22 expression [92]. Right: SAA1-producing melanomas induce neutrophil secretion of IL-10 for its suppressive effect. SAA1 also promotes neutrophil interaction with invariant natural killer T (iNKT) cells, thereby limiting IL-10 production but enhancing IL-12 production [113]. This mechanism may be explored to reduce the immunosuppressive neutrophils and restore tumor-specific immunity.
SAA has emerged from a precursor of AA to a modulator of immunity and inflammation. Several developments, including the ability to express recombinant SAA proteins, the generation of genetically altered mice expressing SAA transgenes or deletion of a specific SAA gene, and the availability of crystal structures of SAA proteins, have helped to advance our understanding of SAA for its functions in host defense, lipid metabolism, adipogenesis, and neuroprotection. In coming years, studies will likely focus on the comparison of SAA functions in vitro to those identified in vivo, and on the possible modifications and proteolytic processing of newly synthesized SAA in order to address several questions that remain unanswered today. A better understanding of SAA for its biological functions is expected to benefit human health through development of new diagnostic approaches and therapies.
This work was supported in part by grants from the Science and Technology Development Fund of Macau (026/2016/A1) and the University of Macau (MYRG2016-00152-ICMS-QRCM and CPG2015-00018-ICMS).
The authors declare that they have no conflict of interest.
The combustion of fossil fuels such as coal, oil and natural gas for energy generate a large amount of carbon dioxide (CO2) emission, causing global warming and climate change. Presently, legislation such as the Paris Agreement of 2015, provided a framework on dealing with greenhouse-gas-emissions (GHG) mitigation, and it is anticipated across the industrialised world to cut down the amount of CO2emissions and limit global warming to less than 2°C [1]. Additionally, the demand for energy is expected to increase by 50% in 2030, and also oil and gas are considered the principal feedstock of about 90% of chemicals produced worldwide, and it is forecasted that petrochemical industries will become the largest driver for global oil consumption by 2050 [2]. In this light, it is therefore important to mitigate the environmental impact of burning carbon-based fuels, in which potential progress has already been made in CO2 capture, utilisation and storage (CCUS) technologies [3]. The CCUS is considered a means to deliver low carbon energy, decarbonising industries, and facilitates the net removal of CO2 from the atmosphere. The stages involved include CO2 capture, transport of the captured CO2, utilisation and secure storage of the captured CO2.
Carbon dioxide capture will play a significant role as fossil fuel will continue to meet world energy needs during this transition to sustainable low-carbon energy system [4]. It has also been reported that this transition phase will linger for a long time, providing sufficient time for the development and commercialisation of renewable energy systems. The transportation sector especially logistics operations majorly depend on fossil fuels, resulting in large carbon footprint on the environment. Based on World Bank data, the shift into low-carbon energy such as renewable energy in logistics operations prove to minimise carbon emission and other greenhouse gases, create sustainable environment as well as improve economic performance [5, 6]. In 2018, the global CO2 emissions increased to 37.1 Gt which is forecasted to rise by about 10% in 2040, majorly due to the combustion of fossil fuels from industrial processes and transportation sector [7]. Hence, the impact of carbon emissions from logistics operations on the environment, global warming, climate change and health can be reduced remarkably by adopting renewable energy and green vehicles [6]. Therefore, government policy and legislations such as the Paris Agreement of 2015 are necessary to drive research and development into low-carbon energy and environmental sustainability. As a result of these policies, renewable energy and carbon capture technologies are being developed, and their implementation is expected to improve environmental quality and sustainability [5, 8, 9]. Unlike fossil fuels, renewable energies promote eco-friendly environment. Hence, CCUS technologies will enable the use of fossil fuels in a cleaner way when integrated with power plants to mitigate global warming and climate change effects. CO2 has found utilisation in the following areas mineralisation, biological utilisation, food and beverages, energy storage media, chemicals, enhanced oil recovery, coal bed methane and hydraulic fracturing processes [7]. However, public awareness and acceptance of CCUS is still low in spite of the attention shown by the scientific communities, industries and governments. Findings by Tcvetkov et al. [10] show that most studies on CCUS are dedicated to carbon dioxide storage in geological formation with less attention on capture and transportation. Hence, this study focuses on carbon dioxide capture using natural and renewable biomaterials such as eggshells and seashells.
The essence of carbon capture is to separate carbon dioxide from other gases produced as a result of the combustion of fossil fuels for power generation and industrial processes. Figure 1 shows the three main approaches to accomplish this, which are pre-combustion capture, post-combustion capture and oxy-fuel combustion methods.
Three common carbon dioxide capture approaches for coal fired power plant.
Before now, the capture of carbon dioxide is commonly achieved in the industry through absorption using liquid solvents such as selexol, rectisol, and mono-ethanol-amine, MEA [11]. The absorption process involves the use of two columns, namely the absorber and the stripper. This makes the process cost intensive in addition to corrosion issues. Consequently, a large amount of energy is needed to absorb CO2 [12]. On the other hand, physical adsorption via solid adsorption processes can selectively separate carbon dioxide from flue gas mixture. The advantages of adsorption include high selectivity, operation simplicity, low-cost, ease of regeneration, and low corrosiveness of adsorbent compared with solvent processes [11, 12].
The carbon dioxide adsorption approaches rely on the ability of the adsorbing material to preferentially adsorb CO2 over other gases. This is achieved through a packed bed system of the adsorbent materials. The adsorbent materials will continue to absorb CO2 until it is saturated, which is its adsorptive capacity. At this point, the packed bed undergoes desorption either through pressure swing adsorption (PSA) or temperature swing adsorption (TSA), which causes the release of the adsorbed CO2 to the point where the adsorbent material is at equilibrium [12, 13]. The commonly used adsorbent materials include zeolites, activated carbon, microporous/mesoporous silica, carbonates, carbon molecular sieves and metal organic frameworks. These materials possess adequate surface area and pore network structures that are highly microporous to accommodate and capture CO2 [12, 13]. The adsorbent materials are evaluated on the basis of adsorption capacity, preferential adsorption affinity for carbon dioxide over gases from flue gas stream, adsorption and desorption kinetics, low-cost, tolerance of impurities, mechanical strength, multicycle durability and regeneration of stability [13]. Additionally, the porous structure of the adsorbent material is engineered to improve mass transport by reducing diffusional resistance, and the microstructure and morphological texture must demonstrate the capacity to hold captured CO2 during multi cycling between the absorption and regeneration steps [13, 14]. However, since the process is based on gas-solid interaction, operational conditions such as gas flow rate, temperature and vibration could cause disintegration of adsorbent material due to crushing and abrasion, and consequently collapse pore network structures. It is also rare to find a single adsorbent material that maximises all the above highlighted attributes. Therefore, this review explores the use of other materials such as eggshell and seashell rich in calcium carbonate through reactive adsorption, which involves carbonation – calcination of CaO/CaCO3 for carbon dioxide capture.
Alkaline earth metal oxides have demonstrated a strong affinity for acidic gas such as carbon dioxide and sulphur oxides. These metal oxides, particularly calcium oxide (CaO), are effective for the removal of CO2 via carbonation at moderate temperatures of less than 700°C [11]. Hence, calcium oxide has proven a good sorbent material for carbon dioxide capture. With regards to availability and cost, an excellent source of CaO is calcium carbonate (CaCO3). The most widely natural source of CaCO3 includes dolomite and limestone. However, these natural resources are non-renewable, energy intensive to exploit, their mining cause damage to the environment as well as landscape. More also, CaO sorbent derived from natural limestone decreases in its reactivity over a number of cycles of reaction with CO2 [15]. As a result of this, attention has been shifted to renewable sources such as eggshells, seashells and snail shells. These waste biomaterials provide sustainable source of calcium carbonate (CaCO3) in the range of 90–96% [16]. Calcined eggshell and seashells such as oyster shell are rich in lime (CaO) and can be combined with post-combustion and pre-combustion systems to separate CO2 through cyclic carbonation of CaO (calcined eggshell/seashell) to CaCO3, and subsequently the calcination of CaCO3 to release pure CO2 and regenerate back to CaO, as shown in Figure 2 [15, 17, 18, 19]. This reversible reaction between CaO and CO2 is a promising approach of removing CO2 from flue gas from power plants, producing a pure stream of CO2 ready for geological sequestration [15, 19]. To achieve this objective, the material should exhibit sufficient reactivity and thermal stability. Eggshell and seashell are a low-cost and abundant alternative to synthetic calcium carbonate and lime sorbents.
Carbonation – calcination process in calcium looping cycle application for carbon capture.
The poultry and seafood industries generate millions of tonnes of waste shells annually, which are disposed of in landfills. These biomaterials are rich in calcium carbonate, and subsequently, a large source of calcium oxide. The discarded eggshells and seashells after consumption of their food content, the heap waste shell is a habitat for microbes which causes environmental and air pollution due to emission of intensive odour especially during microbial decomposition [16]. These waste shell biomaterials can be recycled and used as a source of calcium oxide material for carbon dioxide capture purposes. Remarkable costs can be saved when these waste shells biomaterials are re-used, with emphasises on economic and sustainable environmental benefits of recycling instead of disposing. However, the carbon dioxide capture capacity of synthesised calcium oxide sorbents from eggshell and seashells decreases, as cycles of carbonation and calcination increases because of sintering over time [17]. To remedy this, it is important to generate more porous surface structure in the biomaterials through pre-treatment and regeneration processes.
The major solid mineral component of eggshells and seashells is calcium carbonate in the range of 92–96% and minor trace elements such as silica, alumina, phosphorous, magnesium, sodium, potassium, zinc, manganese, iron, and copper. A detail composition of eggshell and seashells has been reported elsewhere [16]. The physical properties of some calcined eggshells and seashells biomaterials such as surface area, pore volume and pore diameter are shown in Table 1. These waste shells biomaterials exhibit the type-IV isotherm which an attribute of mesoporous texture morphology characterised with a network of micropores. The pore size re-affirms their microstructure characteristics to accommodate captured CO2. During calcination, the specific surface area and pore volume of the crushed eggshells and seashells biomaterials increases, as the calcination temperature increases. This is because of the evolution of porosity within the material as a result of the release of CO2 from CaCO3, leading to the formation of CaO [16, 20]. However, at a temperature greater than 900°C, the surface area and pore volume decreased due to prolonged thermal effect, resulting in sintering [16, 20].
Parameter | Mussel shell | Oyster shell | Chicken eggshell | Ostrich eggshell |
---|---|---|---|---|
Surface area (m2/g) | 89.91 | 24.00 | 54.60 | 71.00 |
Pore volume (cm3/g) | 0.130 | 0.04 | 0.015 | 0.022 |
Pore size (nm) | 3.5 | 6.6 | 0.54 | 0.61 |
Reference | [21] | [22] |
Surface area, pore size and volume of calcined seashells and eggshells biomaterials.
Figure 3 shows the X-Ray Diffraction (XRD) patterns of uncalcined (natural) and calcined (thermally treated) eggshell (quail) and seashell (oyster shell). The major component visible on the XRD pattern of the natural crushed shells is CaCO3and a small amount of Ca(OH)2. Both the quail eggshell and the oyster shell share identical diffraction patterns for both the natural and calcined forms.
XRD pattern of shells natural and calcined: (a) quail eggshell (*CaCO3, natural + CaO, calcined at 900°C) [23] and (b) oyster shell (symbols: ●CaCO3, ▲CaO, and ♦Ca(OH)2) [21].
This suggests a similar mineralogical identity. After calcination (thermal treatment process), the diffraction lines attributed to rhombohedral phase for CaCO3 disappeared, with new diffraction patterns arising around 2θ = 32.3°, 37.4°, 53.7°, 63.9°, and 67.3° assigned to cubic phase for lime (CaO) appeared (Figure 3). It is worthy to note that the quail eggshell exhibited a crystallite size of 315 nm (CaCO3), while its calcined counterpart showed a size of 240 nm, CaO [23]. This crystallite size decrease can be ascribed to the exothermic natures of the calcination process. However, the lower intensity peaks for calcined eggshell and oyster shell could be related to the reduction in the crystallite size [21, 23]. Hence, the changes in the XRD pattern as a result of calcination are because of the release of carbon dioxide from the decomposition of CaCO3 into CaO.
The associated complexity and high cost for the production of carbon dioxide capture adsorbent materials such as activated carbon or zeolite has shifted attention to exploiting and developing cheap and renewable materials such as eggshells and seashells biomaterials. Figure 4 shows the procedure involved in the preparation of sorbent material from eggshells and seashells. The waste eggshells and seashells first undergo pre-treatment, which begins with acetic acid treatment with a concentration in the range of 1–10 molar to remove dirt, membrane layer, fibrous matters, proteins and other impurities as well as improve pore structure of the biomaterial [24]. Exposing the waste shells to acetic acid promotes the detachment of protein-collagen membrane depending on the extent, concentration and duration. At the end of this process, the sample is filtered and rinsed with distilled or deionised water. The separated eggshell or seashell is dried at 100–200°C for 5 h [16]. The dried biomaterials are crushed and then sieved into different particle size ranges depending on the application. The particles are calcined; the calcination process involves heat treatment to decompose the major component CaCO3 into CaO. The temperature of calcination could range from 500 to 1000°C depending on the application. It has been reported that at 900°C, the CaCO3 undergoes complete conversion into CaO [21]. The material produced after calcination is the sorbent material, which is placed in a desiccator to curtail the chances of coming in contact with humidity and carbon dioxide in the air.
Adsorbent material preparation procedure from eggshell and seashells.
In the pre-treatment phase, the reaction of acetic acid with CaCO3 results in the formation of calcium acetate, which has a larger molar volume than CaCO3 and CaO [25]. The acetic acid treatment helps to expand and improve particle pore structure. As a result of the expanded and enhanced pore network structure, improve performance is achieved over multiple carbonation-calcination reaction (CCR) cycles [24, 26, 27]. Hence, the increased porosity within the microstructure of the synthesised CaO sorbent biomaterial from eggshell or seashells leads to increased reactivity over time.
The continuing reliance on fossil fuels such as coal, natural gas and crude oil emits greenhouse gas (GHG) especially carbon dioxide (CO2), a major contributor to global warming. The application of physical and chemical absorption using solvents such as selexol, rectisol, and mono-ethanol-amine (MEA) to remove carbon dioxide from flue gas streams is limited by low-temperature, cost and energy-intensive to regenerate [11]. Produced CaO sorbent material from eggshells or seashells through the method outlined in Figure 4, has proven a good candidate for carbon dioxide capture from flue gas stream of power plants. This is owing to their affinity to carbonate in the presence of CO2; resulting in the formation of CaCO3 which is regenerated back to CaO via calcinations while pure CO2 is released for sequestration in the process as shown in Figure 5.
Schematic of the eggshell or seashell carbonation – calcination processes for carbon dioxide capture.
Unlike the adsorption process for CO2 capture using activated carbon or zeolite adsorbent materials, eggshells and seashells biomaterials are low-cost and offer exclusive environmental and economic benefits. Additionally, eggshell or seashell-derived CaO sorbent are abundant, renewable, simple to prepare and also possesses excellent thermal stability. The mechanism of CO2 capture by these biomaterials comprises of a series of carbonation-calcination reactions (CCR): calcium oxide (CaO) derived from eggshell or seashell reacts with CO2 in the flue gas stream, leading to calcium carbonate (CaCO3), which then undergoes calcination resulting in the release of a pure CO2 stream for sequestration, and at the same time is regenerated into CaO as shown in Figure 5 [24]. The pilot-scale demonstration of the concept has been reported for eggshell and oyster shell in the literature [24, 26, 27, 28, 29]. The reactions are summarised as follows: carbonation (CaO + CO2 → CaCO3) of the eggshell-derived CaO through reaction with CO2 forms calcium carbonate (CaCO3), while the calcination process (CaCO3 → CaO + CO2), regenerates the CaO bio-composite material, and liberate pure stream of CO2 for sequestration. Sacia et al. [27] investigated CaO sorbents derived from chicken eggshell for CO2 from coal-fired power plants. In the work, they discovered that the pre-treatment of the eggshell with acetic acid enhanced and expanded the derived-sorbent material pore structure and surface area, which favoured CO2 diffusion as mass transport is improved.
Figure 6 shows the effect of acetic acid concentration and treatment time on CO2 capture over multiple cycles. It is clear that the acetic acid treated eggshell outperformed the untreated counterpart. On the other hand, derived CaO from eggshell treated with a low concentration of acetic acid exhibited better reactivity and CO2 capture capacity than that treated with higher concentration. This can be attributed to the improved reactivity and porous surface structure within the biomaterials when treated with an optimised concentration of acetic acid [24, 26, 27].
Effect of acetic acid and treatment time on weight per cent CO2 capture using chicken eggshell [24].
Figure 6 also demonstrates that subjecting the eggshell or seashell to a higher strength acetic acid solution or for a longer treatment time could affect the pore structure, strength and stability of the derived CaO sorbent biomaterial. This is consistent with the result of the investigation reported by Sacia [17], on the use of eggshell for CO2 capture. Hence, the observed decrease in the reactivity and CO2 capture capacity under this condition. More also, the data shows that the derived sorbent from eggshell or seashell cannot be continuously regenerated over multiple cycles, as a result, fresh sorbent would be added as make-up during the process to sustain capture capacity (Figure 6). Depending on the acetic pre-treatment time, it has been reported that the CO2 capture ranges from 70 to 80% in the first cycle, and gradually drop to about 40% in the fifth cycle [27].
Figure 7 shows simulated thermogravimetric analyser (TGA) results to prove CO2 capture capacity of eggshell-derived sorbent using a typical flue gas stream (10% CO2 for 60 min cycles at 700°C). The weight of the sample indicates reactivity, while the weight increase signifies carbonation due to CO2 capture; the decrease represents the calcination process because of CO2 liberation. It is clear that the CO2 capture performance and reactivity gradually diminishes for multicycles over time.
Weight vs. time of eggshell-derived adsorbent for CO2 capture using TGA [24].
The reactivity and CO2 capture capacity of the eggshell or seashell derived CaO sorbent decline over time, so regeneration of sorbents in-situ is pivotal to maintaining CO2 capture. The regeneration can be carried out using deionised water and acetic acid solutions [27]. The effect of regeneration of the eggshell derived CaO sorbent on CO2 capture is shown in Figure 8. It is clear that regeneration with acetic acid is more effective than with water. Sacia [17] ascribed this observation to two factors. First, the use of acetic acid resulted in calcium acetate, which exhibited a higher molar volume than only Ca(OH)2 formed when water is used. Also, the combination of water and acetic acid allows for a surface structure rearrangement due to the solubility of calcium acetate in water. It has been found that the use of 2 M acetic acid offers the best performance after multiple cycle regeneration in terms of reactivity and CO2 capture [17, 24]. It can be observed that over three regenerations, all of the sorbent showed similar results trend.
Conversion vs. regenerations of eggshell derived CaO sorbent treated with a 1 M acetic acid for 30 min [17].
In the investigation of Sacia et al. [27], it was found that regeneration restored the reactivity of the eggshell-derived CaO sorbent, and subsequently, CO2 capture capacity in the range of 70–80% was achieved. The CO2 capture capacity increased on average after successive regeneration, as can be seen in Figure 8. This suggests that periodic regeneration can effectively increase the reactivity of the spent eggshell or seashell-derived CaO sorbent. In another study by Banerjee et al. [30], it was reported that after four successive regenerations over multi-cycles usage, the carbon dioxide capture capacity of the eggshell-derived sorbent material decreased from 6824 mg CO2/g to 1608 mg CO2/g an average compared to the fresh material. This indicates that the eggshell-derived CaO sorbent biomaterial could hold about eight times its own weight of CO2 from flue gas. Furthermore, Ma and Teng [31] investigated and reported the carbonation – calcination loop of CaO/CaCO3 process for CO2 capture using CaO derived sorbent from oyster shells. Though compared to reagent grade CaO from CaCO3, the oyster shell derived CaO possess bigger crystallite size and lower specific surface area. It was reported that at 740°C carbonation temperature, the oyster shell-derived CaO sorbent in cyclic carbonation exhibited superior performance to the reagent-grade CaO obtained from CaCO3. Therefore, utilising this waste biomaterial in CO2 capture encourages the reuse of materials in the industries, which will reduce the risk, cost and energy associated with mining limestone and dolomite for CaCO3 and CaO, and subsequently offers economic and environmental benefits. However, these benefits will be significant if the system is scaled-up to industrial standards.
There are large tonnes of eggshells and seashells discarded in landfill annually from poultry and food industries. Most of the seashells and eggshells are piled up on the seashore and thus would cause risks to water resources and public health. The applications of these biomaterials in construction such as concrete and cement production, catalyst manufacture, adsorbent for wastewater treatment, source of calcium in animal feed, manufacture of hydroxyapatite biomaterial, and additive in plastic manufacture has been explored extensively in the literature. These biomaterials contain about 96% calcium carbonate mineralogical component from which calcium oxide can be produced through thermal treatment. The carbonation – calcination loop of CaO/CaCO3 process has been investigated for CO2 capture potentials. Herein, the application of eggshell and seashell derived-CaO sorbent in the capture of carbon dioxide from flue gas is reviewed. The utilisation of this waste shell offers economic as well as environmental benefits because they are abundant, renewable and cheap. The CaO sorbent derived from eggshell and seashell has demonstrated the potential for carbon dioxide capture. It was also found that pre-treatment and regeneration provide means of restoring reactivity and CO2 capture capacity over multicyclic usage. Although this ensured sustainability and sorbent recyclability, the performance decreases ten cycles after regeneration. The future outlook will be to improve the carbon dioxide capture capacity and thermal stability of these biomaterials over multicycles operations.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1225",title:"Optical Physics",slug:"optics-and-lasers-optical-physics",parent:{title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:5,numberOfAuthorsAndEditors:92,numberOfWosCitations:47,numberOfCrossrefCitations:36,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optics-and-lasers-optical-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8350",title:"Fiber Optic Sensing",subtitle:"Principle, Measurement and Applications",isOpenForSubmission:!1,hash:"d35774b28952d3c4c4643b58dec25549",slug:"fiber-optic-sensing-principle-measurement-and-applications",bookSignature:"Shien-Kuei Liaw",coverURL:"https://cdn.intechopen.com/books/images_new/8350.jpg",editedByType:"Edited by",editors:[{id:"206109",title:"Dr.",name:"Shien-Kuei",middleName:null,surname:"Liaw",slug:"shien-kuei-liaw",fullName:"Shien-Kuei Liaw"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7582",title:"Nonlinear Optics",subtitle:"Novel Results in Theory and Applications",isOpenForSubmission:!1,hash:"a3ad4a3553a3ec59f7992d4f6495ac07",slug:"nonlinear-optics-novel-results-in-theory-and-applications",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/7582.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris",middleName:"I.",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6599",title:"Small Angle Scattering and Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"9b1efb6a54c3fbdadd875f7bac0f6718",slug:"small-angle-scattering-and-diffraction",bookSignature:"Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/6599.jpg",editedByType:"Edited by",editors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",middleName:null,surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"52294",doi:"10.5772/65118",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2472,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52465",doi:"10.5772/65385",title:"Bioluminescent Fishes and their Eyes",slug:"bioluminescent-fishes-and-their-eyes",totalDownloads:1372,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"José Paitio, Yuichi Oba and Victor Benno Meyer-Rochow",authors:[{id:"185998",title:"Dr.",name:"Yuichi",middleName:null,surname:"Oba",slug:"yuichi-oba",fullName:"Yuichi Oba"},{id:"186175",title:"Dr.",name:"Jose Rui",middleName:null,surname:"Lima Paitio",slug:"jose-rui-lima-paitio",fullName:"Jose Rui Lima Paitio"},{id:"202747",title:"Dr.",name:"Victor B.",middleName:null,surname:"Meyer-Rochow",slug:"victor-b.-meyer-rochow",fullName:"Victor B. Meyer-Rochow"}]},{id:"52672",doi:"10.5772/65185",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2918,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]}],mostDownloadedChaptersLast30Days:[{id:"52173",title:"The Dynamics of Luminescence",slug:"the-dynamics-of-luminescence",totalDownloads:1531,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Luyanda L. Noto, Hendrik C. Swart, Bakang M. Mothudi, Pontsho S.\nMbule and Mokhotjwa S. Dhlamini",authors:[{id:"102985",title:"Dr.",name:"Mokhotswa",middleName:null,surname:"Dhlamini",slug:"mokhotswa-dhlamini",fullName:"Mokhotswa Dhlamini"}]},{id:"52294",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2476,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52672",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2922,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]},{id:"65854",title:"The State-of-the-Art of Brillouin Distributed Fiber Sensing",slug:"the-state-of-the-art-of-brillouin-distributed-fiber-sensing",totalDownloads:793,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"fiber-optic-sensing-principle-measurement-and-applications",title:"Fiber Optic Sensing",fullTitle:"Fiber Optic Sensing - Principle, Measurement and Applications"},signatures:"Cheng Feng, Jaffar Emad Kadum and Thomas Schneider",authors:[{id:"280943",title:"M.Sc.",name:"Cheng",middleName:null,surname:"Feng",slug:"cheng-feng",fullName:"Cheng Feng"},{id:"290271",title:"Mr.",name:"Jaffar",middleName:null,surname:"Kadum",slug:"jaffar-kadum",fullName:"Jaffar Kadum"},{id:"290272",title:"Prof.",name:"Thomas",middleName:null,surname:"Schneider",slug:"thomas-schneider",fullName:"Thomas Schneider"}]},{id:"64727",title:"Nonlinear Schrödinger Equation",slug:"nonlinear-schr-dinger-equation",totalDownloads:822,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-novel-results-in-theory-and-applications",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - Novel Results in Theory and Applications"},signatures:"Jing Huang",authors:[{id:"198550",title:"Ph.D.",name:"Jing",middleName:null,surname:"Huang",slug:"jing-huang",fullName:"Jing Huang"}]},{id:"52568",title:"Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence",slug:"trap-level-measurements-in-wide-band-gap-materials-by-thermoluminescence",totalDownloads:1546,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Pooneh Saadatkia, Chris Varney and Farida Selim",authors:[{id:"185781",title:"Prof.",name:"Farida",middleName:null,surname:"Selim",slug:"farida-selim",fullName:"Farida Selim"},{id:"186734",title:"Ms.",name:"Pooneh",middleName:null,surname:"Saadatkia",slug:"pooneh-saadatkia",fullName:"Pooneh Saadatkia"},{id:"186735",title:"Dr.",name:"Chris",middleName:null,surname:"Varney",slug:"chris-varney",fullName:"Chris Varney"}]},{id:"66415",title:"Magnetic Solitons in Optical Lattice",slug:"magnetic-solitons-in-optical-lattice",totalDownloads:227,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-from-solitons-to-similaritons",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - From Solitons to Similaritons"},signatures:"Xing-Dong Zhao",authors:[{id:"283277",title:"Dr.",name:"Zhao",middleName:null,surname:"Xingdong",slug:"zhao-xingdong",fullName:"Zhao Xingdong"}]},{id:"52708",title:"Bioluminescence of the Black Sea Ctenophores-Aliens as an Index of their Physiological State",slug:"bioluminescence-of-the-black-sea-ctenophores-aliens-as-an-index-of-their-physiological-state",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Tokarev Yuriy Nikolaevich and Mashukova Olga Vladimirovna",authors:[{id:"186292",title:"Dr.",name:"Yuriy",middleName:null,surname:"Tokarev",slug:"yuriy-tokarev",fullName:"Yuriy Tokarev"},{id:"186293",title:"Dr.",name:"Olga",middleName:null,surname:"Mashukova",slug:"olga-mashukova",fullName:"Olga Mashukova"}]},{id:"52133",title:"Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies",slug:"excitation-intensity-ei-effect-on-photoluminescence-of-zno-materials-with-various-morphologies",totalDownloads:1427,totalCrossrefCites:4,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Prasada Rao Talakonda",authors:[{id:"185838",title:"Dr.",name:"Prasada Rao",middleName:null,surname:"Talakonda",slug:"prasada-rao-talakonda",fullName:"Prasada Rao Talakonda"}]},{id:"52293",title:"Luminescent Glass for Lasers and Solar Concentrators",slug:"luminescent-glass-for-lasers-and-solar-concentrators",totalDownloads:1537,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Meruva Seshadri, Virgilio de Carvalho dos Anjos and Maria Jose\nValenzuela Bell",authors:[{id:"185581",title:"Dr.",name:"Seshadri",middleName:null,surname:"Meruva",slug:"seshadri-meruva",fullName:"Seshadri Meruva"},{id:"193648",title:"Prof.",name:"Anjos",middleName:null,surname:"V",slug:"anjos-v",fullName:"Anjos V"},{id:"193649",title:"Prof.",name:"Bell",middleName:null,surname:"M.J.V",slug:"bell-m.j.v",fullName:"Bell M.J.V"}]}],onlineFirstChaptersFilter:{topicSlug:"optics-and-lasers-optical-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/285026/udaya-ragula",hash:"",query:{},params:{id:"285026",slug:"udaya-ragula"},fullPath:"/profiles/285026/udaya-ragula",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()