Annual distribution of gonadal cycle phases in female sea urchins.
\r\n\tThis book aims to highlight the novel and innovative techniques for designing and fabricating 3D scaffolds, their physical, chemical, and mechanical properties, the role of scaffolds on cellular behavior such as proliferation, migration, differentiation, and alignment of cells in vitro and in vivo tissue development, targeted delivery and sustain release of drugs and bioactive compounds, and development of acellular tissue substitutes.
\r\n\tThe scope of this book will include, but will not be limited to, following topics:
\r\n\t- Fabrication and characterisation of 3D scaffolds
\r\n\t- Incorporation of bioactive compounds on materials for biofunctionalisation
\r\n\t- Cellular behaviours on functionalized biomaterials
\r\n\t- Development of tissue substitutes
\r\n\t- Drug delivery system for targeted delivery and sustain release
\r\n\t- Acellular tissue substitutes for tissue engineering and regenerative medicine
The potential marketing of the edible sea urchin Paracentrotus lividus (Lamark 1816) has been considerably augmented during the last two decades due to its culinary value for various Mediterranean and mid-European populations. This fact poses particular interest for this invertebrate species [1] that is the most studied group of benthic macrofauna in the Mediterranean sea [4]. This edible Mediterranean sea urchin species has an extensive geographical distribution in Apulia sea, in the south of Italy [2]. However the local consumption of edible sea urchin is more substantial, coinciding with the peak of the tourist season. Local populations of sea urchins experience unavoidable pressure during that season, and in some cases, local authorities have imposed a temporary or permanent ban to protect them. Several studies have reported that sampling activities (fishing, harvesting) have direct consequences on the benthic macrofauna, potentially decreasing density and individual size and leading to sex ratio imbalance [3]. Furthermore, because edible sea urchins are frequently found in shallow waters, they are also subject to recreational fishing [4, 5].
\nThe valuable food product of sea urchins is the gonads of female animals, referred as roe. The largest fisheries are in Japan, Chile and the USA, the latter two countries primarily exporting the product to markets in the Far East. The Chilean urchin fishery has increased dramatically in recent years to around 54,000 tons, largely due to the discovery of new fishing grounds. Smaller fisheries exist also in Europe, mainly supplying domestic markets. However the fishery statistics clearly demonstrate that most of the world’s urchin fisheries are fully or overexploited, and it is generally accepted that further urchin fishing grounds are unlikely to be discovered. Whereas the biological basis for sea urchin culture has been long established, research continues to refine the hatchery production of the juveniles [6, 7]. To promote sea urchin production, different strategies, relatively to the optimal diets for sea urchin, in order to improve the quality of gonads (colour, taste and texture) are reported [8–11]. For example, in Japan the cages are allocated, immediately (juvenile period) in sea floor, but in other countries, the cages are first incubated in area with a low quantity of nutrient and later are arranged in sea floor [8–11]. Hatchery-reared juveniles have been grown in suspended culture with Atlantic salmon, Salmo salar [12–14]; in closed recirculation systems [15]; in land-based integrated systems [16] and in rock pools in southern Ireland (J. Chamberlain, Dunmanas Seafoods Ltd., pers. Comm.). Another interesting and cost-effective option is to obtain a uniform quality of gonads combining the advantages derived from the systems that produce a uniform size class, with the systems that use the coculture [17]. In north-west Scotland, P. lividus is being evaluated as a potential new species for aquaculture. P. lividus is often described as herbivorous, although there are documented instances of its feeding on artificial diets containing fish meal [18], sponges, hydrozoa, copepods, dead fishes and mussels [19]. Diet quality can significantly influence the sea urchins’ somatic and gonadal growth [20–24].
\nAquaculture has been supporting human demands for fish products for centuries and is an important industry worldwide [25]. Aquaculture fisheries are a booming industry but discharging heavy nutrient loads into coastal water [24] and on an intensive scale causing severe environmental problems. Modern intensive monoculture requires high inputs of water, feeds, fertilizers and chemicals and inevitably produces considerable wastes. Therefore, many aquaculture operations put enormous pressure on coastal habitats [26]. Waste products from fish farms consist mainly of nitrogen, phosphorus and carbon dioxide. A possible solution to this problem is to integrate seaweeds or filtrating species into fish farming. Numerous studies have been performed which combine seaweed culture with land-based fish tanks or open sea fish cages [24, 27–29]. Seaweeds removed up to 90% of the nutrients discharged from an intensive fish farm. Algal farming along the coasts, therefore, may function as an effective biofilter to alleviate the eutrophication problem worldwide [28–33]. Moreover, the use of filtrating species has also been considered in an integrated cocultured system and showed reasonably high efficiency in the removal of waste inorganic nutrients [24–29]. In this respect, the present research work is aimed to set up the best diet for the optimal breeding conditions of P. lividus in a coculture offshore fish farm. To this purpose the morphological and biochemical characteristics of sea urchin grown in their natural marine environment and in fish farm were compared. The wild samples were captured in four different sites along the Ionian sea of Apulia and near the offshore fish farm located in Torre Suda. The sampling sites were chosen: two, Capilungo and Posto Rosso, at south and two, Arcobaleno and Torre Pizzo, at north of fish farm (Figure 1). These animals were analysed during 1 year for the monitoring of the growth by comparing the population living in natural conditions, in relation to the sea flowing variability of available food with the population of sea urchins in breeding conditions and fed with different determined diets (Figure 1).
\n(A) Map of Ionian Salento coast with the sampling sites of wild sea urchins. Location of fish farm is indicated by the circle; (B) overview of the cage distribution in the offshore aquaculture system at Torre Suda, Gallipoli, Italy.
Gonadal growth and maturation of sea urchins are characterized by an accumulation of nutrients in the nutritive phagocyte cells that are then used for gametogenesis. Pre-gametogenesis in both sexes begins with the gonad size increase by accumulation of nutrients into the phagocytic cells, filling the gonadal lumina. During gametogenesis, nutritive phagocytes gradually decrease in size, supplying nutrients to developing germ cells; lumina progressively are filled with eggs and sperms [34, 35]. Diet, gametogenesis and water temperature may have a marked influence on gonad quality, promoting the indispensable mechanisms of synthesis, selective storage and contents [36–39]. Indeed, quality and quantity of food affect the reproductive maturation and growth of sea urchins [20–39] and biochemical composition of gonads [40–43]. Lipids, proteins and carbohydrates are all necessary for the sea urchin growth. Their presence in the gonads allows the correct gametogenesis.
\nLipids, important energy reserves storing more energy per unit volume than proteins or carbohydrates, are structural components of cell and subcellular membranes and are vital for somatic growth. Lipids, like fatty acids (FA) and polyunsaturated fatty acids (PUFAs), are present in the gonads and are essential for a multitude of physiological functions. In addition PUFAs have also significant effects on human health, like eicosapentaenoic acid (EPA, C20:5 (n−3)) and docosahexaenoic acid (DHA, C22:6 (n−3)), that can prevent arrhythmia, cardiovascular diseases and cancer [44, 45]. A large group of FAs characterized by a furan ring (FFA) [46, 47], whose activity in nature is not completely clear, show a promising nutritional value, with scavenger activity against hydroxyl and peroxyl radicals [46]. The composition of these valuable FFAs, however, varies greatly among different urchin species and is influenced by their natural diet as well as physiological processes, that is, reproductive stage [18, 35]. FAs are also important for sea urchin reproduction. During gametogenesis, they can be used as a source of energy [48], and additionally, sea urchin spermatozoa obtain energy for swimming through oxidation of fatty acids derived either from phosphatidylcholine or from triglycerides [49]. The latter are important for larval development and survival [50].
\nProteins are one of the most necessary and costly nutrients of most aquatic animal diets. Adequate provision of dietary protein decreases feed intake and increases growth and roe production in all species of sea urchin. On the other hand, high protein levels or the presence of specific amino acids could have an adverse effect on the quality of sea urchin roe. Therefore, an adequate protein diet should be formulated to get maximal growth and roe production, avoiding protein excess.
\nSoluble carbohydrates are easily digested by sea urchins, and numerous carbohydrates have been identified in the sea urchin gut [35], indicating that sea urchins can most likely utilize carbohydrates from a wide array of sources. Few studies have examined the relationship between dietary protein and dietary energy requirements in sea urchins. Understanding this relationship may be an important step in the formulation of a feed suitable for sustainable sea urchin aquaculture.
\nThe study was carried out from July 2015 to June 2016 in a fish farm located 900 m far from the south coast of the Gallipoli (Lecce, Italy) area in the Ionic Sea (Figure 1). Four different cages are fed with artificial diet which was composed of a mixture in equal proportion of organic maize kernel (Zea mays), previously crushed with a blender into grains of a few millimetres, and chopped fresh organic spinach leaves (Spinacia oleracea); soya-based diet; Ulva lactuca fresh-based diet and pellet diet Classic K (Hendrix S.p.A). The diets were administered ad libitum; all cages are bred in coculture with Sparus aurata and Dicentrarchus labrax. The wild-type samples were collected monthly, in the same period, in four different localities: at south (Capilungo and Posto Rosso) and north (Arcobaleno and Torre Pizzo) of the fish farm. P. lividus are situated at 5–6 m depth. It is a steep zone and the bottom is mainly rocky. The diet of wild type was chiefly based on seaweed U. lactuca.
\nFor each sampling site, 50 animals were collected randomly and brought back to the laboratory alive. Measurements of the “height” along the oral-aboral axis, in mm “diameter”, perpendicular to the oral-aboral axis and “wet weight” in grams were taken for each animal. The gonadosomatic index (GSI) was calculated as GSI = 100 × wet weight of gonads/wet weight of whole animal. For the estimation of a feeding index, the gut contents of specimens per sample were dry-weighed and used to calculate a repletion index (RI) as proposed by Kempf [53], RI = 100 × wet weight of gut/wet weight of whole animal [51]. Specimens were then dissected to collect gonads that were weighted and the stage was determined. All the individuals with a gonad dry weight less than 4 g were considered to be immature or undifferentiated. Gonads were fixed in Bouin’s liquid for histological studies. Samples were dehydrated in alcohol and embedded in agar-paraffin wax, and 2 μm sections were stained with hematoxylin and eosin [2]. Maturity of the gonads was estimated according to stages established by Lozano et al. [51] and Sanchez-Espana et al. [52], which included four phases of development in the female and two in the males.
\nFatty acids were methylated with a modified version of the method proposed by Antongiovanni et al. [54]. The total lipids were extracted from fresh sample (gonads and gut) five times with hexane solution of internal standards, containing 1 mg/ml each of methyl valerate, methyl nonanoate, methyl tridecanoate and methyl nonadecanoate. Hence, 40 μl of methanolic KOH 2 N was added. The mixture was vortexed for 1 min at room temperature, and then the hexane phase was analysed by GC. The product of each extraction was filtered and then collected in one round glass flask.
\nMethylations were carried out in triplicate for each extract. Mixtures of fatty acid methyl esters (FAMEs) were analysed using a modified version of the method proposed by Santercole et al. [55], using one temperature programme with a 175°C plateau. Each FAME was identified using pure FAME reference materials, a custom reference mixture and Menhaden fish oil analytical standard (Sigma Aldrich, St. Louis, MO, USA). All chemicals and solvents were of analytical grade and were purchased from Sigma Aldrich (St. Louis, MO, USA). The sample was dried under vacuum by Rotavapor (Buchi) and the residue was dissolved with toluene. The transesterification reaction was performed with BF3 in methanol for 20 min at 90°C. Then by adding water and shaking vigorously, we obtained two phases, only the organic phase, containing lipids derivatized, was analysed by Gas Chromatografy with Flame Ionization Detector (GC-FID) for quantitative analysis.
\nTo measure the protein content, 0.2 g of the gonad was homogenized with 3 ml of radioimmunoprecipitation assay buffer (RIPA buffer) and centrifuged at 3500 g for 10 min. Protein in the solution was measured by the Bradford method [56], with bovine serum albumin as a standard.
\nThe polysaccharide content was extracted according to Unuma 2002. Polysaccharide in the solution was measured according to the anthrone-sulfuric acid method [57] with glucose as a standard.
\nThe gonad maturity of female and male sea urchins was observed for 1 year in wild and breeding animals. Sea urchins have a reproductive cycle characterized by (i) a growing stage, the nutrients are accumulated in the nutritive phagocytes; (ii) a maturation stage, the nutrients are transferred to germ cells for gametogenesis and lastly (iii) a spawning stage, mature gametes are released from the gonad. The gonadal annual cycle for female distinguishes four stages: H1, H2, H3 and H4, while the gonadal cycle for male shows three stages M0, M1 and the spawning identified as M1s. In Figure 2, the histological analysis of gonadal cycle for female sea urchins is reported. In the first stage (H1), said turned off stage, ascini are devoid of gametes, the ascinal walls are thin and the lumen is filled with nutritive phagocytes. The primary oocytes are few along the ovary wall. The second stage (H2), or oocytes maturation phase, coincides with the onset of vitellogenesis and the consequent size increase of the primary oocytes. The oocytes remain attached to the ovarian capsule walls and are still surrounded by nutritive phagocytes. Primary oocytes of larger dimension start to migrate towards the middle of the ovary capsule and displace nutritive phagocytes. In the third stage (H3), which is the spawning and post-spawning stage, the ovaries are filled with eggs, and the nutritive phagocytes form a thin layer along the capsule ovary wall. The last stage (H4) consists in the gonadal reconstitution with a thick nutritive layer. In the capsule of the ovaries, the number of mature eggs is reduced, and empty spaces are observed due to post-spawning. In addition, the wall of the ovary is almost devoid of cells and is very thin. The histological analysis of female gonads from wild sea urchins grown in the different sites and those breeding did not show histological differences, while a temporal variability of gonadal cycle distribution during the year was observed (Table 1).
\nHistological representation of wild-type female gonad phases, that is, H1, H2, H3 and H4.
\n | H1 | \nH2 | \nH3 | \nH4 | \n
---|---|---|---|---|
Different sites | \n||||
Capilungo | \nOct–Dec | \nJan–Mar | \nApr–Jul | \nAug–Sept | \n
Posto Rosso | \nSep–Dec | \nJan–Apr | \nMay–Jul | \nAug–Sept | \n
Torre Pizzo | \nSep–Nov | \nDec–Feb | \nMar–Jun | \nJul–Aug | \n
Arcobaleno | \nSep–Nov | \nDec–Feb | \nMar–May | \nJun–Aug | \n
Breeding condition | \n||||
U. lactuca diet | \nOct–Nov | \nDec–Feb | \nMar–Jun | \nJul–Sep | \n
Pellet-based diet | \nSep–Dec | \nJan–Mar | \nApr–Jun | \nJul–Aug | \n
Soya-based diet | \nSep–Dec | \nJan–Apr | \nMay–Jun | \nJul–Aug | \n
Artificial diet | \nOct–Dec | \nJan–Mar | \nApr–May | \nJul–Sept | \n
Annual distribution of gonadal cycle phases in female sea urchins.
The stage M0, or turned off stage, of male gonadal cycle is characterized by lack of sperms and by nutritive phagocytes at the periphery. During the stage M1, the presence of sperm is observed, the mature testes are packed with spermatozoa and the nutritive phagocytes are absent or limited to the periphery. Males’ specimens showed a similar pattern in all locations. The histological analysis of male gonads from wild sea urchins grown in the different sites and those in bred conditions shown a temporal variability of gonadal cycle distribution during the year (Table 2) (Figure 3).
\n\n | M0 | \nM1 | \nM1s | \n
---|---|---|---|
Different sites | \n|||
Capilungo | \nOct–Mar | \nApr–Jun | \nJul–Sep | \n
Posto Rosso | \nSep–Mar | \nApr–Jun | \nJul–Aug | \n
Torre Pizzo | \nNov–Mar | \nApr–Aug | \nSep–Nov | \n
Arcobaleno | \nNov–Apr | \nMay–Aug | \nSep–Oct | \n
Breeding condition | \n|||
Ulva lactuca diet | \nOct–Feb | \nMar–May | \nJun–Sep | \n
Pellet-based diet | \nSep–Mar | \nApr–Jul | \nAug | \n
Soya-based diet | \nSep–Feb | \nMar–May | \nJun–Aug | \n
Artificial diet | \nNov–Apr | \nMay–Jun | \nJul–Oct | \n
Annual distribution of gonadal cycle phases in male sea urchins.
Histological representation of wild-type male gonads phases, that is, M0, M1 and M1s.
The gonadosomatic index (GSI) vs. size of wild animals captured at the four sites and of the animals fed with four different diets in the fish farm are shown in Figure 4. The lowest GSI values were observed in 15–35 mm size class collected in Capilungo, Posto Rosso and Arcobaleno, with Arcobaleno being the lowest one. In all four cages, the GSI of 15–35 mm size class of sea urchins are comparable to Torre Pizzo. A significant rise of GSI was observed in the 36–50 mm size class for all sites. High GSI values were measured for the 51–60 mm size class of Capilungo, while in Arcobaleno, the GSI value is comparable between 36–50 class and 51–60 class sizes. In Posto Rosso and Torre Pizzo, the GSI decreased significantly in the largest size class. In sea urchin cages, the GSI values of 36–50 mm size class were higher than for the wild conditions except for the animals fed with a soya-based diet.
\nThe gonadosomatic index (GSI) in wild and breeding animals.
The greatest repletion index (RI) values were found in the 51–60 mm size class in all four sites (Figure 5). The same trend was observed for the different sites: RI values increased with the increase of the size of sea urchins. Significant differences were found among the northern sites and southern sites: Capilungo and Posto Rosso measured the highest values for the 36–50 mm size class. The temporal trend of RI highlights the differences between the stations at north of Torre Suda (i.e. Capilungo and Posto Rosso) and those at south of Torre Suda (i.e. Arcobaleno and Torre Pizzo) in terms of values. In absolute, the highest RI values were measured in August in Capilungo and Posto Rosso, while the highest RI values for Arcobaleno and Torre Pizzo were measured in March. In the breeding sea urchins, the same trends of the environmental condition of Capilungo and Posto Rosso were observed; also in the breeding condition, the highest value was observed in August.
\nThe repletion index (RI) in natural and in breeding conditions.
Quantitative changes in the content of proteins, lipids and polysaccharides are analysed in wild samples (Capilungo, Posto Rosso, Torre Pizzo and Arcobaleno) and in breeding samples (four different diets). The content of proteins, lipids and polysaccharides decreased with the gametogenesis ongoing. The quantitative change of each class of molecules in the gonads during gametogenesis was standardized to the sizes of gonads. Figures 4–7 show changes in the biochemical composition of ovaries and testes in function of phase of gonadal cycle (Tables 1 and 2) standardized to g100 g−1 body mass. Protein level in female gonads remained relatively constant between phases H1 and H2 (September and February) and decreased to a minimum value during phase H4 (July and August) in wild samples. Also in female gonads of breeding sea urchins, protein level remained relatively constant during the phases H1–H2 (October and March) and decreased to a minimum value during phase H4 (July and August).
\nBiochemical composition of ovary of P. lividus wild type.
Biochemical composition of ovary of P. lividus bred.
In wild male gonads, the content of protein is dependent on the site of sampling; in fact the maximum level of proteins in the wild samples grown at south of fish farm is registered during phase M1 (June); instead, the high value of proteins are registered in August at north of fish farm. In the breeding samples, the maximum content of proteins is recorded at the end of phase M1 (over spring/summer). The carbohydrate content remained constant in wild-type and breeding female gonads over phases H3 and H4, respectively (July and until June). The wild male gonads sampled at south of fish farm show a swift decrease in June, while the decrease was observed in August for the sample sites at north of fish farm. For the breeding samples, the speedy decrease of carbohydrate content is recorded during phase M1 (spring season). The lipid content underwent monthly variations in sea urchin gonads. In contrast to proteins and carbohydrates, the lipids are relatively growing until the start of phase H4 (July–August) in both wild and in bred female animals; afterwards the lipid content decreases simultaneously with the release of gametes. In the male gonads, the content of lipids was maximum during the phase M1 (spring season) for both wild and bred animals and decreased after the spawning.
\nIn the light of these observations, it turns out that the process of gonadal maturation of breeding animals is retarded of about 1–2 months compared to the wild type. Moreover, there are also differences among the four groups of animals fed with different diets; the best content in lipids, proteins and polysaccharides is found in cages fed with pellets and U. lactuca, followed by cages fed with artificial diet. Animals raised on a soy-based diet have a lower lipid profile than other breeding animals and wild. Artificial diet consumption was comparable to those recorded for the most preferred algae, whereas maize consumption was significantly higher than those referred to pellet. This feeding behaviour could be due to the high content of carbohydrates and proteins in maize with respect to algae and spinach which exhibit a very similar biochemical composition, characterized by a moderate content of protein and lipid intake (Figures 8 and 9).
\nBiochemical composition of the testis of P. lividus wild type.
Biochemical composition of the testis of P. lividus bred.
In the present work, the morphological and biochemical gonad characteristics of sea urchin grown in their natural marine environment and in cocultures with fish in an offshore fish farm were analysed for a period of 1 year. These data, which allows to define the best diet for sea urchins in view of the breeding set-up conditions, represent an important starting point for a scale production of sea urchins. Sea urchins are luxury food, and thus there is a growing economical interest for their cultivation, but P. lividus is also central for its importance in determining the structure of rocky reefs [58]. Taking into consideration the fact that P. lividus is one of the most intensely harvested benthic invertebrate species for commercial and recreational purpose, the definition of optimal conditions to set up sea urchin culture is thus pivotal from broad perspectives. Our data demonstrated the good feasibility of a low-cost and easy-to-standardize diet, such as based on fresh U. lactuca and artificial in rearing vulnerable species, such as P. lividus in aquaculture system. The specimens of sea urchin demonstrated a good propensity to ingest both maize and spinaches, content in artificial diet, as it can be inferred from the RI reported in Figure 5; in addition, the GSI values related to this diet are the highest registered in this study. This diet also shows a low mortality rate, about 20%, compared to the other diets that bring a maximum value of mortality as 30% (data not shown). Other researchers have described the benefit of artificial diets over the use of maize: Repolho assessed the effect of captive brood-stock diet on fertilization and endotrophic larvae development of P. lividus obtained for maize diet [59, 60]. Histological analysis revealed a good quality of gonadal tissue in all cages, but compared to the wild animals, the gonadal cycle seems to be slowed down by 1–2 months, despite the biochemical profile of the gonads that does not reveal alterations in the amount of the different components. The biochemical composition of the sea urchin gonads has been studied in different species; the immature ovary and testis contained a big quantity of polysaccharides, lipids and proteins. In our study the polysaccharides decrease during the gametogenesis in both sexes and in wild and bred animals; according to literature these macromolecules are involved in the energetic metabolism [35, 48]. During the gametogenesis the lipids are stable for long time and decrease in the late phases of gonadal cycle for both sexes. Fatty acids, in fact, are an important energy source because they are needed by spermatozoa for swimming [49], in eggs for larval development and survival [50].
\nIn conclusion, we propose an artificial diet to define a system offshore of sea urchin culture, in order to obtain gonads with comparable quality to that of wild type. This method permits to preserve the wild stocks and satisfy the market demand.
\nFrog culture consists of small- and medium-scale producers and is gaining the attention since several years. The improvements in production systems and research have contributed a lot to make it more viable and profitable for producers. Brazil is considered as the country that has the best technologies in the production of bullfrog, that is, the entire production cycle is completed under controlled conditions. However, the sector encounters some limitations such as fewer improvements in the areas of nutrition, reproduction and genetics, mismanagement of the sector, and little investment and actions by the public sector [1].
\nThe frog’s production has different markets including the domestic and foreign markets. The main product is fresh meat, represented mostly by the trade of frogs’ thighs [2]. More than 90% of internationally traded frog meat comes from extractive hunting, but there is enormous pressure from environment protection agencies that are claiming the finishing of such practice. Data published by FAO [3] on world ranching showed Brazil as the second largest producer, the first being Taiwan.
\nIn Brazil and China, raniculture is exclusively based on the production and rearing of bullfrog (Lithobates catesbeianus), an exotic species from North America that was introduced for captive breeding. When compared to native species, it presents higher productive performance in commercial productions [4]. The species presents extremely favorable zoo-technical characteristics for high-scale breeding, such as precocity, prolificacy, and rusticity, which greatly facilitate management [2].
\nAs among all amphibian species, frogs are ectothermic animals, that is, the temperature of water and environment directly influences the animal’s metabolism [5]. The temperature of water between 22 and 28°C is considered ideal for the excellent development of tadpoles [6] and may result in achieving better zoo-technical indices in the rearing phase [7].
\nAmphibians like bullfrog need water of specific physical and chemical quality. For producers, before starting a rearing system, it is extremely important to know and has a good knowledge about different water quality parameters and their role in successful frog culture. They should measure the pH, electrical conductivity, total alkalinity, total hardness, ammonia, nitrite, nitrate, phosphorus, chlorides, iron, and especially oxygen properly before starting breeding. These parameters are the most important indices that indicate the water quality.
\nAquaculture has shown great development in the last decades and is competing with production systems of other aquatic animals due to water resource. Its development, however, presents risks of deteriorating the quality and quantity of water and in contributing declining the environmental, social, and economic quality. Technical, scientific, and representative links of Brazilian aquaculture have stated that frog culture does not consume but rather uses water, and this characteristic of nonconductivity could change approaches and strategies related to the management of water resources directed to aquatic productions, taking in consideration different from the industries [8].
\nThe granting and charging due to the use of water resources by aquaculture become more relevant when it highlights the aspects of water quality used and release the water source at the expense of aspects that basically involve the use of large volumes of water. The usage of aquaculture water depends greatly on water quality [9].
\nAquaculture uses water resources intensively, competing for water available to the population and other productive systems. However, unlike other production systems, aquaculture can collaborate with water quality control systems by constant monitoring while keeping in view its role in producing food for humans especially protein food [8].
\nAn objective and consistent model of granting and charging due to the use of water for aquaculture refers to methods focused on quality differentials, which are possibly based on measurements of biochemical oxygen demand (BOD) and levels of nitrogen (N) and phosphorus (P) in the water collected and returned to its source or original course. Other factors, such as water surface area, chosen design, or management techniques, may interfere with higher actual water consumption and may also be taken into account in the models of granting and charging the use of water resources for aquaculture [8].
\nEvaluating water use in the last 100 years, Telles [10] stated that globally about 70% of the available water is destined for agricultural usage. According to the author, approximately 20% of the water is destined to the industry and less than 10% to population (hygiene and direct consumption). In response to increasing food demands, aquaculture has also advanced its production. In the last decade, world production has increased by 200% mainly searching for a healthy product and the next step is the search for an ecologically correct product.
\nFor any production system to continue its growth, it must be economically and environmentally correct [11, 12]. In addition, it should be based on the concepts of food security and socioeconomic development [13]. According to Valenti et al. [13], modern aquaculture is based on three pillars: profitable production, social development, and preservation of the environment, having an intrinsic and interdependent relationship for a perpetual production.
\nAlthough aquaculture provides a number of social and economic benefits, it must seek new technologies to reduce impacts such as deforestation, diversion of watercourses, introduction of exotic species into the natural environment, and effluent emission into aquifers. Environmental pollution can be defined as any action or omission of man, which has a direct impact on water, soil, and air and causes a harmful imbalance on the environment as well [14]. The impacts caused by aquaculture result in reduced production, disease outbreaks in cultivated and wild populations, and in some cases may restrict aquaculture operations [15].
\nEnvironmental factors such as soil quality, water quality, risks of introducing exotic species/ biodiversity, chemical and organic discharge in the natural environment, recycling and interaction with other neighboring fish farms have a great impact on fish farming [16]. Another type of impact is that which is caused by aquaculture on water quality is related to the accumulation of nutrients and organic residues at the bottom of tanks and nurseries and such impact is time dependent. This time is related to unused food, fertilizer usage, and the nutrients present in the sediment, which precipitate and then release into the water column [17].
\nThe nurseries have high concentrations of nutrients, plankton, organic, and inorganic matter due to the food provided and the morphometry of the systems. The input and output of constant water with short residence time and uncontrolled management of feed and water are some of the important factors that directly act on nutrient dynamics, accelerating or allowing greater availability in the water column [18].
\nThe water inflow and outflow due to its great intensity remove excess nutrients and other material from the nursery, controlling the phosphorus dynamics in the medium in relation to its absorption in the sediment [19]. In times of high fish production, from November to April (increased water temperature), the addition of feed is more intense and climatic factors such as temperature and precipitation influence the dynamics of these systems [18].
\nThe impacts of aquaculture can be classified as internal, local, and/or regional. Internal impacts refer to those that interfere with the breeding system itself, such as the depletion of dissolved oxygen in a fish farm. In general, local impacts extend 1 km downstream of the effluent discharge. Effects on aquatic environments with a spatial scale of several kilometers are considered regional impacts [20].
\nThe effluents from aquaculture ponds have a high volume and low nutrient concentrations when compared to domestic effluents, which present little volume and high concentration of nitrogen and phosphorus [21]. Although the dilution value of these effluent discharges from aquaculture is considered high, its direct launch in the limnic environments can result in a chronic bioaccumulation and eutrophication, which can lead to an excessive increase of phytoplankton, causing dissolved oxygen deficit at night and possible death of local organisms [22]. Thus, the advancements in aquaculture simultaneously increase the concern of environmental agencies and societies with the environmental impact generated by it.
\nThe main negative impact of effluents from aquaculture activities on aquatic ecosystems is the increase of nitrogen and phosphorus concentrations in the water column and accumulation of organic matter in the sediments [22]. In addition to effluent produced by natural processes, nutrient enrichment, feces, and unconsumed feed, chemical residues are also released, which are used in disinfection, pest and predator controls, disease treatments, hormones to induce reproduction, and sexual reversal beyond anesthetics for transport [23].
\nNot all breeding techniques have negative environmental consequences, since many of them are beneficial when environmental management is effective and socioeconomically sustainable [24]. As a positive impact of aquaculture, there are related consortiums between aquaculture and agriculture (irrigation and farming), rearing of tadpoles along with ornamental fish [25] or integrated systems of multiple uses such as recreation, gastronomy and rural tourism.
\nAnother positive aspect is the maintenance of fish stocks in the sea and rivers, protecting and conserving endangered species, the use of industrial and domestic (treated) effluents in the enrichment of fish farms, or the coupling of a hydroponics system together with the residues of fish farming itself. It is also important to highlight the opportunities for new economic and working sources in the river basin [23] as a positive social and economic aspect.
\nThe increasing growth of the animal industry has forced the reduction in the effects of intensive production systems on the environment. The concern with amino acids up to recent animal response considerations was restricted for maximizing production efficiency but little or no attention was given for reducing nitrogen excretion [26]. But now, there is a great concern about modern aquaculture’s response to intensive production systems—the sustainability and environmental impact or pollution caused by them. In these systems, the density of fish per volume of water is very high, needing high rations and large amount of feed consisting of ingredients of high digestibility and palatability in order to produce minimum residue from feed wastage and stop high excretion of phosphorus and nitrogen [27].
\nThe development of nutritious and environmentally and economically viable rations depends on the knowledge regarding the alimentary habits and nutritional requirements of the species reared [27]. Being an alternative production in the agriculture sector, frog culture can be placed among aquaculture activities that are gaining importance in the natural scenario [28], as the natural populations of frogs in Asia are decreasing due to environmental contamination and uncontrolled capture [29].
\nThe quality and cleanliness of water used in production of aquatic organisms are essential factors for the success of these programs. The frogs leave their excreta, and skin remains in water due to constant changes. It is imperative to constantly renew the water and clean the tanks and bays, and such care is necessary to prevent diseases and mortalities.
\nAmphibians such as bullfrog need water with specific physical and chemical quality. Parameters such as pH, electrical conductivity, total alkalinity, total hardness, ammonia, nitrite, nitrate, phosphorus, chlorides, iron, and especially oxygen must be measured before starting a breeding. These parameters are the most important indexes that characterize the quality of water. For breeders who are starting the activity, it is of the utmost importance to understand these variables.
\nAll animal or vegetable life forms breathe in inhaling oxygen and exhaling carbon dioxide. When an aquatic environment is polluted with organic matter, the consumption of O2 (respiration) exceeds beyond the acceptable levels and a decrease occurs in its available concentration. If the imbalance persists under anaerobic conditions (without oxygen), fish and most other animals will be unable to exist and will die. Oxygen allows aerobic (oxygen-using) bacteria to be more efficient decomposers than anaerobic (non-oxygen) bacteria, reducing decomposing organic matter in the water without leaving harmful odors.
\nWhen large quantities of organic material are discharged into rivers, for example, a population explosion of decomposing bacteria occurs. By “breathing,” oxygen depletion occurs and the water becomes anaerobic or septic. The aerobic bacteria then facilitate the anaerobic bacteria, which produce hydrogen sulfide gas that has an extremely unpleasant smell and affect the aquatic life.
\nAquatic ecosystems are dynamic, and even in tanks with small volumes of water, the physical and chemical parameters interrelate and are dependent on one another. The level of dissolved oxygen in water varies with temperature and atmospheric pressure. The dissolved oxygen content is about 9.08 mg L−1 at sea level and a temperature of 20°C, while this concentration rises up to 10.07 mg L−1 of oxygen, if the temperature drops to 15°C, indicating them the two closely interrelated factors.
\nThe behavior of several other parameters occurs in the same way. Thus, it is not enough to know only one parameter or strictly follow the literature. The physical and chemical evaluation of water must be analyzed together, taking into account all factors.
\npH (hydrogenation potential): It is the ratio between concentrations of hydrogen ions (H+) and hydroxyl ions (OH−), that is, acidity or alkalinity. It has a scale of 0–14, with pH 7 being neutral, where H+ and OH concentrations are the same. Below 7, the pH indicates acidity, and above 7, it indicates alkalinity. The most responsible for its variation is the carbonic acid, which is originating from the carbon dioxide produced by phytoplankton during photosynthesis, where in excess, it renders the pH acidic and vice versa.
\nElectric conductivity: It is determined by the presence of dissolved substances that dissociate into anions and cations. It is the ability of water to transmit electric current. Practically for aquatic organisms, the higher the conductivity the more charged the system will be.
\nTotal alkalinity: It indicates the concentration of carbonate and bicarbonate salts in water. It has a function of water buffering, that is, it maintains the pH stable, besides participating in the carapace formation of some species of plankton. Carbonates and other salts react with carbonic acid, neutralizing their action.
\nTotal hardness: It indicates the concentration of metallic ions mainly the ions of calcium (Ca2+) and magnesium (Mg2+) present in water. It is expressed in CaCO3 equivalents. The values of total hardness are practically associated with alkalinity. It also potentiates the toxicity of various chemicals.
\nAmmonia, nitrite, and nitrate: Ammonia produced due to the excretions of aquatic organisms and bacterial decomposition of the organic material in water is divided into toxic ammonia (NH3) and ammonium ion (NH4). Through bacterial oxidation (nitrosomonas), the ammonia is transformed into nitrite. Then, nitrite is oxidized by bacteria of the genus Nitrobacter to nitrate. The denitrifying bacteria transform nitrate into nitrogen by completing the cycle. Generally, ammonia and nitrite are the toxic forms (depending on pH and temperature). Nitrate is not toxic.
\nPhosphorus: It is a nutrient with low concentration in water but is one with the highest concentration factor in phytoplankton, followed by nitrogen and carbon. Its compounds constitute an important component of the living cell, especially nucleoproteins, essential for cellular reproduction. It is also associated with respiratory and photosynthetic metabolism. They occur mainly in the form of soluble phosphates and phosphate rock. Organic wastes, especially domestic sewage, contribute to the enrichment of water with this element.
\nIron: Among the physical and chemical parameters of water, iron is the one that most frequently makes impossible the implantation of a commercial raniculture. This metal when in high concentration causes tadpoles mortality due to its chemical toxicity. It is sometimes possible to remove the iron from water through its oxidation (Fe3—colloidal), in other words, introducing oxygen in the medium and aeration.
\nThe excretion of the animals (feces and urine) results in ammonia-based compounds. Ammonia is extremely toxic when in large quantities and is converted into nitrite and nitrate by the action of nitrifying bacteria. Nitrite is also a toxic compound. It can oxidize hemoglobin in animals’ blood; thus, converting it into methaemoglobin, a molecule incapable of carrying oxygen. This transformation process of ammonia (NH3—toxic) in nitrite (NO2—toxic) and then in nitrate (NO3—toxic only in high quantities) is called denitrification and occurs depending on the temperature, pH, and oxygen of water. This reaction is one of the most common causes of mortality in tadpole tanks but it can also be easily avoided by taking basic precautions such as controlling the amount of food offered, constant and efficient oxygenation, water renewal, and regular cleaning.
\nThe changes in water are related to values that allow classifying water by its degree of contamination, origin or nature of the main pollutants, and their effects to characterize cases of loads or peaks of concentration of toxic substances and to evaluate the biochemical balance necessary for maintenance of aquatic life. In other words, the farmer observing the water of his tanks daily can infer and/or perceive its state. However, not even the experience gained over the years will spare the farmer from regular observing/monitoring the water of his tanks.
\nIn the literature, we find little information available on the ideal water quality for raniculture. Many concepts and values come from other types of aquaculture animals. Thus, a gap occurs when the farmers apply this information in commercial ranks, which is a more practical activity. Another way to aid in the elucidation of this process is to conduct aquatic research regarding the impact of water quality on frog culture on large-scale laboratory tests in order to provide more accurate and practical information to the frog culturists.
\nFollowing are some data collected in the field from observations made in commercial ranks in Brazil (Table 1), which are demonstrated.
\nParameters | \nDesirable values | \nValues observed | \n
---|---|---|
pH | \n6.5–7.0 | \n6.0–8.0 | \n
Oxygen | \n0.7–6.0 mg L−1 | \n2.0–6.0 mg L−1 | \n
Ammonia (NH3) | \nUp to 0.5 mg L−1 | \nUp to 0.7 mg L−1 | \n
Nitrite (NO2) | \nUp to 0.5 mg L−1 | \nUp to 1.0 mg L−1 | \n
Nitrate (NO3) | \nUp to 1.0 mg L−1 | \n— | \n
Hardness | \nUp to 40 mg L−1 | \n10–80 mg L−1 CaCO3 (most frequent) | \n
Alkalinity | \nUp to 40 mg L−1 | \n10–80 mg L−1 CaCO3 (most frequent) | \n
Chloride (Cl2) | \nUp to 7 mg L−1 | \n— | \n
Chlorine (Cl) | \n0.02 mg L−1 | \nUp to 1 mg L−1 | \n
Fluoride (F2) | \nLess than 1 mg L−1 | \n— | \n
Iron | \nUp to 0.3 mg L−1 | \nUp to 1 mg L−1 | \n
Orthophosphate (PO4) | \nLess than 0.3 mg L−1 | \n\n |
Electrical conductivity | \n— | \nLess than 150 μS cm−1 | \n
Analyzing the above mentioned variables, it is verified that there is a very great similarity between fish and amphibians with respect to the physical and chemical parameters of the water. It has been noted that bullfrog tadpoles require less oxygen than fish. This is one of the reasons why many amphibians are known as “homebodies,” that is, animals do not migrate from their place of origin when environmental conditions become adverse.
\nNormally, higher production of tadpoles is carried out in hot periods due to better adaptation and development of animals at an average temperature of 26°C [32]. The pH values did not show large changes among the frog farms, normally presenting average values of 7.0 for water supply and effluent, respectively. Thus, it remains within the standards recommended by the Brazilian resolution (pH between 6.0 and 9.0 for breeding waters of this species).
\nIt is common to observe decrease in the dissolved oxygen content in the effluent than the water supply, but ideally, it is above the minimum required by the legislation (5.0 mg L−1). As far as the ideal flow rate for spinning water is concerned, it is ideal that the total tank volume is renewed at least once a day in small tanks. Some authors have already described some flow rates found in frogs: Borges et al. [33] found 0.11 L s−1 and for the exit water, 0.08 L s−1; and Pereira et al. [34] found the value of 0.064 L s−1.
\nFor electrical conductivity, there is no established standard for tadpoles. We find literature that demonstrates values of 30 to 200 μS cm−1 for incoming water and runoff water [35, 36, 37]. Mercante et al. [38] working with sequential nurseries of semi-intensive fish production observed a mean variation between 46 and 113 μS cm−1 in the nurseries (Table 1). The same author states that when the values are high, they indicate a high degree of decomposition and the inverse (reduced values) is intense primary production (phytoplankton).
\nThe maximum limit for turbidity in effluents, according to Brazilian legislation, is 100 NTU (nephelometric turbidity units). According to Borges et al. [33], in a study with tadpoles, the maximum value obtained for incoming water was 20 NTU and for output was 26 NTU, thus remaining within the allowed range. Sipaúba-Tavares [39] argues that high levels of turbidity may be related to the presence of clays and dissolved or colloidal organic matter. In the same study by Borges et al. [33], ammonia and nitrate remained well below the limit established by legislation during the experimental period. However, from collection 2 (31 days of experiment), the concentrations were higher in the outlet water, with mean values of 0.40 and 0.49 mg L−1, respectively, evidencing the organic matter decomposition and the rapid nitrification process due to the good oxygenation of the tanks.
\nThe main problem observed in raniculture as already observed in aquaculture is water enrichment (eutrophication) caused mainly by inadequate food management, which raises nutrient concentrations and modifies the environmental conditions of the farm [40]. The eutrophication process is a frequently observed problem and suggests the need for effluent studies and management techniques focused on ecological and specific aspects of these systems, favoring a lower impact of the effluents in the receiving water bodies [41].
\nIn raniculture, commercial feed is usually used for carnivorous fish with average levels of 45% crude protein [42]. In addition to the increase in the amount of feed offered according to the growth of the animals, there is also a change in the use of this feed in each developmental stage of the animal [43]. The bullfrog produced in “anfigranja system” presents low protein efficiency of the commercial diet elaborated based on the requirements of carnivorous fish, which is used for feeding in most Brazilian ranicultures [44]. In addition, there is a significant loss of feed nutrients to the environment, resulting in the degradation of water quality [45].
\nA compound resulting from the catabolism of proteins is ammonia; therefore, the control of food quantity and quality, as well as adequate flow of water, is of fundamental importance for the maintenance of a good artificial breeding system [46]. In breeding systems for aquatic organisms, food introduced into the water and ammoniacal nitrogen fertilizers, such as ammonium sulfate, ammonium nitrate, phosphates, and urea, contribute to the increase of ammonia concentration in water [47]. The diet formulation should eliminate high levels of phosphorus and nondigestible components, testing the minimum necessity to grow a certain species [48]. Thus, the quality and quantity of food should be controlled for the sustainability of the harvesting system [49], since a relationship has been observed between commercial feed utilization and the water eutrophication process [50]. If the aquatic system is in imbalance, it becomes propitious to the development of diseases, compromising the sanitary sanity of that place.
\nEctothermal animals such as bullfrog often serve as carriers for etiological agents by contact or as carriers when agents are ingested. When they are infected, it may result in an imbalance in the population of the pathogenic microorganisms in the environment, changes in the physical, chemical, and biological quality of water, immunological deficiency of these organisms, and unnecessary stresses [51].
\nThe “Biological Institute of São Paulo, Brazil” has identified the presence of Escherichia coli bacteria in a very high load in diseased frogs (secondary and opportunistic infection) in a breeding system where the frogs fed larvae, and in the examination of feces of pigs used as substrate of larvae, an extremely high amount of this enterobacterium was reported [52].
\nE. coli is found in sewage, effluent, natural waters, and soils that have received recent fecal discharge, being inactivated. When ingested, it becomes active and pathogenic, but it is most used as indicator of fecal pollution in the environment and food, appearing in fresh and poor fish, frogs, mollusks, and shrimp [51].
\nBacteria from the coliform group are also found in soil and vegetables, some with a certain ability to remain and even multiply in humid environments with high levels of organic and inorganic nutrients. Organisms in the coliform group may be introduced into water and food from nonfecal sources, such as plants and individual transporters, already polluted (lack of hygiene or sanity), such as contact with other animals or humans, even without release or direct contact with their excreta [51]. Gray et al. [53] suggest that frogs in metamorphosis or infected “froglets” may continue to release this pathogen, infecting other breeding members and eventually contaminating water sources. In addition, they can transport terrestrial pathogens to adjacent aquatic systems. It is possible that bullfrog adults may serve as suitable hosts for E. coli in stagnant aquatic systems. Another care that must be taken in raniculture is during the process of metamorphosis that is directly related to the reduced immunocompetence.
\nIt has been reported that this microorganism can survive in fluvial waters for up to 27 days. Thus, persistence of E. coli in aquatic environments should be maintained through periodic contributions from primary reservoirs (homeothermic animals) or excreta contamination of wild host animals. The results of Borges et al. [33] suggest that bullfrogs can function as spill-over reservoirs of E. coli and thus contribute to its persistence in aquatic environments. In addition, since tadpoles in metamorphosis are capable of dispersion, they may play a role in the pathogen epidemiology [53]. Table 2 shows the values of the biotic and abiotic variables of different types of aquatic cultures.
\nVariables | \nPisciculture Macedo and Sipaúba-Tavares [54]1 Sipaúba-Tavares et al. [55]2 Macedo et al. [56]3 | \nCarciniculture Henry-Silva and Camargo [57]1 Pistori et al. [58]2 Keppeler [59]3 | \nTadpole Borges et al. [45] | \n
---|---|---|---|
EC (μS cm) | \n962 | \n702 | \n74 | \n
DO (mg L−1) | \n8.402 | \n4.632 | \n6.15 | \n
P-total (mg L−1) | \n0.252 | \n0.291 | \n1.88 | \n
Nitrate (mg L−1) | \n0.132 | \n0.623 | \n0.68 | \n
Ammonia (mg L−1) | \n0.102 | \n0.133 | \n0.82 | \n
BOD (mg L−1) | \n71 | \n73 | \n12 | \n
COD (mg L−1) | \n181 | \n— | \n51 | \n
Escherichia coli (MLN/100 ml) | \n4 × 10^63 | \n— | \n1.3 × 103 | \n
Comparison between the values of biotic and abiotic variables found in effluents from different aquaculture activities.
DO, dissolved oxygen; EC, electrical conductivity; BOD, biochemical oxygen demand; COD, chemical oxygen demand; MLN, most likely number.
\nFrogs are water-dependent organisms, thus, for the elimination of excreta, controlling their body posture, respiration, reproduction, protection and safety makes the quality of water extremely important in breeding times [60]. The quality of water used in the production of aquatic organisms is one of the essential factors for the success of these enterprises. In raniculture, postmetamorphic animals leave their excreta and skin remains from constant changes in water. Therefore, it is important to constantly renew the water and clean the tanks and bays. Such care is essential for the prevention and prophylaxis of diseases, because when a disease sets in, mortality is certain [30].
\nThe water for use in commercial frog farms should be of good quality, without fecal coliforms, heavy metals, and iron, with neutral pH, being preferably of spring or artesian well. It is recommended to select places with higher ambient temperatures for its rearing, since the frogs are ectothermic animals, presenting a more accelerated growth in higher temperatures. To maintain the quality of the breeding place, the water used in the farm must come from its own source and protected, do not receive polluting load of any kind, and have its reservoirs protected and cleaned regularly [61].
\nRaniculture projects should include knowledge of local hydrography and concern for the rational use of water, mainly to reduce impacts on water resources. Particular attention should be paid to the construction of projects in ecologically sensitive areas of importance to environmental preservation, such as permanent preservation areas. According to the Brazilian Institute of Fisheries, the flow necessary for the installation of commercial frog farms of 500 m2 is 0.5 L s−1 ABRAPOA [62], resulting in an amount of 43,200 liters per day. However, this volume should not be discarded in the receiving water body without prior treatment.
\nThe quality of the effluents must be periodically monitored, and the projects must provide for the installation of a treatment system for these effluents. Efforts should be made to increase the feed efficiency of the animals in order to ensure the reduction of the waste loads generated by the activity. The adoption of measures to reduce and eliminate the chances of diseases with preventive actions (sanitary management) and the maintenance of efficient and sustainable population densities is also important.
\nThe main negative environmental impact observed is related to the degradation of the unconsumed feed, releasing to the water the nutrients and increasing the concentration of nitrogen and phosphorus. The excretion of animals (urea) is also released into the water and results in increased ammonia concentration. Remains of skin contribute to increase the amount of organic matter (total solids). Due to the nitrification processes that take place inside the bays, the amount of dissolved oxygen decreases drastically and reaches the anoxic levels.
\nThe quality of the breeding place is based on the application of good animal breeding practices, in which the factors such as the technical knowledge about raniculture, ideal soil qualities (space), water in quality and quantity, constant, trained, and responsible workforce and projects that contemplate an economic planning should be properly addressed. The frog culture presents higher levels of dissolved nutrients, mainly concentrations of phosphorus, ammonia, and conductivity, as compared to other aquaculture activities, such as fish and shrimp cultures (Table 3).
\nLimnological variables | \nBullfrog culture Borges et al. [45] | \nShrimp culture Henry-Silva and Camargo [57] | \nFish culture Sipaúba-Tavares et al. [55]1 Henry-Silva and Camargo [63]2 | \n
---|---|---|---|
Temperature (°C) | \n28.2 | \n26.5 | \n25.71 | \n
pH | \n7.2 | \n8.1 | \n7.21 | \n
Dissolved oxygen (mg L−1) | \n1.23 | \n5.10 | \n5.401 | \n
Conductivity (μS cm−1) | \n249 | \n68 | \n621 | \n
Turbidity (NTU) | \n66 | \n62 | \n262 | \n
Total phosphorus (mg L−1) | \n6.09 | \n0.23 | \n0.201 | \n
Ammonia (mg L−1) | \n6.94 | \n0.02 | \n0.071 | \n
Nitrate (mg L−1) | \n2.37 | \n0.16 | \n0.161 | \n
Comparison of the limnological characteristics of effluent from frog, shrimp, and fish cultures.
Borges et al. [45] (2012) concluded that the management adopted in ponds of frog growth positively changed the quality of water. In contrast to other cultures of aquatic organisms (fish and shrimp), effluent from frog culture has a greater potential to cause eutrophication in receiving bodies of water. Best aquaculture practices (BAPs) should also be recommended for frog culture in order to avoid water pollution and contamination of animals (food biosecurity).
\nMercante et al. [38] evaluated the mean concentrations of total phosphorus (TP) and flow in the water (inlet and outlet) and the load produced per day for bullfrogs and compare their results with other aquatic production systems (Table 4).
\n\n | Inlet | \nOutlet | \n\n | ||||
---|---|---|---|---|---|---|---|
\n | Concentration | \nFlow | \nLoad | \nConcentration | \nFlow | \nLoad | \n\n |
\n | (mg L−1) | \n(L s−1) | \n(g day−1) | \n(mgL−1) | \n(L s−1) | \n(g day−1) | \n\n |
Bullfrog farming | \n0.03 | \n0.06 | \n0.21 | \n0.19 | \n0.06 | \n14.3 | \nMercante et al. [38] | \n
Bullfrog farming | \n0.07 | \n0.03 | \n0.18 | \n6.09 | \n0.02 | \n11.57 | \nBorges et al. [45] | \n
Tilapia farming | \n0.42 | \n2.76 | \n9.7 | \n2.45 | \n2.76 | \n49.1 | \nPereira et al. [64] | \n
Trout farming | \n72.26 | \n40.61 | \n233.33 | \n99.69 | \n40.61 | \n343.67 | \nMoraes et al. [65] | \n
Mean concentrations of total phosphorus (TP) and flow in water (inlet and outlet) and the load produced per day in different systems of animal production.
Mercante et al. [38] concluded that a constant renewal of water in the breeding bay is necessary to avoid the toxic effects in bullfrogs. However, it can promote higher nutrient loads. In order to improve the effluent quality and to reduce the nutrient load, in addition to effluent treatment, management options such as (a) flow maintenance and density reduction of animals and (b) maintain flow and density storage with better control of food supply, quality, and digestibility are proposed.
\nEffluent treatment systems generated in aquaculture farms can be deployed using wetlands constructed to remove nutrients and improve water quality [66]. The aquatic macrophytes that are used in biological treatment systems, such as constructed wetlands, function as a bio-filter, improving the environmental conditions of production nurseries [67].
\nThe constructed wetlands are tools used for the treatment of waste in aquaculture whose physical, chemical, and biological processes together with the local climatic conditions can improve the effluent quality [57, 68]. The importance of the implementation of these systems for the treatment of fish farming effluents in Brazil is due to the fact that many producers release water directly into natural streams and rivers [69], and the organic load exceeds its capacity of support and resilience [70].
\nThe disposal of the effluent in the soil together with the presence of microorganisms, aquatic macrophytes, and solar energy results in the production of biomass and chemical energy, removing the polluting load. This is a system artificially designed to use aquatic plants (macrophytes) on substrates (such as sand, soil, or gravel), where the occurrence of biofilms with diverse populations of microorganisms treats wastewater through biological, chemical, and physical processes [71].
\nThe conversion of ammoniacal nitrogen into wetlands is mainly due to two basic factors: the assimilatory process of microorganisms and macrophytes present in the systems and nitrification due to the transfer of oxygen from atmospheric air through the leaves of the macrophytes that through the aerenchyma permits the distribution of oxygen to the rhizomes and roots of plants [72].
\nThe phosphorus present in the wastewater is generally phosphate and its removal in wetlands is controlled by the biotic and abiotic processes. The removal occurs due to the use of phosphorus by plants, periphyton and microorganisms, sedimentation, adsorption, precipitation, and exchange processes between the substrate and the water layer that remain in the system [73].
\nAccording to Travaini-Lima and Sipaúba-Tavares [68], the removal of phosphate compounds is associated to the hydraulic flow of the system, retention time, and the macrophyte species used, and species such as Cyperus giganteus, Typha domingensis, and Eichhornia crassipes are resistant and highly effective plants for subtropical regions. Sipaúba-Tavares and Boyd [74] verified that the wetland installed in an aquaculture farm containing only the aquatic plant E. crassipes presented efficiency in the removal of nitrogenous and phosphate compounds, improving the water quality of the effluent and also confirming that the system of biofiltration can be applied in shallow water channels.
\nThe reduction of thermotolerant and total coliforms occurs due to the combination of physical, chemical, and biological factors. Physical factors include filtration through the plants, biofilm fixation on the substrate and on the macrophytes, and sedimentation. The chemical factors involve oxidation, biocidal effect resulting from the material excreted by some macrophytes, and adsorption of the organic matter. The biological mechanism includes production and effusion of chemical substances in the environment, which prevent the development of other organisms (antibiosis) and predation by nematodes and parasites, bacterial lysis, and inactivation [75].
\nEffluent treatment in aquaculture is one of the main factors in systems for breeding aquatic organisms that improve the water quality, avoiding or minimizing eutrophication in the receiving body. In addition, it is important to note that the use of nitrogen and phosphorus as a source of nitrogen and phosphorus in the aquatic ecosystem is a very important factor.
\nThe importance of using biofiltration in aquaculture in different locations around the world is to ensure the development of this enterprise. The production of aquatic organisms varies from country to country, directly influenced by climatic and edaphic factors, as well as the population habit of each site. The incorporation of effluent treatment mechanisms of aquatic organism breeding systems depends on the economic conditions of the enterprise, the degree of pollution of the effluent, the cultivated species, and the ecological management employed [76].
\nTechnology transfer should be stimulated toward the use of water or even in the treatment systems for the production of aquatic organisms, as a way of minimizing the impacts caused by aquaculture, being located and identifiable as possibilities of techniques for the mitigation of waste [77].
\nIntegrated management of the system for the establishment of built wetlands and organisms results in significant productive and environmental gains. The cost of constructing the wetland system is similar to the cost of building stabilization ponds. The advantage of using wetland is the quality of the effluent, which can be used in crop irrigation, and the macrophytes can be used as material for green fertilization in agriculture, since they contain the nutrients withdrawn from the water stored in their biomass [78].
\nRaniculture or frog culture, as well as any other aquaculture practice, requires a large volume of water and produces effluent with high organic load and can be a significant source of local environmental impact. The main characteristics of this type of effluent are the high concentrations of dissolved nutrients, mainly ammonia and phosphorus, high electrical conductivity, and low dissolved oxygen concentration, as compared to effluents from other aquaculture practices [45].
\nDue to the need to treat the effluent from aquaculture practices, the use of “wetlands” constructed in a growing way in the country has been studied to minimize the impacts produced by these aquatic organisms [63, 66, 68, 69]. The aquatic plants extract or take out nutrients and other substances from the surrounding water which are necessary for their development, besides requiring low capital, low operating cost and versatility in the removal mechanism than conventional treatments. Sipaúba-Tavares and Braga [69] are also important in the removal of nitrogen, phosphorus, biochemical oxygen demand, thermotolerant solids, and coliforms [79].
\nStudies on the treatment of raniculture effluents are still scarce, and however, the aim of the wetlands is to avoid the degradation of the water quality of receiving reservoirs. Keeping this in view, Borges and Sipaúba-Tavares [80] constructed a wetland for the treatment of effluent from bullfrog breeding and evaluated the efficiency of removal of nutrients and thermotolerant coliforms in two phases of the fattening period (post metamorphosis). The total area and volume of the “wetland” were 14.2 m2 and 2.2 m3, respectively. It was 23 m long and composed of three boxes, the first with 0.51 m3, the second 0.72 m3, and the third 0.93 m3, connected by channels with surface water flow, according to Figure 1. The first box was used only for sedimentation of solid residues, the second one filled with Eichhornia crassipes, and the third with Typha domingensis and Cyperus giganteus planted at the density of 5 m2 plants (Figure 1).
\nLayout of the wetland constructed in the frog breeding sector of the aquaculture center located at the State University of São Paulo (UNESP), Jaboticabal, SP, Brazil. I = entry point where the wastewater of the bullfrog production system entered the built marsh; O = the exit point where treated wastewater left the constructed wetland entering directly into a fish pond, adapted of Borges and Sipaúba-Tavares [80].
In the study by Borges and Sipaúba-Tavares [80], water harvesting occurred in two distinct phases, phase I corresponded to the period of highest stock biomass (IF) between July and October 2012, when the animals weighed on average 276 g and the other in phase II (FII) between December 2012 and March 2013, where the animals weighed on average 29 g. The total biomass of animals in the bays in phase I was 351 kg and in phase II 218 kg.
\nBorges and Sipaúba-Tavares [80] found the following values for phase I: limnological variables such as pH and dissolved oxygen (DO) were higher (p < 0.05) at the exit and turbidity, and NO3, NO2, total suspend solids (TSS), and thermotolerant coliforms (TC) were higher (p < 0.05) at the entrance to the wetland (Table 1). In phase II, the values of the limnological variables such as turbidity, NO2, NO3, SST, and TC were higher (p < 0.05) at the entrance and DO and NH3 were higher (p < 0.05) at the wetland exit (Table 1). In both phases, it was possible to observe an increase of DO in the water leaving the wetland in relation to the input water (Table 5).
\nVariables | \nPhase I | \nPhase II | \n||
---|---|---|---|---|
Entrance | \nExit | \nEntrance | \nExit | \n|
Temperature (°C) | \n28.0 ± 1.0 | \n27.3 ± 1.0 | \n27.9 ± 0.9 | \n26.4 ± 0.9 | \n
pH | \n7.1 ± 0 | \n7.3 ± 0.1 | \n6.7 ± 0.3 | \n6.9 ± 0.3 | \n
EC (μS cm−1) | \n182.9 ± 22.0 | \n181.7 ± 19.9 | \n162.6 ± 3.6 | \n169.0 ± 5.4 | \n
Turbidity (NTU) | \n5.8 ± 1.6 | \n2.9 ± 2.4 | \n8.2 ± 3.4 | \n2.3 ± 0.9 | \n
Alkalinity (mg L−1) | \n104.0 ± 2.3 | \n108.4 ± 2.9 | \n103.5 ± 1.6 | \n104.9 ± 2.8 | \n
DO (mg L−1) | \n1.9 ± 0.3 | \n2.6 ± 0.2 | \n1.6 ± 0.4 | \n2.9 ± 0.6 | \n
NO3 (μg L−1) | \n82.7 ± 45.7 | \n37.2 ± 14.4 | \n81.8 ± 12.6 | \n22.9 ± 18.5 | \n
NO2 (μg L−1) | \n9.4 ± 3.6 | \n5.3 ± 1.0 | \n19.7 ± 3.1 | \n11.6 ± 5.0 | \n
NH3 (μg L−1) | \n2.785 ± 1.219.6 | \n3.590 ± 955.9 | \n1.388 ± 217.2 | \n1.863 ± 164.9 | \n
PO4 (μg L−1) | \n271.1 ± 132.6 | \n309.9 ± 94.9 | \n242.1 ± 52.2 | \n265.4 ± 24.6 | \n
TP (μg L−1) | \n570.5 ± 285.5 | \n480.4 ± 192.9 | \n361.5 ± 102.2 | \n283.4 ± 61.3 | \n
TSS (mg L−1) | \n21.0 ± 12.3 | \n7.6 ± 6.8 | \n9.0 ± 7.0 | \n1.0 ± 0.8 | \n
STD (mg L−1) | \n135.7 ± 23.1 | \n153.2 ± 31.7 | \n194.5 ± 70.4 | \n111.4 ± 9.5 | \n
BOD (mg L−1) | \n76.5 ± 13.6 | \n71.6 ± 18.7 | \n93.0 ± 3.8 | \n85.6 ± 7.8 | \n
TC (NMP.100 m L−1) | \n50.750 ± 32.623 | \n3.475 ± 2.284 | \n25.250 ± 16.257 | \n3.325 ± 1.362 | \n
Chlorophyll a (μg L−1) | \n4.5 ± 3.7 | \n6.0 ± 4.8 | \n7.2 ± 5.2 | \n5.1 ± 3.4 | \n
Mean, minimum, maximum, and standard deviation for the limnological variables of the water entering and exiting the wetland in phases I and II.
EC, Electrical conductivity; DO, Dissolved oxygen; NO3, Nitrate; NH3, Nitrite; PO4, Orthophosphate; TP, Total phosphorus; TSS, Total suspended solids; TSD, Total solids dissolved; BOD, Biochemical oxygen demand; TC, Thermotolerant coliforms.
In phase I, the highest values of NH3, PT, SST, and TC occurred at the entrance of the wetland, and in phase II, the highest values of NO2, total solids dissolved (TSD), biochemical oxygen demand (BOD), and chlorophyll occurred. NO2 was approximately twice as high at the water inlet in the wetland of stage II, and NH3 and STS were also higher at the entrance in phase I (Table 5).
\nThe authors concluded that there was a significant improvement in the quality of waste water of the bullfrog production system. Therefore, the treatment used was adequate and could be used in commercial farms, with only a few adjustments being made to improve the efficiency of nutrient removal.
\nRaniculture like other aquaculture practices is facing problems that affect the water regime, impacting natural water sources and directly water quality, which are responsible for the successful breeding and production systems. Although there are few studies on water quality in raniculture, aquaculture has already a number of studies but still there is a lack of understanding of how these ecosystems actually function and interact with biotic and abiotic factors. Any sudden disturbance rapidly changes the water quality and consequently causing certain damages to the commercially important species. Thus, future studies should focus on the point to explain how different aquaculture systems function and how they interact with biotic and abiotic factors. These practices may provide excellent information to establish successful aquaculture systems with favorable environmental influences.
\nWe thank the Brazil University (Univ. Brasil) for financial support.
\n.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"107729",title:"Prof.",name:"Joachim",middleName:null,surname:"Maier",slug:"joachim-maier",fullName:"Joachim Maier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Max Planck Institute for Solid State Research",country:{name:"Germany"}}},{id:"51995",title:"Dr.",name:"Juan A.",middleName:"A.",surname:"Blanco",slug:"juan-a.-blanco",fullName:"Juan A. Blanco",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/51995/images/1076_n.jpg",biography:"Dr. Blanco is an Assistant Professor at the Public University of Navarre. His work is focused on the development and evaluation of ecological models to simulate the influences of management, climate and other ecological factors on tree growth. He is currently collaborating with research teams from Canada, Taiwan, USA, Spain, Cuba, and China in using ecological models to explore the effects of climate change, atmospheric pollution and alternative forest practices in natural and planted forest in boreal, temperate and tropical forests. His research has been applied in mining to optimize reclamation plans, in forestry to assess the potential for carbon sequestration and by government agencies to define local guidelines for long-term sustainable forest management. Among other topics related to forest ecology, Dr. Blanco has studied the influence of climate variations on tree growth and estimated the possible ecological consequences of climate change in forest ecosystems. He has also co-authored the first book dedicated exclusively to the use of hybrid ecological models in forest management, entitled “Forecasting Forest Futures” (Earthscan, London), edited three books on Climate Change effects, mitigation and adaptation (InTech, Rijeka), and three more on Forest Ecosystems, Biodiversity and Tropical Forests (InTech, Rijeka).",institutionString:null,institution:{name:"Universidad Publica De Navarra",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5311},{group:"region",caption:"Middle and South America",value:2,count:4814},{group:"region",caption:"Africa",value:3,count:1465},{group:"region",caption:"Asia",value:4,count:9355},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14773}],offset:12,limit:12,total:14778},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"7901",title:"Cocoa",subtitle:null,isOpenForSubmission:!0,hash:"bd93f97ceb11fd901da97e54a700270d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8795",title:"Reptiles",subtitle:null,isOpenForSubmission:!0,hash:"839705a75a74ec1ee60f481628d59046",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8795.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8105",title:"Ocean Epipelagic Fish",subtitle:null,isOpenForSubmission:!0,hash:"afda9c695b64a42d94ce14a71ba29be3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8105.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8058",title:"Flora and Fauna of Mexico",subtitle:null,isOpenForSubmission:!0,hash:"c8bfa21c387827e30636c3051eb04b30",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8058.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8493",title:"Meat and Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"2650311fc3de37679f550fa97c5ae607",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8493.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7763",title:"Symmetry",subtitle:null,isOpenForSubmission:!0,hash:"43717cfff404e41e2959f31e1c3c173f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7763.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Vegetarianism and Veganism",subtitle:null,isOpenForSubmission:!0,hash:"7974912539901a8ea2e7c4b5c1b34069",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8108",title:"Citrus",subtitle:null,isOpenForSubmission:!0,hash:"323198bd2227ad627206f0e347ae9121",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8108.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8065",title:"Solanum lycopersicum",subtitle:null,isOpenForSubmission:!0,hash:"57d11760537a5fceaa0ac6ce54c15191",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8065.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8549",title:"Marsupials",subtitle:null,isOpenForSubmission:!0,hash:"187f837a89f89055c73478da63fb8e41",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8549.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7032",title:"Sea Urchins",subtitle:null,isOpenForSubmission:!0,hash:"cf1501a535fa08bdb36c3806d8b9cf82",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7032.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8469",title:"Alternative Crops",subtitle:null,isOpenForSubmission:!0,hash:"36fc7c49de6d8d540620f986d3e68ced",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8469.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:28},{group:"topic",caption:"Computer and Information Science",value:9,count:27},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:39},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:143},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:26},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:11},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1},{group:"topic",caption:"Osteology",value:1414,count:1},{group:"topic",caption:"Polymer Chemistry",value:1415,count:1}],offset:12,limit:12,total:106},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1086",title:"Neuroradiology",slug:"neuroradiology",parent:{title:"Oncology",slug:"medicine-oncology"},numberOfBooks:1,numberOfAuthorsAndEditors:22,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:3,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"neuroradiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5599",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",subtitle:null,isOpenForSubmission:!1,hash:"eba16b1d15f462bf516788bd9a813fac",slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",bookSignature:"Lee Roy Morgan",coverURL:"https://cdn.intechopen.com/books/images_new/5599.jpg",editedByType:"Edited by",editors:[{id:"158053",title:"Dr.",name:"Lee Roy",middleName:null,surname:"Morgan",slug:"lee-roy-morgan",fullName:"Lee Roy Morgan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"53170",doi:"10.5772/66310",title:"Current Management of Brain Metastases: Overview and Teaching Cases",slug:"current-management-of-brain-metastases-overview-and-teaching-cases",totalDownloads:770,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Karolyn Au, Ying Meng, Suganth Suppiah, Anick Nater, Rakesh\nJalali and Gelareh Zadeh",authors:[{id:"194279",title:"M.D.",name:"Karolyn",middleName:null,surname:"Au",slug:"karolyn-au",fullName:"Karolyn Au"},{id:"197665",title:"Dr.",name:"Ying",middleName:null,surname:"Meng",slug:"ying-meng",fullName:"Ying Meng"},{id:"197666",title:"Dr.",name:"Suganth",middleName:null,surname:"Suppiah",slug:"suganth-suppiah",fullName:"Suganth Suppiah"},{id:"197667",title:"Dr.",name:"Anick",middleName:null,surname:"Nater",slug:"anick-nater",fullName:"Anick Nater"},{id:"197668",title:"Dr.",name:"Gelareh",middleName:null,surname:"Zadeh",slug:"gelareh-zadeh",fullName:"Gelareh Zadeh"},{id:"197669",title:"Dr.",name:"Rakesh",middleName:null,surname:"Jalali",slug:"rakesh-jalali",fullName:"Rakesh Jalali"}]},{id:"54440",doi:"10.5772/67591",title:"NeuroPharmacology: As Applied to Designing New Chemotherapeutic Agents",slug:"neuropharmacology-as-applied-to-designing-new-chemotherapeutic-agents",totalDownloads:561,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Andrew H. Rodgers and Lee Roy Morgan",authors:[{id:"158053",title:"Dr.",name:"Lee Roy",middleName:null,surname:"Morgan",slug:"lee-roy-morgan",fullName:"Lee Roy Morgan"},{id:"193557",title:"Ph.D.",name:"Andrew",middleName:null,surname:"Rodgers",slug:"andrew-rodgers",fullName:"Andrew Rodgers"}]},{id:"53003",doi:"10.5772/66131",title:"Managing CNS Tumors: The Nanomedicine Approach",slug:"managing-cns-tumors-the-nanomedicine-approach",totalDownloads:611,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Juan Aparicio-Blanco and Ana-Isabel Torres-Suárez",authors:[{id:"193558",title:"Prof.",name:"Ana Isabel",middleName:null,surname:"Torres-Suárez",slug:"ana-isabel-torres-suarez",fullName:"Ana Isabel Torres-Suárez"},{id:"195630",title:"MSc.",name:"Juan",middleName:null,surname:"Aparicio-Blanco",slug:"juan-aparicio-blanco",fullName:"Juan Aparicio-Blanco"}]}],mostDownloadedChaptersLast30Days:[{id:"53170",title:"Current Management of Brain Metastases: Overview and Teaching Cases",slug:"current-management-of-brain-metastases-overview-and-teaching-cases",totalDownloads:770,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Karolyn Au, Ying Meng, Suganth Suppiah, Anick Nater, Rakesh\nJalali and Gelareh Zadeh",authors:[{id:"194279",title:"M.D.",name:"Karolyn",middleName:null,surname:"Au",slug:"karolyn-au",fullName:"Karolyn Au"},{id:"197665",title:"Dr.",name:"Ying",middleName:null,surname:"Meng",slug:"ying-meng",fullName:"Ying Meng"},{id:"197666",title:"Dr.",name:"Suganth",middleName:null,surname:"Suppiah",slug:"suganth-suppiah",fullName:"Suganth Suppiah"},{id:"197667",title:"Dr.",name:"Anick",middleName:null,surname:"Nater",slug:"anick-nater",fullName:"Anick Nater"},{id:"197668",title:"Dr.",name:"Gelareh",middleName:null,surname:"Zadeh",slug:"gelareh-zadeh",fullName:"Gelareh Zadeh"},{id:"197669",title:"Dr.",name:"Rakesh",middleName:null,surname:"Jalali",slug:"rakesh-jalali",fullName:"Rakesh Jalali"}]},{id:"53032",title:"Role of Pathologist in Driver of Treatment of CNS Tumors",slug:"role-of-pathologist-in-driver-of-treatment-of-cns-tumors",totalDownloads:814,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Serdar Altınay",authors:[{id:"185324",title:"Associate Prof.",name:"Serdar",middleName:null,surname:"Altınay",slug:"serdar-altinay",fullName:"Serdar Altınay"}]},{id:"53555",title:"Phakomatoses and Their Tumors: Genetics and New Treatment Options",slug:"phakomatoses-and-their-tumors-genetics-and-new-treatment-options",totalDownloads:643,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Muhammad Taimur Malik, Mohammed Faraz Majeed and Scott G.\nTurner",authors:[{id:"181611",title:"Dr.",name:"Scott",middleName:null,surname:"Turner",slug:"scott-turner",fullName:"Scott Turner"},{id:"196291",title:"Dr.",name:"Mohammed Faraz",middleName:null,surname:"Majeed",slug:"mohammed-faraz-majeed",fullName:"Mohammed Faraz Majeed"},{id:"196293",title:"Dr.",name:"Muhammad Taimur",middleName:null,surname:"Malik",slug:"muhammad-taimur-malik",fullName:"Muhammad Taimur Malik"}]},{id:"53368",title:"Advances in the Treatment of Primary Brain Tumors: The Realm of Immunotherapy",slug:"advances-in-the-treatment-of-primary-brain-tumors-the-realm-of-immunotherapy",totalDownloads:508,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Michael J. Strong and Marcus L. Ware",authors:[{id:"193518",title:"Mr.",name:"Michael",middleName:null,surname:"Strong",slug:"michael-strong",fullName:"Michael Strong"},{id:"193559",title:"Dr.",name:"Marcus",middleName:null,surname:"Ware",slug:"marcus-ware",fullName:"Marcus Ware"}]},{id:"54440",title:"NeuroPharmacology: As Applied to Designing New Chemotherapeutic Agents",slug:"neuropharmacology-as-applied-to-designing-new-chemotherapeutic-agents",totalDownloads:561,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Andrew H. Rodgers and Lee Roy Morgan",authors:[{id:"158053",title:"Dr.",name:"Lee Roy",middleName:null,surname:"Morgan",slug:"lee-roy-morgan",fullName:"Lee Roy Morgan"},{id:"193557",title:"Ph.D.",name:"Andrew",middleName:null,surname:"Rodgers",slug:"andrew-rodgers",fullName:"Andrew Rodgers"}]},{id:"54453",title:"A Review of Current Radiation Therapies for the Treatment of Metastatic Brain Tumors",slug:"a-review-of-current-radiation-therapies-for-the-treatment-of-metastatic-brain-tumors",totalDownloads:670,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Jonathan S. Hayman",authors:[{id:"194386",title:"Dr.",name:"Michael",middleName:null,surname:"Hayman",slug:"michael-hayman",fullName:"Michael Hayman"},{id:"194430",title:"Dr.",name:"Jonathan",middleName:null,surname:"Hayman",slug:"jonathan-hayman",fullName:"Jonathan Hayman"}]},{id:"53265",title:"Comparative Anticancer Activity in Human Tumor Xenograft Models, Preclinical Pharmacology and Toxicology for 4- Hydroperoxyifosfamide (HOOI): A Potential Neuro-Alkylating Agent for Primary and Metastatic Cancers Involving the Central Nervous System",slug:"comparative-anticancer-activity-in-human-tumor-xenograft-models-preclinical-pharmacology-and-toxicol",totalDownloads:421,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Lee Roy Morgan, Andrew H. Rodgers, Gerard Bastian, William S.\nWaud, Branko S. Jursic, Robert F. Struck, Gerald LaHoste and\nEdward Stevens",authors:[{id:"158053",title:"Dr.",name:"Lee Roy",middleName:null,surname:"Morgan",slug:"lee-roy-morgan",fullName:"Lee Roy Morgan"}]},{id:"53003",title:"Managing CNS Tumors: The Nanomedicine Approach",slug:"managing-cns-tumors-the-nanomedicine-approach",totalDownloads:611,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Juan Aparicio-Blanco and Ana-Isabel Torres-Suárez",authors:[{id:"193558",title:"Prof.",name:"Ana Isabel",middleName:null,surname:"Torres-Suárez",slug:"ana-isabel-torres-suarez",fullName:"Ana Isabel Torres-Suárez"},{id:"195630",title:"MSc.",name:"Juan",middleName:null,surname:"Aparicio-Blanco",slug:"juan-aparicio-blanco",fullName:"Juan Aparicio-Blanco"}]},{id:"53873",title:"Primary Central Nervous System Lymphoma",slug:"primary-central-nervous-system-lymphoma-2017-03",totalDownloads:896,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-approaches-to-the-management-of-primary-and-secondary-cns-tumors",title:"New Approaches to the Management of Primary and Secondary CNS Tumors",fullTitle:"New Approaches to the Management of Primary and Secondary CNS Tumors"},signatures:"Mihnea Zdrenghea, Delia Dima, Ciprian Tomuleasa, Horia Bumbea\nand Cristina Bagacean",authors:[{id:"73222",title:"Dr.",name:"Delia",middleName:null,surname:"Dima",slug:"delia-dima",fullName:"Delia Dima"},{id:"193180",title:"Dr.",name:"Mihnea",middleName:null,surname:"Zdrenghea",slug:"mihnea-zdrenghea",fullName:"Mihnea Zdrenghea"},{id:"198423",title:"Dr.",name:"Cristina",middleName:null,surname:"Bagacean",slug:"cristina-bagacean",fullName:"Cristina Bagacean"}]}],onlineFirstChaptersFilter:{topicSlug:"neuroradiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/28445/xiaohan-yang",hash:"",query:{},params:{id:"28445",slug:"xiaohan-yang"},fullPath:"/profiles/28445/xiaohan-yang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()