Thermodynamics of black holes were studied by Hawking, Bekenstein et al., considering black holes as classical spacetimes possessing a singular region hidden behind an event horizon. In this chapter, in contrast, we treat black hole from the perspective of a generic theory of quantum gravity, using certain assumptions which are consistent with loop quantum gravity (LQG). Using these assumptions and basic tenets of equilibrium statistical mechanics, we have derived criteria for thermal stability of black holes in any spacetime dimension with arbitrary number of charges (‘hairs’), irrespective of whether classical or quantum. The derivation of these thermal stability criteria makes no explicit use of classical spacetime geometry at all. The only assumption is that the mass of the black hole is a function of its horizon area and all the ‘hairs’ (i.e. charge, angular momentum, any other types of hairs). We get a series of inequalities between derivatives of the mass function with respect to the area and other ‘hairs’ as the thermal stability criteria. These criteria are then tested in detail against various types of black holes in various dimensions. This permits us to predict the region of the parameter space of a given black hole in which it may be stable under Hawking radiation.
Part of the book: New Ideas Concerning Black Holes and the Universe