The scope of this chapter is the study of the forward and inverse kinematics for a space robot. The main focus is to compute the position and orientation of manipulators’ end-effectors relative to their platform. Such platform plays the role of workstations referred in the literature approaching ground manipulators. In this study, the method is to write the manipulator kinematics’ equations as functions of the joint variables by following the Denavit-Hartenberg convention. The homogeneous transform technique is used to study the kinematics. The set of coordinate frames defined in this chapter follows the convention for frames that appears in the literature for ground robot manipulators. The kinematics related to the spacecraft attitude is added in the formulation because the manipulator studied in this chapter is type spacecraft. The objective is to provide an overview and clear understanding of the kinematics’ equations for spacecraft-type manipulators. To be consistent with orbital dynamics area, the inertial, orbital, and body-fixed coordinate frames are included in this kinematics study. The forward and inverse kinematics formulations are derived. The MATLAB®/Simulink tools are presented for the computer simulations of the forward and inverse kinematics.
Part of the book: Kinematics