### Chapters authored

Waves and Instabilities in E × B Dusty Plasma By Sukhmander Singh

Hall thrusters are common examples of E × B configuration, where electron trajectory gets trapped along the external magnetic field lines. This significantly increases the residence time of electrons in the plasma discharge channel. Hall thrusters are potential candidates for spacecraft station keeping, rephrasing and orbit topping applications because of its high thrust resolutions and efficiency. The goal of this chapter is to explain the working principle of Hall thrusters and to characterize the resistive instability in hot dusty plasma. The studies of these instabilities are useful to design efficient Hall thrusters and to understand the solar dusty plasma. The large amplitude of these oscillations has an adverse effect on the power processing unit of the devices. This reduces the efficiency and specific impulse and shortens the operating life of the Hall thruster. The theory of linearization of fluid equation for small oscillation has been given. The chapter also discusses the origin of plasma oscillation in a plasma discharge mechanics.

Part of the book: Thermophysical Properties of Complex Materials

Hall Thruster: An Electric Propulsion through Plasmas By Sukhmander Singh

The chapter discussed the technological application of plasma physics in space science. The plasma technology is using laser-plasma fusion, inertial fusion, Terahertz wave generation and welding of metals. In this chapter, the application of plasma physics in the field of electric propulsion and types has been discussed. These devices have much higher exhaust velocities, longer life time, high thrust density than chemical propulsion devices and useful for space missions with regard to the spacecraft station keeping, rephrasing and orbit topping applications. The mathematical relation has been derived to obtain the performance parameters of the propulsion devices.

Part of the book: Selected Topics in Plasma Physics

Dynamics of Rayleigh-Taylor Instability in Plasma Fluids By Sukhmander Singh

The chapter discusses the evolution of Rayleigh-Taylor instability (RTI) in ordinary fluids and in a plasma fluid. RT instability exits in many situations from overturn of the outer portion of the collapsed core of a massive star to laser implosion of deuterium-tritium fusion targets. In the mixture of fluids, the instability is triggered by the gravitational force acting on an inverted density gradient. The motivation behind the study of the instability has been explored by discussing the applications of RT instability. The basic magnetohydrodynamics equations are used to derive the dispersion relation (for an ordinary fluid and plasmas) for two fluids of unequal densities. The conditions of the growth rate of the instability and the propagating modes are obtained by linearizing the fluid equations. The perturbed potential is found to increase with the plasma parameters in a Hall thruster.

Part of the book: Computational Overview of Fluid Structure Interaction

Evolutions of Growing Waves in Complex Plasma Medium By Sukhmander Singh

The purpose of this chapter to discuss the waves and turbulence (instabilities) supported by dusty plasma. Plasmas support many growing modes and instabilities. Wave phenomena are important in heating plasmas, instabilities, diagnostics, etc. Waves in dusty plasma are governed by the dynamics of electrons, ions and dust particles. Disturbances in solar wind, shocks and magnetospheres are the sources of generation of plasma waves. The strong interest in complex plasma provides us better understanding of physics of dusty universe, solar winds, shocks, magnetospheres, dust control in plasma processing units and surface modifications of materials. The theory of linearization of fluid equation for small oscillation has been introduced. The concept of fine particles in complex plasma and its importance is also explained. The expressions for the growth rate of the instabilities in turbulence plasma have been derived.

Part of the book: Computational Overview of Fluid Structure Interaction

Introduction to Plasma Based Propulsion System: Hall Thrusters By Sukhmander Singh, Sanjeev Kumar, Shravan Kumar Meena and Sujit Kumar Saini

Technically, there are two types of propulsion systems namely chemical and electric depending on the sources of the fuel. Electrostatic thrusters are used for launching small satellites in low earth orbit which are capable to provide thrust for long time intervals. These thrusters consume less fuel compared to chemical propulsion systems. Therefore for the cost reduction interests, space scientists are interested to develop thrusters based on electric propulsion technology. This chapter is intended to serve as a general overview of the technology of electric propulsion (EP) and its applications. Plasma based electric propulsion technology used for space missions with regard to the spacecraft station keeping, rephrasing and orbit topping applications. Typical thrusters have a lifespan of 10,000 h and produce thrust of 0.1–1 N. These devices have E→×B→ configurations which is used to confine electrons, increasing the electron residence time and allowing more ionization in the channel. Almost 2500 satellites have been launched into orbit till 2020. For example, the ESA SMART-1 mission (Small Mission for Advanced Research in Technology) used a Hall thruster to escape Earth orbit and reach the moon with a small satellite that weighed 367 kg. These satellites carrying small Hall thrusters for orbital corrections in space as thrust is needed to compensate for various ambient forces including atmospheric drag and radiation pressure. The chapter outlines the electric propulsion thruster systems and technologies and their shortcomings. Moreover, the current status of potential research to improve the electric propulsion systems for small satellite has been discussed.

Part of the book: Propulsion

Physics of Absorption and Generation of Electromagnetic Radiation By Sukhmander Singh, Ashish Tyagi and Bhavna Vidhani

The chapter is divided into two parts. In the first part, the chapter discusses the theory of propagation of electromagnetic waves in different media with the help of Maxwell’s equations of electromagnetic fields. The electromagnetic waves with low frequency are suitable for the communication in sea water and are illustrated with numerical examples. The underwater communication have been used for the oil (gas) field monitoring, underwater vehicles, coastline protection, oceanographic data collection, etc. The mathematical expression of penetration depth of electromagnetic waves is derived. The significance of penetration depth (skin depth) and loss angle are clarified with numerical examples. The interaction of electromagnetic waves with human tissue is also discussed. When an electric field is applied to a dielectric, the material takes a finite amount of time to polarize. The imaginary part of the permittivity is corresponds to the absorption length of radiation inside biological tissue. In the second part of the chapter, it has been shown that a high frequency wave can be generated through plasma under the presence of electron beam. The electron beam affects the oscillations of plasma and triggers the instability called as electron beam instability. In this section, we use magnetohydrodynamics theory to obtain the modified dispersion relation under the presence of electron beam with the help of the Poisson’s equation. The high frequency instability in plasma grow with the magnetic field, wave length, collision frequency and the beam density. The growth rate linearly increases with collision frequency of electrons but it is decreases with the drift velocity of electrons. The real frequency of the instability increases with magnetic field, azimuthal wave number and beam density. The real frequency is almost independent with the collision frequency of the electrons.

Part of the book: Electromagnetic Wave Propagation for Industry and Biomedical Applications

Numerical Investigations of Electromagnetic Oscillations and Turbulences in Hall Thrusters Using Two Fluid Approach By Sukhmander Singh, Bhavna Vidhani and Ashish Tyagi

The first part of the contributed chapter discuss the overview of electric propulsion technology and its requirement in different space missions. The technical terms specific impulse and thrust are explained with their relation to exhaust velocity. The shortcoming of the Hall thrusters and its erosion problems of the channel walls are also conveyed. The second part of the chapter discuss the various waves and electromagnetic instabilities propagating in a Hall thruster magnetized plasma. The dispersion relation for the azimuthal growing waves is derived analytically with the help of magnetohydrodynamics theory. It is depicted that the growth rate of the instability increases with magnetic field, electron drift velocity and collisional frequency, whereas it is decreases with the initial drift of the ions.

Part of the book: Plasma Science and Technology

Studies of Terahertz Sources and Their Applications By Sukhmander Singh, Shravan Kumar Meena, Ashish Tyagi, Sanjeev Kumar, Man Raj Meena and Sujit Kumar Saini

The contributed chapter discuss the applications of terahertz radiations and its generation mechanism through laser plasma interactions. The methods of generation of terahertz radiations from plasma wake field acceleration, higher harmonic generation and the laser beat wave plasma frequency are reviewed. The nonlinear current density oscillate the plasma at beat wave frequency under the effect of ponderomotive force and excite the terahertz radiation at beat wave frequency. The current state of the arts of the methods of generation has been incorporated. The mathematical expression of ponderomotive force has been derived under the influence of gradient of laser fields. In additions, the future challenge and their overcomes are also been discussed.

Part of the book: Intelligent Electronics and Circuits

Plasma Waves and Rayleigh–Taylor Instability: Theory and Application By Sukhmander Singh, Bhavna Vidhani, Sonia Yogi, Ashish Tyagi, Sanjeev Kumar and Shravan Kumar Meena

The presence of plasma density gradient is one of the main sources of Rayleigh–Taylor instability (RTI). The Rayleigh–Taylor instability has application in meteorology to explain cloud formations and in astrophysics to explain finger formation. It has wide applications in the inertial confinement fusion to determine the yield of the reaction. The aim of the chapter is to discuss the current status of the research related to RTI. The current research related to RTI has been reviewed, and general dispersion relation has been derived under the thermal motion of electron. The perturbed densities of ions and electrons are determined using two fluid approach under the small amplitude of oscillations. The dispersion equation is derived with the help of Poisson’s equation and solved numerically to investigate the effect of various parameters on the growth rate and real frequency. It has been shown that the real frequency increases with plasma density gradient, electron temperature and the wavenumber, but magnetic field has opposite effect on it. On the other hand, the growth rate of instability increases with magnetic field and density gradient, but it decreases with electron temperature and wave number.

Part of the book: Plasma Science

View all chapters