Application-based taxonomy for routing protocols according to traffic density in VANET (Ducourthial & Khaled, 2009)
Chapter 1: "Permanent Maxillary and Mandibular Incisors"\n
Chapter 2: "The Permanent Maxillary and Mandibular Premolar Teeth"\n
Chapter 3: "Dental Anatomical Features and Caries: A Relationship to be Investigated"\n
Chapter 4: "Anatomy Applied to Block Anaesthesia"\n
Chapter 5: "Treatment Considerations for Missing Teeth"\n
Chapter 6: "Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials"\n
Chapter 7: "Evaluation of the Anatomy of the Lower First Premolar"\n
Chapter 8: "A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with the iTero Intraoral Scanner and the Traditional Method"\n
Chapter 9: "Identification of Lower Central Incisors"\n
The book is aimed toward dentists and can also be well used in education and research.',isbn:"978-1-78923-511-1",printIsbn:"978-1-78923-510-4",pdfIsbn:"978-1-83881-247-8",doi:"10.5772/65542",price:119,priceEur:129,priceUsd:155,slug:"dental-anatomy",numberOfPages:204,isOpenForSubmission:!1,isInWos:null,hash:"445cd419d97f339f2b6514c742e6b050",bookSignature:"Bağdagül Helvacioğlu Kivanç",publishedDate:"August 1st 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5814.jpg",numberOfDownloads:7931,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,hasAltmetrics:0,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 4th 2016",dateEndSecondStepPublish:"October 25th 2016",dateEndThirdStepPublish:"July 16th 2017",dateEndFourthStepPublish:"August 16th 2017",dateEndFifthStepPublish:"October 16th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"178570",title:"Dr.",name:"Bağdagül",middleName:null,surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç",profilePictureURL:"https://mts.intechopen.com/storage/users/178570/images/7646_n.jpg",biography:"Bağdagül Helvacıoğlu Kıvanç is a dentist, a teacher, a researcher and a scientist in the field of Endodontics. She was born in Zonguldak, Turkey, on February 14, 1974; she is married and has two children. She graduated in 1997 from the Ankara University, Faculty of Dentistry, Ankara, Turkey. She aquired her PhD in 2004 from the Gazi University, Faculty of Dentistry, Department of Endodontics, Ankara, Turkey, and she is still an associate professor at the same department. She has published numerous articles and a book chapter in the areas of Operative Dentistry, Esthetic Dentistry and Endodontics. She is a member of Turkish Endodontic Society and European Endodontic Society.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"174",title:"Dentistry",slug:"dentistry"}],chapters:[{id:"56461",title:"Permanent Maxillary and Mandibular Incisors",doi:"10.5772/intechopen.69542",slug:"permanent-maxillary-and-mandibular-incisors",totalDownloads:1609,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mohammed E. Grawish, Lamyaa M. Grawish and Hala M. Grawish",downloadPdfUrl:"/chapter/pdf-download/56461",previewPdfUrl:"/chapter/pdf-preview/56461",authors:[{id:"82989",title:"Prof.",name:"Mohammed",surname:"Grawish",slug:"mohammed-grawish",fullName:"Mohammed Grawish"}],corrections:null},{id:"62386",title:"The Permanent Maxillary and Mandibular Premolar Teeth",doi:"10.5772/intechopen.79464",slug:"the-permanent-maxillary-and-mandibular-premolar-teeth",totalDownloads:1837,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Işıl Çekiç Nagaş, Ferhan Eğilmez and Bağdagül Helvacioğlu Kivanç",downloadPdfUrl:"/chapter/pdf-download/62386",previewPdfUrl:"/chapter/pdf-preview/62386",authors:[{id:"178570",title:"Dr.",name:"Bağdagül",surname:"Helvacıoğlu Kıvanç",slug:"bagdagul-helvacioglu-kivanc",fullName:"Bağdagül Helvacıoğlu Kıvanç"}],corrections:null},{id:"57546",title:"Dental Anatomical Features and Caries: A Relationship to be Investigated",doi:"10.5772/intechopen.71337",slug:"dental-anatomical-features-and-caries-a-relationship-to-be-investigated",totalDownloads:994,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Marcel Alves Avelino de Paiva, Dayane Franco Barros Mangueira\nLeite, Isabela Albuquerque Passos Farias, Antônio de Pádua\nCavalcante Costa and Fábio Correia Sampaio",downloadPdfUrl:"/chapter/pdf-download/57546",previewPdfUrl:"/chapter/pdf-preview/57546",authors:[{id:"138852",title:"Prof.",name:"Fabio",surname:"Sampaio",slug:"fabio-sampaio",fullName:"Fabio Sampaio"},{id:"213662",title:"Prof.",name:"Isabela Albuquerque",surname:"Passos Farias",slug:"isabela-albuquerque-passos-farias",fullName:"Isabela Albuquerque Passos Farias"},{id:"213663",title:"Prof.",name:"Dayane Franco",surname:"Barros Mangueira Leite",slug:"dayane-franco-barros-mangueira-leite",fullName:"Dayane Franco Barros Mangueira Leite"},{id:"213664",title:"BSc.",name:"Marcel Alves",surname:"Avelino De Paiva",slug:"marcel-alves-avelino-de-paiva",fullName:"Marcel Alves Avelino De Paiva"},{id:"213666",title:"Prof.",name:"Antonio De Pádua",surname:"Cavalcante Da Costa",slug:"antonio-de-padua-cavalcante-da-costa",fullName:"Antonio De Pádua Cavalcante Da Costa"}],corrections:null},{id:"56119",title:"Anatomy Applied to Block Anesthesia for Maxillofacial Surgery",doi:"10.5772/intechopen.69545",slug:"anatomy-applied-to-block-anesthesia-for-maxillofacial-surgery",totalDownloads:920,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alex Vargas, Paula Astorga and Tomas Rioseco",downloadPdfUrl:"/chapter/pdf-download/56119",previewPdfUrl:"/chapter/pdf-preview/56119",authors:[{id:"199400",title:"Dr.",name:"Alex",surname:"Vargas",slug:"alex-vargas",fullName:"Alex Vargas"},{id:"202023",title:"Dr.",name:"Paula",surname:"Astorga",slug:"paula-astorga",fullName:"Paula Astorga"},{id:"205059",title:"Dr.",name:"Tomas",surname:"Rioseco",slug:"tomas-rioseco",fullName:"Tomas Rioseco"}],corrections:null},{id:"55902",title:"Treatment Considerations for Missing Teeth",doi:"10.5772/intechopen.69543",slug:"treatment-considerations-for-missing-teeth",totalDownloads:569,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Abdolreza Jamilian, Alireza Darnahal, Ludovica Nucci, Fabrizia\nD’Apuzzo and Letizia Perillo",downloadPdfUrl:"/chapter/pdf-download/55902",previewPdfUrl:"/chapter/pdf-preview/55902",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"171873",title:"Dr.",name:"Alireza",surname:"Darnahal",slug:"alireza-darnahal",fullName:"Alireza Darnahal"},{id:"173044",title:"Prof.",name:"Letizia",surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"198961",title:"MSc.",name:"Fabrizia",surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"},{id:"206137",title:"Mrs.",name:"Ludovica",surname:"Nucci",slug:"ludovica-nucci",fullName:"Ludovica Nucci"}],corrections:null},{id:"55973",title:"Anatomical and Functional Restoration of the Compromised Occlusion: From Theory to Materials",doi:"10.5772/intechopen.69544",slug:"anatomical-and-functional-restoration-of-the-compromised-occlusion-from-theory-to-materials",totalDownloads:668,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nicola Mobilio and Santo Catapano",downloadPdfUrl:"/chapter/pdf-download/55973",previewPdfUrl:"/chapter/pdf-preview/55973",authors:[{id:"179565",title:"Dr.",name:"Nicola",surname:"Mobilio",slug:"nicola-mobilio",fullName:"Nicola Mobilio"},{id:"199397",title:"Prof.",name:"Santo",surname:"Catapano",slug:"santo-catapano",fullName:"Santo Catapano"}],corrections:null},{id:"57245",title:"Evaluation of the Anatomy of the Lower First Premolar",doi:"10.5772/intechopen.71038",slug:"evaluation-of-the-anatomy-of-the-lower-first-premolar",totalDownloads:430,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ticiana Sidorenko de Oliveira Capote, Suellen Tayenne Pedroso\nPinto, Marcelo Brito Conte, Juliana Álvares Duarte Bonini Campos\nand Marcela de Almeida Gonçalves",downloadPdfUrl:"/chapter/pdf-download/57245",previewPdfUrl:"/chapter/pdf-preview/57245",authors:[{id:"87871",title:"Prof.",name:"Ticiana",surname:"Capote",slug:"ticiana-capote",fullName:"Ticiana Capote"},{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"217420",title:"Mrs.",name:"Suellen",surname:"Tayenne Pedroso Pinto",slug:"suellen-tayenne-pedroso-pinto",fullName:"Suellen Tayenne Pedroso Pinto"}],corrections:null},{id:"57752",title:"A Comparative Study of the Validity and Reproducibility of Mesiodistal Tooth Size and Dental Arch with iTeroTM Intraoral Scanner and the Traditional Method",doi:"10.5772/intechopen.70963",slug:"a-comparative-study-of-the-validity-and-reproducibility-of-mesiodistal-tooth-size-and-dental-arch-wi",totalDownloads:501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ignacio Faus-Matoses, Ana Mora, Carlos Bellot-Arcís, Jose Luis\nGandia-Franco and Vanessa Paredes-Gallardo",downloadPdfUrl:"/chapter/pdf-download/57752",previewPdfUrl:"/chapter/pdf-preview/57752",authors:[{id:"150456",title:"Prof.",name:"Vanessa",surname:"Paredes",slug:"vanessa-paredes",fullName:"Vanessa Paredes"},{id:"150458",title:"Prof.",name:"José-Luis",surname:"Gandia",slug:"jose-luis-gandia",fullName:"José-Luis Gandia"},{id:"212242",title:"Prof.",name:"Ignacio",surname:"Faus",slug:"ignacio-faus",fullName:"Ignacio Faus"},{id:"212243",title:"Prof.",name:"Carlos",surname:"Bellot-Arcís",slug:"carlos-bellot-arcis",fullName:"Carlos Bellot-Arcís"},{id:"218390",title:"Prof.",name:"Ana",surname:"Mora",slug:"ana-mora",fullName:"Ana Mora"}],corrections:null},{id:"57378",title:"Identification of Lower Central Incisors",doi:"10.5772/intechopen.71341",slug:"identification-of-lower-central-incisors",totalDownloads:404,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcela de Almeida Gonçalves, Bruno Luís Graciliano Silva, Marcelo\nBrito Conte, Juliana Álvares Duarte Bonini Campos and Ticiana\nSidorenko de Oliveira Capote",downloadPdfUrl:"/chapter/pdf-download/57378",previewPdfUrl:"/chapter/pdf-preview/57378",authors:[{id:"199157",title:"Prof.",name:"Marcela",surname:"De Almeida Gonçalves",slug:"marcela-de-almeida-goncalves",fullName:"Marcela De Almeida Gonçalves"},{id:"199243",title:"BSc.",name:"Marcelo",surname:"Brito Conte",slug:"marcelo-brito-conte",fullName:"Marcelo Brito Conte"},{id:"199244",title:"Prof.",name:"Juliana",surname:"Álvares Duarte Bonini Campos",slug:"juliana-alvares-duarte-bonini-campos",fullName:"Juliana Álvares Duarte Bonini Campos"},{id:"221435",title:"Mr.",name:"Bruno Luis Graciliano",surname:"Silva",slug:"bruno-luis-graciliano-silva",fullName:"Bruno Luis Graciliano Silva"},{id:"221438",title:"Prof.",name:"Ticiana Sidorenko De Oliveira",surname:"Capote",slug:"ticiana-sidorenko-de-oliveira-capote",fullName:"Ticiana Sidorenko De Oliveira Capote"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"7cb94732cfb315f8d1e70ebf500eb8a9",slug:"trauma-in-dentistry",bookSignature:"Serdar Gözler",coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",editedByType:"Edited by",editors:[{id:"204606",title:"Dr.",name:"Serdar",surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",isOpenForSubmission:!1,hash:"ac055c5801032970123e0a196c2e1d32",slug:"human-teeth-key-skills-and-clinical-illustrations",bookSignature:"Zühre Akarslan and Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.jpeg",biography:"Farid Bourzgui is a professor of Orthodontics in the School of Dental Medicine at Hassan II University in Casablanca, Morocco. He received his PhD from the School of Dental Medicine at Hassan II University in 1995. He holds various certificates and diplomas: a Certificate of Higher Studies in Group A (major: Technology of Biomaterials used in Dentistry, 1996), a Certificate of Advanced Studies of group B, (major: Dentofacial Orthopaedics, 1997) from the Faculty of Dental Surgery at University Denis Diderot-Paris VII, France, a diploma of Higher Studies in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002), a Certificate of Clinical Occlusal Odontology from the Faculty of Dentistry Casablanca (2004) and a university degree in Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca in 2011.\r\nFarid Bourzgui is a former intern and resident of Casablanca University Hospital, Ibn Rushd in Casablanca. Dr Bourzgui specialises in Orthodontics and received his National Diploma in Dentistry (major: Dentofacial Orthopedics) from the School of Dentistry in Casablanca in 2000.\r\nDr Bourzgui has published a number of articles and book chapters on various aspects of Orthodontics. He has served on the board of the Moroccan Society of Dentistry, and was the President of the Moroccan Society of Dentistry from 2002 to 2004.",institutionString:"University Hassan II of Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9387",title:"Oral Diseases",subtitle:null,isOpenForSubmission:!1,hash:"76591a3bd6bedaa1c8d1f72870268e23",slug:"oral-diseases",bookSignature:"Gokul Sridharan, Anil Sukumaran and Alaa Eddin Omar Al Ostwani",coverURL:"https://cdn.intechopen.com/books/images_new/9387.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,isOpenForSubmission:!1,hash:"1e9812cebd46ef9e28257f3e96547f6a",slug:"computer-vision-in-dentistry",bookSignature:"Monika Elzbieta Machoy",coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",editedByType:"Edited by",editors:[{id:"248279",title:"Dr.",name:"Monika",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74443",slug:"corrigendum-to-fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implicat",title:"Corrigendum to: Fruit Flies (Diptera: Tephritoidea): Biology, Host Plants, Natural Enemies, and the Implications to Their Natural Control",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74443.pdf",downloadPdfUrl:"/chapter/pdf-download/74443",previewPdfUrl:"/chapter/pdf-preview/74443",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74443",risUrl:"/chapter/ris/74443",chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"29609",slug:"fruit-flies-diptera-tephritoidea-biology-host-plants-natural-enemies-and-the-implications-to-their-n",signatures:"M. A. Uchoa",dateSubmitted:"March 31st 2011",dateReviewed:"September 21st 2011",datePrePublished:null,datePublished:"February 24th 2012",book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"87919",title:"Dr.",name:"Manoel",middleName:null,surname:"Uchoa",fullName:"Manoel Uchoa",slug:"manoel-uchoa",email:"uchoa.manoel@gmail.com",position:null,institution:{name:"Universidade Federal da Grande Dourados",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",fullTitle:"Integrated Pest Management and Pest Control - Current and Future Tactics",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",publishedDate:"February 24th 2012",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9270",leadTitle:null,title:"Ergonomics - Innovative Applications, Research and Guidelines for the Information Age",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tTechnology advancements, innovations, and global pandemics have reinforced the need for timely, accurate and relevant applications of ergonomics in the international community. The need for research and expanded approaches to effectively apply ergonomics in product design, occupational settings, personal spaces, and service environments has grown with each area of innovation. Given the current digital or information age as well as the push toward innovation there exists a consistent need for ergonomics professionals to offer research, applications, and guidelines to ensure safety, reduce the likelihood of injury and increase usability features associated with new products and services.
\r\n\r\n\tAs a result, a number of subgroups have emerged including ergonomics focused on the health care worker community, innovations to address the miniaturization of personal devices, studies on the ergonomics of healthy distance education strategies and the use of ergonomics to support workers in new areas such as ridesharing or individuals riding in automatically driven vehicles. All of these innovations have the “human” at the center of these systems and the need to develop and apply strategies that maximize the safety, health, and well-being of these humans remain the primary focus of the ergonomics community. Additionally, challenges facing the global health care community have further necessitated a broad and globally applicable understanding of occupational ergonomic principles and their application for the safety of first responders, essential service providers and health care workers around the world.
\r\n\r\n\tThis book intends to provide the reader with a comprehensive overview of current state-of-the-art ergonomics research, applications, and guidelines that are positively impacting the global community.
",isbn:"978-1-83968-736-5",printIsbn:"978-1-83968-735-8",pdfIsbn:"978-1-83968-737-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"7f6cd484b31372164e230f3b84a65d0a",bookSignature:"Dr. Pamela McCauley",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9270.jpg",keywords:"Personal Protective Equipment, Occupational Safety and Health, Musculoskeletal Injuries, Mobile Devices, Distributed Learning, Distance Learning, Vehicle Ergonomics, Ride-Share Driver Ergonomics, Technology in Automobiles, Home Office, Office Ergonomics, Ergonomics of Telework",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 7th 2020",dateEndSecondStepPublish:"October 5th 2020",dateEndThirdStepPublish:"December 4th 2020",dateEndFourthStepPublish:"February 22nd 2021",dateEndFifthStepPublish:"April 23rd 2021",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"The U.S. State Department awarded Dr. McCauley with the prestigious Jefferson Science Fellowship (JSF) for the 2015-2016 term.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"141524",title:"Dr.",name:"Pamela",middleName:null,surname:"McCauley",slug:"pamela-mccauley",fullName:"Pamela McCauley",profilePictureURL:"https://mts.intechopen.com/storage/users/141524/images/system/141524.jpg",biography:"PAMELA R. MCCAULEY, PH.D., C.P.E.\r\nDr. Pamela McCauley is an internationally recognized Industrial Engineering researcher, STEM advocate, university leader, seasoned entrepreneur, innovator and experienced federal Program Director. As an Industrial Engineering researcher, she is known for significant work in the development of fuzzy set theory based mathematical models, human engineering, ergonomics, biomechanics as well as engineering leadership and women’s leadership in STEM. She is also an acclaimed keynote speaker, a dedicated Professor, and the Director of the Ergonomics Laboratory in the Department of Industrial Engineering and Management Systems at the University of Central Florida. She is serving as the National Science Foundation Innovation Corps (I-Corps) Program Director. Dr. McCauley previously held the position of Martin Luther King, Jr. Visiting Associate Professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology.\r\nShe is the author of over 100 technical papers, book chapters, conference proceedings and the best-selling ergonomics textbook, Ergonomics: Foundational Principles, Applications, and Technologies. Many of her leadership, diversity, innovation and STEM education related keynote talks draw from her research-based book; Transforming Your STEM Career Through Leadership and Innovation: Inspiration and Strategies for Women, which examines the growing need for leadership and innovation in America, particularly among women and STEM professionals. To inspire students to consider careers in STEM, particularly minorities and females, she authored, Winners Don’t Quit…Today they Call Me Doctor. Dr. McCauley is an award-winning educator and her teaching efforts have resulted in the receipt of both the College of Engineering Award for Excellence in Undergraduate Teaching and the Teaching Incentive Program Award (TIP). She is also the recipient of the 2015 Black Engineer of the Year Award for Educational Leadership and the Promotion of College-Level Education.\r\nIn 2017, after a nationwide search, the National Science Foundation (NSF) Computer Information Science and Engineering (CISE) Directorate selected Dr. McCauley to lead the Innovation Corps (I-Corps) Program. The NSF I-Corps program prepares scientists and engineers to extend their focus beyond the university laboratory and accelerates the economic and societal benefits of NSF-funded, basic-research projects that are ready to move toward commercialization. During her first year in this role, she has engaged the national innovation community as well as funding the first I-Corps Innovation Inclusion Summit. This Summit attracted over 260 academic institution participants including I-Corps grantees, Historically Black Colleges and Universities, Hispanic Serving Institutions and Tribal Colleges to promote and facilitate collaborative innovation.\r\nThe U.S. State Department awarded Dr. McCauley the prestigious Jefferson Science Fellowship (JSF) for the 2015-2016 term. JSF’s are distinguished appointments to senior academics based on their stature, recognition, and experience in the national and international scientific or engineering communities, and their ability to rapidly and accurately understand scientific advancements outside their discipline area to effectively integrate this knowledge into U.S. Department of State/USAID policy discussions. As a JSF she was a member of the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR). While at PEPFAR she researched the Healthcare Delivery System for HIV/AIDS in developing nations and created a new approach known as the Innovations, Methods, Processes and Critical Technologies (IMPACT) Model to assess opportunities for enhancing efficiencies and technology integration in healthcare service delivery. Dr. McCauley has the distinction of being a 2012 U.S. Fulbright Scholar Specialist Program Awardee for her US- New Zealand Human Engineering and Mobile Technology in High Consequence Emergency Management Research Program. Due to her extensive expertise in biomechanics, human factors, and ergonomic design, Dr. McCauley is a highly sought Certified Professional Ergonomist (C.P.E.) and nationally recognized Expert Witness. A provisional patent for a scientific social media matching technology to promote collaborative innovation (USPTO # 62/572,994) has been submitted.\r\nDr. McCauley has held various leadership positions and has received numerous awards in recognition of her commitment, professional accomplishments and community outreach efforts in the business, technology, and education communities. She has received the Distinguished Alumni Award from the University of Oklahoma, the Engineer of the Year Award from the Florida Engineering Society, and has been recognized by the Society of Women Engineers as Engineering Educator of the year. She has also been recognized as one of the Ten Small Business Women of the Year in Central Florida; and the Millennium Woman of the Year by the Millennium Woman Foundation. Dr. McCauley was elected as Councilor to the National Executive Advisory Board of the Association of Women in Science (AWIS) for the 2015–2018 terms. She previously served as a board member in numerous national and regional organizations including the Women of Color in Technology National Advisory Board, Central Florida Boys Scouts, the University of Oklahoma (OU) Industrial Engineering Advisory Board and College of Engineering Minority Engineering Advisory Board. In 2019, she was recognized as a Fellow of the Institute of Industrial and Systems Engineers (IISE) and selected as the Women of Color in Technology Conference’s 'Technologists of the Year”.\r\n--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\r\n\r\nPamela R. McCauley, Ph.D., CPE Summary of Career Achievements\r\n\r\nLeadership\r\nThe National Science Foundation (NSF) Computer Information Science and Engineering (CISE) Directorate selected Dr. McCauley to lead the Innovation Corps (I-Corps) Sites Program in 2017. The NSF I-Corps program prepares scientists and engineers to extend their focus beyond the university laboratory and accelerates the economic and societal benefits of NSF-funded, basic-research projects that are ready to move toward commercialization. During her first year in this role, she has engaged the national innovation community as well as designing and leading the first I-Corps Innovation Inclusion Summit. This Summit attracted over 260 academic institution participants including I-Corps grantees, Historically Black Colleges and Universities, Hispanic Serving Institutions and Tribal Colleges to promote and facilitate collaborative innovation.\r\nThroughout her career, Dr. McCauley has served in an array of leadership positions within the university, professional societies, and private industry. These leadership positions have included chairing university committees, serving as chair or co-chair of national conferences, leading interdisciplinary, multi-university research teams, and serving as Chief Technology Officer and Chief Executive Officer of three high-tech start-up firms. These positions required the use of numerous skills including strategic plan development and execution, financial management, team building, advocacy development and establishment of strategic collaborations.\r\n\r\n\r\nResearch\r\nDr. McCauley received funding in the 2016-’17 academic year, from the World Bank to conduct an international research project titled: A Malawi Time & Motion Study for Efficiency in HIV/AIDS Healthcare Service Delivery. This study was performed as part of the World Bank’s technical support to Malawi in Africa, in partnership with the University of Central Florida Department of Industrial Engineering in the United States. The objective of the study was to apply industrial engineering principles, specifically timed & motion studies to analyze the Malawi HIV/AIDS healthcare service delivery system to promote efficiency, sustainability and the introduction of innovative technologies to support HIV/AIDS health care workers in developing nations.\r\nIn 2015, Dr. McCauley was selected as a Jefferson Science Fellow, with the US State Department. The Jefferson Science Fellowship serves as an innovative model for engaging the American academic science and engineering communities in U.S. foreign policy. Her research topic focused on 'Promoting Sustainability through Systemic Introduction of Innovation and Technology in HIV/AIDS Healthcare Service Delivery in Developing Nations”\r\n\r\n'Jefferson Science Fellowships are prestigious appointments to senior academics based on their stature, recognition, and experience in the national and international scientific or engineering communities, and their ability to rapidly and accurately understand scientific advancements outside their discipline area in order to effectively integrate this knowledge into U.S. Department of State/USAID policy discussions.”\r\n\r\nIn 2014-’15 academic year, Dr. McCauley was funded by NASA, Kennedy Space Center to conduct ergonomics research to support the development of innovative human-centric designs. The objective of this research was to assess and design a NASA firing room and facility layout to meet the dynamic and evolving needs of a diverse aerospace community. The University of Central Florida team was tasked with two objectives: 1) the design of a human centric firing room module that has an innovation component and promotes collaboration and 2) Creating a comprehensive facility layout that promotes modular design features and meets the holistic firing room operational requirements.\r\n\r\nAdditionally, in 2012, she was selected as a U.S. Fulbright Scholar (Fulbright Specialist Program Awardee): US-New Zealand Award, August 15, 2012. Her research topic considered the scientific issues concerning the 'Human Engineering and Mobile Technology in High Consequence Emergency Management.”\r\n'The Fulbright Program is the flagship international educational exchange program sponsored by the U.S. government and is designed to ‘increase mutual understanding between the people of the United States and the people of other countries’.”\r\n\r\nDr. McCauley received a Fulbright award to conduct research in New Zealand where she introduced the results of her National Science Foundation-funded research on human factors and ergonomics in disaster management to an international audience of collaborators.\r\nAs a researcher, Dr. McCauley has an impressive record of achievement in addressing critical issues such as fuzzy set theory based predictive models, human factors in information security, human factors and ergonomics in large scale disaster management with international collaborators including Romania, New Zealand, and Portugal. Additionally, she has been successful in consistently securing research funding throughout her career from esteemed agencies such as The National Science Foundation, the Defense Information Systems Agency, the National Aeronautics, and Space Administration as well as from private corporations.\r\nHer publications on the application of fuzzy linguistic analysis in ergonomics represent novel and useful contributions to basic knowledge in the field. She has extended her research in model development to address critical emerging areas of human engineering such as information security and global response to disaster management. The significance and quality of this research are demonstrated by the funding received for these initiatives from the National Science Foundation and the Defense Information Systems Agency. Additionally, the finding of these studies have been published in prestigious journals and at conferences including the Industrial Engineering Research Conference, IEEE Systems, Man and Cybernetics, IEEE Fuzzy Sets and System and Applied Ergonomics.\r\n\r\nDr. McCauley authored the internationally used ergonomics textbook; Ergonomics: Foundational Principles, Application, and Technologies, published by Taylor & Francis. The textbook is a comprehensive and turn-key Ergonomics text based on Dr. McCauley’s twenty years of experience in the field. In keeping with her commitment to excellence, she developed a student manual, instructor manual, laboratory assignment and a suite of course notes as useful resources to accompany the textbook, providing professors an extensive package that supports teaching a comprehensive and dynamic ergonomics course for multiple learning styles of students.\r\nDr. McCauley also authored Transforming Your STEM Career Through Leadership and Innovation, which offers valuable research-based information on what it means to be a leader and innovator and guides the reader through the process of discovering and developing leadership and innovation strategies. This book skillfully integrates leadership and innovation principles with personal examples and profiles of inspirational women worldwide. Her newest book, The Essentials of Engineering Leadership and Innovation, is underpinned by years of applied experience in engineering settings and is designed to develop and prepare engineers as leaders to accept the technical and managerial challenges that they will face as professionals.\r\n\r\nEntrepreneurship\r\nDr. McCauley has been an entrepreneur for over twenty five-years, leading numerous small businesses, as President and Chief Technology Officer. In this capacity, she has led diverse teams consisting of industry and academic collaborators, developed strategic initiatives and managed budgets more than 1.5M annually for projects supporting the Department of Defense, National Science Foundation, NASA and private industry.\r\nAs an entrepreneur, she has developed software and innovative human factors processes for clients in the public and private sector. In 2017 and 2016, her company was the recipient of two National Science Foundation Innovation Corps Site grants from the University of Central Florida I-Corps Site. The results of the NSF I-Corps program outcomes translated into Small Business Innovative Research Grant Proposals and the filing of a provisional patent application with the US Patent and Trademark Office (Title of Invention: Systems and Process for Weighted Matching of Researchers to Research Projects; 62/572,994).\r\nFrom 1999 to 2001, Dr. McCauley led a team of engineers in human factors focused operational test and evaluation of the Joint Biological Point Detection System (JBPDS). The JBPDS is a suite of automated systems developed for various branches of the Department of Defense to automatically detect the presence of biological threats. As the leader of this project, Dr. McCauley developed the evaluation methodology, data collection, and analysis approach. The project was over the course of twelve months, and in that time, she moved her team to work on site at U.S. Army Dugway Proving Ground, assigned team members to U.S. Navy ships and spent countless hours at other military locations to evaluate all configurations of the JBPDS system.\r\nBecause of this evaluation, the team produced significant findings that lead to changes and enhancements in the design of the JBPDS system. The national importance of this work was not fully understood until the events of 9/11. The JBPDS system that was evaluated and improved by Dr. McCauley’s team was deployed to the Pentagon and other high- risk locations to detect the presence of biological threats.\r\n\r\nAs an entrepreneur, Dr. McCauley has continued to lead significant applied research including projects for the US Army Corp of Engineers, (a suite of human-centric simulations to support disaster management response), the Army Research Laboratory, (fuzzy set theory based modeling of human cortical dynamics) and multiple projects for private corporations such as Raytheon and SAIC. Her achievements as an industrial engineer and entrepreneur led to an invitation to appear on the national programs such as To the Contrary on PBS and MSNBC’s The Big Idea with Donny Deutsche.\r\nEducation\r\nDr. McCauley is an exceptional classroom teacher who has the uncommon ability to present course material in an interesting and enjoyable way for students, while she maintains high expectations for student achievement in her courses. The evaluations of her teaching prepared by her students are very strong, with frequent references to her energy, enthusiasm, and excitement. She is a former recipient of the UCF Teaching Incentive Program (TIP) Award, the Society of Women Engineers Award and other recognition demonstrating her strong teaching commitment. Her influence as a teacher extends well beyond the classroom. Through her actions, she teaches aspiring engineers about professionalism, integrity, and character. The same qualities that make her an excellent teacher also make her an extremely effective recruiter of students for the College of Engineering and Computer Science and the IEMS Department. She stresses to her students the importance of setting ambitious personal goals and the persistence it takes to reach those goals. She is a role model to students and professionals across the globe as she embodies the power of dedication, determination, and resilience.\r\n\r\nDr. McCauley’s teaching integrates various aspects of her extensive research and entrepreneurial experiences to create real world applications for her students. She teaches the graduate core courses in Human Engineering and advises students at the Ph.D. and M.S. level. She has served as the major professor to seventeen Ph.D. students, multiple M.S. students and introduced scores of undergraduates to research. In fact, she consistently ranks among the top 3 UCF IEMS faculty in the graduation of Ph.D. students. It is worth noting that of these Ph.D. graduates, three have been African American females and 2 African American males.\r\nAt a time when universities often place greater emphasis on research by doctoral students, Dr. McCauley has been a champion of undergraduate participation in faculty research projects. She welcomes the opportunity to work with inquisitive and industrious students on challenging research projects. In fact, 85% of these undergraduate students have been females and two of these all female teams placed in regional and national undergraduate research competitions sponsored by the National Society of Black Engineers. One team of UCF students placed third nationally and a team of research student that she supported while at the Massachusetts Institute of Technology placed first in the National Society of Black Engineers Regional Undergraduate Research competition. The two UCF students have since completed the Bachelors and Masters’ degrees in Industrial Engineering and have promising careers as industrial engineers in industry. Even at the undergraduate level, Dr. McCauley demonstrates a continual impactful influence on her students.\r\nService and Outreach\r\nDr. McCauley has an exemplary record of service to the profession and the global scientific community. Her UCF and local service activities include her interest in promoting graduate study as this lead her to create and deliver a series of Introduction to Research Workshops for the UCF Chapter of the Institute for Industrial and Systems Engineers. Additionally, she’s served as a repeat speaker for the UCF Leadership Empowerment Program. Additionally, she served on the IISE Annual Convention Planning Committee in 2017-’18. She is a frequent supporter, speaker and participant in UCF programs including the GEMS Mentoring program, RAMP Scholars, EXCEL Program and Camp Connect.\r\n\r\nDr. McCauley has been a consistent supporter of students and the Institute of Industrial and Systems Engineers (IISE), by providing lectures to regional meetings as well as strongly encouraging IISE student participation in her research. Additionally, she has published and consistently presented at IERC meetings, winning Best Paper Award in Human Factors at the 2006 IERC meeting. In addition to service to IIE, she serves as an advocate and recruiter for the Industrial Engineering field nationally, particularly in the minority and female areas. As a direct result, numerous students have pursued careers in IE where they may not have even known about the profession without her involvement in outreach activities in these communities. Her tireless service has been recognized through awards such as induction into the University of Oklahoma College of Engineering Distinguished Graduate Society, Engineer of the Year by the Florida Engineering Society, Outstanding Woman of Color in Technology, IIE Cover Story, and the Millennium Woman of the Year and numerous other awards and recognition.\r\n\r\nThroughout her career she had been invited to speak at local, regional, national and international meetings, delivering more than 100 invited lectures in her career. In 2010, she was elected to serve as the U.S. representative to the International IntelliCIS COST Action Committee – A European Based Research Committee focused on international disaster management. She has been called upon to serve on numerous committees, editorial boards, and guest editorials for journals and advisory boards on a national and international level.\r\nAdvocacy, Relationship Development & Collaboration Establishment\r\nDr. McCauley is a tireless advocate, spokesperson and role model in the promotion of Industrial Engineering, STEM education, STEM entrepreneurship and innovation, particularly for those under-represented in STEM. As a result, she is regularly called on to serve as keynote speaker, participate in national workshops and share her perspectives on success strategies for students and professional in STEM fields. She previously held board positions with national organizations including the National Center for Simulation and the Women’s Engineering Program Advocate Network (WEPAN). She presently serves on the Board of Directors for the Association for Women in Science (AWIS) and formerly served on the Diversity Advocacy Board at Worcester Polytechnic and is on the Presidents Research Advisory Board for the College of the Bahamas. She has advocated the significance and impact of STEM educational goals, opportunities and STEM careers in various print media and on numerous television programs.\r\nAs a professor and entrepreneur, Dr. McCauley has an extensive history of relationship development and collaboration establishment to support educational, research and outreach initiatives. She has focused relationship development in the area of academic institutions, private corporations, and federal agencies. She has established collaborations with universities including; Massey University in New Zealand in the area of Human Factors in Disaster Management, the New Universities of Lisbon Nunes, Embry-Riddle University, and the University of South Florida collaborations with corporations including Harris Corporation, Lockheed Martin, Raytheon, SAIC and numerous small businesses. Additionally, she has established relationships with federal agencies including NASA, the Army Corp of Engineers, Army Research Lab, NAVAIR and the U.S. State Department.\r\nImpact on the University Community\r\n\r\nSince arriving at UCF in May of 1993, Dr. McCauley has consistently contributed to the University’s goals in the pursuit of excellence, global partnership development and service to the community. She has built a world-class Ergonomics Lab at UCF that conducts internationally recognized research for prestigious agencies including the National Science Foundation, NASA, US Department of Defense and The World Bank. She has established international and national partnerships that were funded by the National Science Foundation, NASA and corporate sponsors including an international workshop in Lisbon focused on Human Factors, Sensor Technology and Logistics in Disaster Management. Most recently, she established a collaboration that was funded by the World Bank to conduct an international research project between the University of Central Florida and Stellenbosch University in South Africa.\r\nDr. McCauley has been a consistent role model, leader and resource for students across the UCF campus, particularly female and minority students. She has extensively engaged undergraduates and graduate students in her research through informal and formal UCF Programs including the following:\r\n• Mentor in UCF EXCEL Program 2010 – 2016: Mentor to female undergraduate engineering students\r\n• Mentor in UCF RAMP Program 2010 – 2012, 2014: Mentor to female undergraduate engineering students\r\n• UCF Graduate Student Summer Mentoring Program (2006, 2007, 2008, 2011)\r\n• UCF mentor to two Kennedy Space Center NASA Scholars\r\n • Over 50% of undergraduate mentees/protégés have obtained graduate degrees\r\n\r\nAs a faculty member, she served as the advisor to the National Society of Black Engineers (NSBE) for two terms that totaled over 10 years and co-advisor to the Society for Women Engineers (SWE) for 6 years. Dr. McCauley ranks among the most productive IEMS and CECS faculty in the production of Ph.D. graduates, particularly women and minority graduates; specifically, 47% of her Ph.D. graduates have been female and 27% of her Ph.D. graduates were African American. Due to her achievements related to diversity in STEM, she was elected to the Association for Women in Sciences’ National Governing Board and invited to serve as an expert to the World Intellectual Property Organization of the United Nations.",institutionString:"North Carolina State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"North Carolina State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"12882",title:"CARAVAN: A Context-AwaRe Architecture for VANET",doi:"10.5772/13128",slug:"caravan-a-context-aware-architecture-for-vanet",body:'One of the new networking concepts which was born during the last decade is the communication between cars using short range wireless solutions, known as VANET (Vehicular Ad hoc NETwork). Despite the significant research efforts the VANET are still in the infancy and so far there are no implementations. In fact the VANET concept imposes a lot of serious problems, which so far have been resolved only partially. The most important problem is the intermittent connectivity of VANET nodes caused by high mobility of cars. The high dynamics of cars combined with usage of short range communications make the connectivity among the cars very unstable, so even the best effort service cannot be guaranteed. Of course, the communication quality differs in cities during traffic jams (where we may obtain dense and stable networks) from one in highways (where the VANET network is sparse and the topology is highly dynamic). Due to the variety of communication scenarios it is very hard to predict the generic transport characteristics of VANET networks. It is worth to mention that there have been created many routing protocols for VANET. Unfortunately, most of them are focused on specific scenarios only. Another VANET problem deals with the definition of services suitable for these networks. VANET can be used for safety applications (this is the primary goal), for driving support information services (information about parking places, points-of-interest, etc.) and, in some concepts, it can offer classic Internet services including high quality media streaming. Of course, the above mentioned VANET problem with highly unreliable communication will limit the service portfolio in the same way as it is observed in other networks. It has to be noted however, that in VANET the diversity of communication quality is enormous; in some situations high quality links of high throughput can be created (in case of parked cars) but at the other extreme there is highly intermittent communication which enables only the exchange of short messages between the nodes (the highway case). The next VANET specific problem is related to the identification of service recipients and the way in which the information is disseminated among them. It has to be noted that the client-server model, very popular in the Internet, has only limited or even no usage in VANET, because such networks are generally server-less. Using node address for service delivery also has limited usage, because it characterizes neither a node nor its service requirements. The classic unicast communication has very limited usage as well. The range controlled broadcast, multicast (if groups are identified) or anycast in some cases are better suited for, and in many (though not all) cases the geocasting is a solution of choice.
A very important problem concerns the incremental deployment of VANET and is linked to VANET business model. There is no doubt that the deployment of such networks will progress gradually, and it is expected that VANET nodes will be built in cars by car vendors. That way only new cars will be equipped with VANET nodes and it will take years before almost all cars will have them on board. Of course, such slow deployment creates several important issues; in the beginning the VANET nodes density will be extremely low resulting in sporadic communication only. On the other hand, in coming years, due to the technology progress, new and more advanced VANET concepts can be developed. The last problem calls for an open approach to VANET architecture that is able to accommodate new concepts on the component basis.
In this chapter we present a unified architectural VANET framework, called CARAVAN (Context-AwaRe Architecture for VANET), which is aimed to cope with all problems mentioned above. This framework is able to simultaneously handle different communication schemes (including disruption tolerant networking), to deal with rich service portfolio adapted to communication limitations, and to accommodate most of algorithmic concepts designed for VANET. The unified framework behavior and adaptation is driven by contexts (context-aware approach). Contexts are related to service/application requirements, communication ability, mobility vectors and the mutual space-time relations of cars/nodes. In the proposed approach the communication scheme is based on multiple protocols. The selection of the protocol is made accordingly to the quality and stability of links that typically depend on the distance between the nodes and on the mobility vectors. The heart of the proposed concept is the context engine which processes context coming from different layers of the architecture.
In Section 2 of this chapter a short introduction to VANET which will help in the understanding of the proposed solution is presented. Section 3 contains the related work and short review of main algorithmic concepts which are applicable to VANET. Section 4 is the main part of this chapter and it contains the CARAVAN concept description together with the description of its implementation and sample use case. Section 5 concludes the chapter.
Vehicular ad hoc networks (VANETs) have recently become an important research area with contributions split between government and industrial consortia, as well as the academic community. Current efforts focus on the design of a new set of vehicular applications and services improving the comfort and security of the driving experience. The specification of this type of mobile networks enables many new possibilities, but from the other side it creates many non-trivial challenges. This section is a very short introduction to VANET. Much more detailed descriptions of VANETs can be found in (Olariu & Weigle, 2009) and (Moustafa & Zhang, 2009).
Vehicular ad hoc networks can be considered as a special case of mobile ad hoc networks (MANETs). However, there are several important factors, which make this type of networks specific and which allow to treat them as a separate category. Here are the fundamental VANET features:
Very high dynamics of nodes resulting in fast topology changes. As the communication devices are installed inside vehicles, the network nodes are much more mobile and they move with much higher speeds. Vehicles are restricted to move using roads and to abide by the traffic rules, so some mobility patterns can be observed and some statistical mobility models for VANET have been designed (Härri et al., 2006).
Information about the current position, movement direction, current velocity, city map and planned movement trajectory of VANET nodes is available, as more and more vehicles are equipped with GPS devices and navigation systems.
VANETs impose lack of energy constraints, higher computational power and practically unlimited memory capacity, in comparison to some other ad hoc networks (especially to sensor networks).
VANET networks are usually of very large size (case of traffic jams) but also may exist in a form of many small, neighboring networks with a high probability of splitting and joining.
There is a big diversity of VANET services and applications, and one-to-one communication is less important than some intelligent broadcast (for example geocast) required by most safety related applications.
Besides the scenarios when vehicles communicate only with each other (sometimes called Vehicle to Vehicle (V2V) or Car to Car (C2C) communication) there exist two other scenarios which also distinguish VANETs from MANETs. Some research studies consider a case of communication between vehicles and fixed roadside equipment (Vehicle to Infrastructure (V2I) or Car to Infrastructure (C2I)). Such communication can be used for Internet access or in some new vehicular applications, e.g., vehicles exchanging data with a service station while being in repair. Last scenario is a hybrid case when vehicles can be treated as relays to increase the range of ground services.
VANET services and applications differ significantly from the classic ones known from MANETs. Possibly the most important group of services, which makes research studies on VANETs increasingly popular, are those related to driving safety. Safety applications include among others: current traffic reports dissemination, road obstacles warning (accidents, works and other unusual situations), driving maneuvers assistance (vehicles overtaking, lane changing) or traffic-aware trajectory planning.
Another group of applications which can gain popularity among road users are infotainment services. The most basic ones are related to advertising – distributing information about free hotels rooms, restaurants offers, discounts in stores, etc.. Gasoline prices, information about free parking spaces of the nearest service station can also be disseminated. Probably such services will have to be extended by some publish/subscribe mechanisms, so that driver is not spammed with a number of unwanted messages. Some infotainment services can be also useful for pedestrians – e.g., buses can estimate time of arrival at the bus stop using knowledge about traffic conditions and then distribute this information to the waiting passengers.
Some one-to-one services can also be considered, but probably they can be applied only in the limited range because of highly intermittent communication. Much more applications will be based on the intelligent context-aware data dissemination.
Vehicular ad hoc networks are a hot topic nowadays, so many researchers are involved in national and international consortia leading great number of projects related to different challenges in this area. The best known consortia are Car 2 Car Communication Consortium (C2C-CC) (Baldessari et al., 2007) in Europe, Vehicle Safety Consortium (VSC), Collision Avoidance Metrics Partnership (CAMP), Vehicle Infrastructure Integration Consortium (VIIC) in United States and Advanced Safety Vehicle (ASV) in Japan. The Intelligent Car Initiative (Reding, 2006) is one of the biggest initiatives of the European Union which aim is to investigate the potential of information and communication technologies in improving life quality – also by development of intelligent vehicular systems in order to make cars smarter and safer. Here is a short list of selected projects related to VANETs:
FleetNet (Franz et al., 2001) – a pioneer research project investigating the direct communication between cars,
Network on Wheels (NoW) (Festag et al., 2008) – the successor of FleetNet which aimed at developing an open communication platform designed for safety, traffic efficiency and infotainment purposes,
PReVENT (Schulze et al., 2005) – a R&D project on the use of different technologies to help the driver to avoid an accident with two main issues being investigated – wireless local danger warning and intersection safety,
Co-operative Vehicle-Infrastructure Systems (CVIS) (Mietzner, 2007) – another R&D which is focused on providing methods for continuous V2I communication and cooperative services in order to increase road safety and traffic efficiency,
SAFESPOT (Giulio, 2007) – a project designing Safety Margin Assistant which should help to detect in advance the dangerous situations and to make a driver more aware of the environment surrounding,
SeVeCom (Leinmüller et al., 2006) – a project focusing on the security and privacy issues in vehicular communication.
Beside pure research oriented projects trying to resolve particular problems there is also whole big branch of consortia involved in regulation and standardization activities. Car-to-Car Communication Consortium composed of about 50 partners is working on the industry standard for vehicular communication using wireless LAN technology. An institution playing a major role is the European Telecommunications Standard Institute (ETSI) with a new technical committee for Intelligent Transport Systems (TC ITS). Different working groups are focusing on application requirements, architectural and cross-layer issues, transport and network, media and related issues, and security. CEN is the European Committee for standardization – it is a private and non-profit organization which works on such issues as electronic fee collection, dedicated short-range communication (DSRC) and identification of vehicles. Another standardization works are done by ISO and Internet Engineering Task Force (IETF).
A comprehensive review of the VANET related European consortia, projects and standardization activities can be found in (Le et al., 2009).
The characteristics of the VANET listed in Section 2.1 call for a specific approach to VANET. It should consider proper routing in very dynamic network, content dissemination, service specific issues and finally a security and privacy. In fact some concepts developed for mobile ad hoc networks (MANET) that have been studied for a long time can be reused and adapted to VANET, however some VANET specific properties may require completely new approach. This chapter provides a short overview of the most popular concepts which were developed for VANET. This overview is very important in the context of the CARAVAN that has been designed in order to obtain the synergy by integration and dynamic selection of the already developed VANET algorithms.
The detailed survey of routing protocols in the context of vehicular networks can be found in (Ros et al., 2009), which has been a main guide for creating this review.
The design of the routing protocols for VANET is especially challenging task due to the high mobility of nodes, large network size and the intermittent communication. The first attempts base on the usage of routing protocols developed for mobile ad hoc networks (MANET). These protocols can be divided into four groups – proactive, reactive, hybrid and geographic routing. In proactive routing, the paths between all pair of nodes are determined in advance, i.e., before they are needed. The most popular proactive protocol is Optimized Link State Routing (OLSR) (Clausen & Jacquet, 2003) in which the nodes discover network topology using beacon messages. Knowing the topology each node computes the shortest paths to all possible destinations and stores the next hops in its routing table. OLSR is a good approach for dense, small and relatively static networks, thus it can be applied to stable groups of VANET nodes. The reactive routing protocols try to find the path to the destination only when it is needed. Two most known protocols belonging to this category are Dynamic Source Routing (DSR) (Johnson et al., 2001) and Ad hoc On Demand Distance Vector (AODV) (Perkins & Royer, 1999). The first one finds a path to the destination by broadcasting route request messages into the network. Each node forwarding the request updates it by adding itself to the path. When the message achieves the destination it contains the complete path. The DSR protocol includes some optimization and the path maintenance procedures. Each packet sent from the source to the destination stores the path in its header – this is a big drawback in large networks, where routes are usually long. The AODV protocol uses quite similar approach but the paths are stored in the routing tables of the nodes instead in packets themselves. Each node builds such table whenever it is possible by storing next hop nodes on the paths to the destinations. The mechanism of the sequence numbers in route request packets guarantees loops freedom. Reactive protocols can handle well the dynamic topologies. Unfortunately, they are not well suited for large static networks, thus they can be used in limited ranges in city scenarios with increased nodes density, but not necessarily in case of traffic jams.
The main representative of hybrid routing protocols category is Zone Routing Protocol (ZRP) (Haas & Pearlman, 2001). All nodes have assigned their own zone including all neighbors that are at most
The protocols belonging to the categories mentioned above can be used in vehicular networks, but they do not match well all possible VANET communication scenarios. The main drawbacks of these protocols are: scalability, incorrect assumption about full network connectivity and extensive use of flooding, that leads to high consumption of network resources and increases the contention to medium access as well as communication latency. Another important issue is that the paths established in VANET are usually valid only for short period of time, as a result of high mobility of nodes. These protocols usually do not take into account the VANET specific features, such as the access to information about the geographic position, city maps, node trajectories, mobility constraints and possibilities to predict the movement of nodes in the near future that is based on mobility patterns. However, there are also so called geographic routing protocols that use the information listed above.
The first geographic routing protocols were simple greedy algorithms. In Greedy Scheme (GS) (Finn, 1987) approach the forwarding node as a successor chooses a node assuring the greatest progress. In Compass Routing (CR) (Kranakis et al., 1999) protocol the idea is very similar but the choice is based on the smallest angle between the line to the destination and the line to the neighboring node. The Most Forward within
Another group of geographic routing protocols can be characterized as source routing. The Geographic Source Routing (GSR) (Lochert et al., 2003) protocol tries to use a street map to find the shortest path with Dijkstra algorithm. The route is represented by a list of streets intersections. Then greedy forwarding is used to deliver packets between junctions on the list. The Spatial Aware Routing (SAR) (Reichardt et al., 2002) is a modification of GSR which deals with a local maximum problem (it appears when there is no node to which we can forward a message and make a progress). SAR introduces buffering of packets in nodes which are not able to forward immediately. Such nodes wait a predefined time for the suitable successor before dropping a packet. The next protocol named Anchor based Street and Traffic Aware Routing (A-STAR) (Seet et al., 2004) makes use of information about road traffic and tries to find a path consisting of road segments with the greatest possible traffic density. The Connectivity Aware Routing (CAR) (Naumov & Gross, 2007) protocol is based on similar idea of building a path using crossroads instead of nodes, but it achieves a goal without a map access. During the route finding phase the nodes which are close to the crossroads add their locations to the created path (so called anchor points). Moreover, such nodes create dynamic guards in the neighborhood of anchor points which are later used during packet forwarding.
The next set of geographic routing protocols is represented by Greedy Perimeter Coordination Routing (GPCR) (Lochert et al., 2005). As in CAR protocol there is no assumption on the street map data. The nodes which are near the junctions become coordinators and using beacon messages they build virtual topology graph with streets as edges and junctions as vertices. When such coordinator receives a message to forward, it makes a decision about the correct street to push it there.
Table 1 taken from (Ducourthial & Khaled, 2009) clearly shows that there is no single routing protocol that is suitable for all vehicular scenarios. Not all of them are mentioned in the presented short summary of the routing solutions. Reader will find a nice survey of the protocols in the book chapter mentioned above.
Traffic Kind | Communication Kind | ||||
---|---|---|---|---|---|
One-to-One | One-to-Many | One-to-All | |||
Topology | Position | Geocast | Mobility | ||
Adapted to sparse networks | Epidemic, MDDV, VADD | Epidemic, MDDV, VADD | Epidemic, MDDV, VADD | ||
General | AODV, DSR, OLSR | DREAM, GSR, MGF, MORA, MURU | DRG, GAMER, IVG, LBM, MGF | RBM, TRADE | DREAM |
Adapted to dense networks | CBRP, HSR, | CAR, GPCR, GPSR | GeoGRID | LBF, OABS, ODAM, SB, OTIS, UMB |
Application-based taxonomy for routing protocols according to traffic density in VANET (Ducourthial & Khaled, 2009)
There is a silent assumption of many geographic routing protocols that nodes know the destination position. Depending on the applications, the requirements for location can vary considerably. Node position data and sometimes street topology obtained from GPS navigation system are usually sufficient. Other techniques for obtaining position of nodes include dead reckoning, which works well for short periods of GPS unavailability, cellular localization and relative distributed ad hoc localization. For many services information such as maximum range or direction of message propagation is enough. For the others – especially based on one-to-one communication – quite detailed knowledge is required. Some protocols (like GSR) find the destination node by flooding route request messages and only if this phase ends with success they can use their geographic properties. Other protocols use various independent location service mechanisms. For example in the CarTalk2000 project (Reichardt et al., 2002) nodes position is distributed only to nodes within a given number of hops. Researchers involved in FleetNet project proposed Grid Location Service (Li et al., 2000) using some nodes as “location servers”, and Reactive Location Service (Käsemann et al., 2002), finding position of destination on demand. The V-Grid (Gerla et al., 2006) approach is based on two complementary location services – one in infrastructure network and the second in vehicular network. Node looking for destination position has to communicate with the nearest fixed infrastructure point providing location information.
Nodes clustering algorithms are useful in order to identify “similar” or close in terms of the predefined clustering metric nodes and form their groups (clusters). Clustering in the routing enables partitioning of the whole network into smaller subnetworks, thus in some cases resolves the scalability problem of routing. In dynamic networks clustering helps to identify the regions of relatively stable topology. Having a partition of the network nodes different protocols can be used for the communication inside the clusters and outside of them (hierarchical routing). Examples of routing protocols that use clusters are Clustered OLSR (COLSR) (Ros & Ruiz, 2007) and Directional Propagation Protocol (DPP) (Little & Agarwal, 2005). There also exist pure clustering algorithms such as Modified Distributed and Mobility Adaptive Clustering (Modified DMAC) (Wolny, 2008) or Density Based Clustering (DBC) (Kukliński & Wolny, 2009), both of which use mobility patterns and nodes behavior prediction to form stable clusters. Another possible application of clustering technique is the automatic identification of user groups that can be interested in the same kind of services.
In conclusion, the clustering technique is a powerful mechanism and can have various applications in VANET.
One of the biggest challenges in vehicular networks, besides the high mobility of the nodes causing constant topology changes, is the intermittent communication. In such environment it is extremely difficult to achieve a reliable content dissemination between the nodes. In VANET it is very common that the path between the source and the destination is not only unstable (has very short lifetime), but often it simply does not exist. Due to the high dynamics of nodes and the use of short range communication of VANET radio interfaces a permanent communication between the nodes cannot be guaranteed. A possible solution to this problem is the usage of some roadside fixed infrastructure or some additional communication channel, e.g., cellular networks. Such solutions have some obvious drawbacks like limited range (the first approach) and high costs (the second one). Another possible way of dealing with this problem is to use the Delay-Tolerant Networks (DTN) approach. DTNs are the main research topic of the Delay-Tolerant Networking Research Group (Fall & Farrell, 2002), which is focused on the application of DTN to satellite communications. DTN also has easily observable disadvantage, because it can be applied only for services which are not delay aware. Fortunately, in many potential VANET applications longer delays are perfectly acceptable – just to mention infotainment and traffic control services or even some safety ones, e.g., when the nodes have to spread information about some road obstacles.
The main idea of DTN is to aggregate messages into so called bundles. Bundles can be stored in nodes buffers when the immediate forwarding is not possible and forwarded later, when the communication is established again. This communication paradigm sometimes is described as store-carry-forward, which means that nodes have a possibility to place bundles in their local buffers and then carry them until a proper node, to which the bundle should be forwarded, is found. In case when no destination node is reached in a specific period of time, the bundle is discarded. It is clear that DTN forwarding decisions are more or less effective depending on the quality of information about network topology and mobility vector of nodes. DTN routing protocols can be split into deterministic and stochastic ones. Their common goal is to maximize delivery probability while minimizing the delay. Some deterministic DTN protocols assume that almost full knowledge about the network and its future topology evolution is given, sometimes even with the possibility to affect nodes behavior in order to optimize communication. Such assumption does not make sense in vehicular networks. A category of protocols which best suits the vehicular environment can be described as passive stochastic routing protocols. Epidemic Routing (ER) (Vahdat & Becker, 2000) is an exemplary protocol belonging to this group. The idea is trivial – nodes carrying the bundles forward them whenever it is possible. This protocol works well in networks with large buffers, long interaction between nodes and low network load. In such a case the Epidemic Routing assures minimal delays and high success rates. It is the most popular benchmark for performance evaluation of newly designed algorithms. Another popular DTN routing protocol is called Spray and Wait (Spyropoulos et al., 2005) – this time the number of forwarded bundle copies is limited by a certain threshold. Moreover, there is also a Wait phase, during which nodes try to deliver bundle straight to the destination. If they do not succeed the new Spray phase begins. The interesting observation is that with increasing network density the lower copies threshold is needed for the same protocol performance. A slightly different solution is used in Probabilistic Routing Protocol using History of Encounters and Transitivity (PROPHET) (Lindgren et al., 2004), where nodes estimate probability of delivering message to each possible destination.
Research studies on DTN routing protocols for VANET resulted in a development of several new concepts. The Vehicle Assisted Data Delivery (VADD) (Zhao & Cao, 2008) uses knowledge about stree topology, mean traffic density, average and maximum speed on each each street in order to select a path with the smallest expected delivery delay – for example in case when there is no direct connection between source and destination the node will try to select streets with higher nodes speed and density so that vehicles carrying packets can do it faster. Motion Vector Scheme (MoVe) (Lebrun et al., 2005) is a solution which uses information about neighbors velocities to choose node which makes the biggest progress towards destination. Geographic Opportunistic Routing for Vehicular Networks (GeOpps) (Leontiadis & Mascolo, 2007) is a trajectory-based protocol which uses the vehicular mobility patterns properties as well as assumption that each node knows its complete trajectory from the navigation system.
A more detailed survey of DTN solutions for VANET can be found in (Shao et al., 2009). There is no doubt, that DTN is a viable content delivery solution which can not be ignored in VANET.
In the descriptions of VANET related concepts presented in the previous sections there is one common property of the majority of presented solutions – i.e., the use of the knowledge about the network, nodes environment and the mobility, in order to make optimized decisions. The collected information concerning the node itself as well as the network can be treated as node context. Using contexts led us to so called Context-Aware Networks paradigm. In case of VANET the Node Context may consists of, among others, node position, velocity vector, neighborhood information, street topology together with information such as vehicles density or speed limits, planned movement trajectory, communication capabilities, services in use and many more. All this context data can be used by the routing protocols to increase their performance. In VANET we may also use the context-awareness for efficient data dissemination. On the context basis we may use message addressing instead of node addressing; the message destination is described by the context, e.g., location or maximum distance from the source, not by a destination or identifier (e.g., the IP address). The message context can also include information about time validity of the message, priority or service requirements, e.g., whether it is delay tolerant or not.
One of the interesting approaches to data dissemination is called Conditional Transmissions technique (Ducourthial et al., 2007). Authors assume that most of the applications require in fact broadcast communication and the receiver can be described by some set of conditions. As the consequence to deal with highly dynamic environment the conditional addressing is considered instead of network addressing, the path maintaining instead of traditional unicast and the conditional transmissions instead of broadcast. Each application can use its own conditions (e.g., the geographic information, the time-related information, the trajectory related information, the node identity related information, any combination of the above or even more) to define destination nodes. Conditional transmission service has been implemented (it is called HOP) and in some simple scenarios it has proved to behave better than many existing routing protocols.
Security and privacy issues – although it is a topic of great importance, especially as far as safety services are concerned – have not gained yet a big attention in VANET research community. Insecure safety services can lead to a counter effect. Gaps in privacy data protection can result in poor driver interest. Without going into details, there is a possible attack classification, which shows the challenges in designing security system for vehicular networks. It should be resistant to both internal and external attacks, where internal attacks are those by authenticated users and they can be the most dangerous ones. Another distinction is on intentional and unintentional attacks, with the second type caused usually by communication errors. There exist active (modification of network traffic) and passive (captured data used for later unauthorized use) attacks. We can also split attacks into independent and coordinated ones. The main security challenges for vehicular networks include real-time constraints, data consistency liability, low tolerance for errors, key distribution and high mobility of the nodes. Some security requirements which should be at least taken into account are: availability, message integrity, confidentiality, source authentication, mutual authentication, authorization and access control, non-repudiation and privacy protection. The outlined issues are only a short introduction into the problems which should be resolved before wider deployment of VANET.
A good introduction into a security related issues in VANETs together with a comprehensive list of references can be found in (Tchepnda et al., 2009).
This section presents CARAVAN, the unified VANET framework, which is able to accommodate most of the existing VANET mechanisms and use them in an optimal way. The first version of the concept was defined in (Kukliński et al., 2010). This framework is component based thus enables independent modification of every component functionality without the necessity to redesign other components or the overall architecture. In the proposed framework the usage of a specific mechanism is tuned individually to the node’s environment and service requirements. The component based architecture enables easy deployment of new applications which can use well-defined, lower level services offered to the application platform.
There are several observations which led us to the development of the framework:
The communication quality and reliability in VANET may take extremely different values that depend on node’s specific situation. For example on the highways the combination of high mobility of nodes and the short range of radio coverage (50 – 300 metres) leads to the intermittent communication of low quality, but during traffic jams we may obtain stable links being able to handle HDTV services.
There are car mobility models which can be used to predict car positions. Moreover, most cars are equipped with GPS or navigation systems, thus the information about car position, direction, speed and even about the travel destination is generally available to every node and can be disseminated to node neighbors. This information can be used for the proper selection of the communication scheme and services offered to a node.
There is an easy way to determine the proximity of nodes or their communication ability. It can be done using periodic transmission of HELLO messages. That way it is possible to discover neighbors and nodes density. These HELLO messages and responses may contain the position of the node and the mobility vector. Subsequent analysis of this data can lead to the identification of the longevity and the quality of the possible communication links between the nodes and their potential belonging to groups (clusters), which can be formed. Such clusters may provide relatively stable intra-cluster communication. Thus the group membership can be used for communication purposes (selecting the communication scheme or protocol), but it is not limited to. From the service point of the view nodes proximity (group membership) has an important value – it is possible that group members can be interested in the same or similar set of services. So, the identification of the relative positions of nodes has an important impact on nodes communications abilities and on their potential interest in services. In such model every node can be treated as an isolated node, group membership candidate (during the group membership inclusion procedure) or a group member. For every node category a different communication and service scenario can and should be applied.
There have been many routing protocols designed for VANET in order to resolve the problem of communication reliability. It can be improved by the specific mechanism of the routing protocols, applying clustering, or the multi-path routing. All the mentioned mechanisms can improve reliability, but still a lack of communications in case of sparse networks can be observed, and the intermittent communication still may occur in case of high speed moving cars. Thus, we cannot guarantee the existence of permanent communication. The disruption tolerant networking paradigm (DTN) which uses store-carry-forward mechanism seems to be a good solution for handling temporary lack of communication. The information about nodes mobility vectors and even the destination (GPS and navigation based) makes VANET a good candidate for efficient implementation of DTN. Additionally, DTN enabled cars which do not belong to any stable group of cars (cluster) can play an important role of mules, which can carry on the information between the groups, thus such an isolated node plays a positive role in the overall communication model. In conclusion, the communication capability of every node can be different for groups of nodes (clusters) and for isolated nodes. The communication protocol should take into account the individual node state. At present, there is no single approach which is able to handle all the mentioned cases. That observation has led to the conclusion that for every node a local environment (number of other nodes, topology stability, and group membership) should determine the protocol which is used for data exchange or content delivery.
In a very conservative approach the number of VANET services is limited to driving safety applications only. These simple services usually transmit short local messages, which should be geocasted or broadcasted. In more advanced service scenario we may think about the inclusion of video services, voice services and all other, Internet-like services. The real-time services, like video or voice based, require higher communications QoS guarantees which in VANET networks are hard to fulfill in general. However, there are some cases, for example the one-hop communication in which the communication ability of VANET goes beyond the most demanding services. In the opposite case, the DTN example, no real-time services are possible at all. This observation leads to the well-known conclusion that the service offer is limited by network transport capabilities, but this conclusion in the mentioned case has more dramatic meaning that in the classic, wired networks – the variance of the network QoS is much, much bigger. So, before the services will be offered to the end users, their communication ability has to be checked first. It is obvious that these communications properties will change over time, in some cases pretty rapidly.
Due to the distributed nature of VANET networks there is a lack of special nodes (servers) which can help in service offering. Because of that, the nodes do not have a list of the “preferred” addresses and the (IP) addresses of their neighbors have for them very limited usefulness – what is the reason to communicate with them? What is represented by an IP address? There is, of course, a set of messages which can be delivered to all nodes in a specific area, but such geocasting should not be used for all services. In some situations, the car driver can indicate which service he or she is looking for, but the mechanism of service selection by the end-user should be kept at the very minimum level – the end-user should not be attacked by new services, but he should be well informed only about these services on which he is really interested in. It means that the end-user should have a possibility to indicate which services are interested for him at the specific moment. In that context the publish-subscribe mechanism can be applied. The variety of possible services in terms of their QoS requirements and the dissemination range and type make the classical IP service not adequate for VANET.
All of the observations presented above have led to the conclusion that it is unrealistic to cover all the possible network configurations, communication issues and service scenarios by a single approach. The communications and services should be adapted according to nodes density, mobility, relative mobility, group membership and user preferences. In order to cope with all these problems the best solution is a rich set of well-defined tools that are appropriately selected accordingly to the environment status and/or to service preferences. In the proposed unified framework there are multiple sets of tools and the choice of the appropriate one depends on the set of node contexts. The overall behavior of the nodes is individually controlled by the Cross-context Processing Engine, which receives and sends context from different components of the architecture.
As it was outlined in section 3, a rich selection of algorithms has been developed for VANET in order to cope with different problems. Unfortunately, so far there is no single approach which enables to use them as components of a bigger system. The main idea of the proposed framework is to collect a set of algorithms (tools) that are useful in different VANET situations and for a specific application, nodes density and mobility select appropriate set of them on a per node basis. Such individual and dynamic selection of tools provides obvious profits, but it imposes a new problem related to the criteria of algorithms selection and the way in which this process is implemented.
Framework layers
The discussion presented in the previous sections has shown that the communication ability of every node depends on the node mobility, the number of nodes in the neighborhood and their mobility vectors. The information about the node such as its current and averaged position, speed and direction and node track can be obtained from GPS. More information about the future node position and the final destination can be taken from the navigation system (if available and active). The GPS and navigation system provide the information about nodes position expressed in absolute coordinates. However, the information about the relative position of the nodes is very useful as well. Such information can be retrieved by processing the GPS data but can be also obtained directly when the neighboring nodes should respond to request sent over the radio channel (for example beacon messages). Using this mechanism we can determine in a very simple way the local density of nodes and using time averaging of responses we may find good candidates to create a cluster (Kukliński & Wolny, 2009). There is no doubt that for the estimation of the absolute and relative position of nodes, for creating clusters a plethora of algorithms exists, thus the proposed framework should be able to accommodate them. The information about the nodes mobility, their mutual communication relation and about nodes clusters is of great importance for routing as well as for services. This is the reason why in the framework we decided to introduce an independent component which offers to other elements of the framework the preprocessed information about nodes mobility, clusters etc. We named this component the Mobility Layer. The internal elements of the Mobility Layer are not fixed, however they should perform all the functions described above. In the proposed framework the context-aware approach is used. In-line with this philosophy the output of the Mobility Layer is the Mobility Context.
In Section 3.1 a short overview of different MANET and VANET routing protocols has been presented. Every of the described protocols has both advantages and deficiencies. Some of them are well suited for stable network topologies, other work efficiently in a sparse, but not in a dense network. These observations has led to the conclusion that in the proposed framework every node (or group of nodes) should select the routing protocol accordingly to the node mobility and neighborhood density. In the proposed framework the set of different routing protocols and content dissemination mechanisms (including DTN) composes the Connectivity Layer. The selection of the routing protocol for a specific node is based on the Mobility Context and on the service requirements. These service requirements and properties are exposed by another component of the framework that is the Application Layer. The Mobility and Application contexts have impact on the selection of the appropriate routing protocol; however they of course have no impact on the quality of the obtained connectivity. This connectivity is characterized by the Connectivity Context, which is exposed by the Connectivity Layer.
The Application Layer generates contexts that describe the applications and user requirements, but it also adapts the applications to the connectivity, quality and mobility information.
In the CARAVAN all the contexts of the Mobility Layer, the Connectivity Layer and the Application Layer are processed by the Context Processing Engine (CPE). The CPE is a heart of the proposed framework and it is responsible for the dynamic selection of the tools to the overall context that characterize node mobility, connectivity possibility and service requirements and restrictions. The details of implementation of CARAVAN are presented in the subsequent sections.
The CARAVAN is composed of three functional layers, focused on mobility, connectivity and application. The internal behavior of layer components is controlled and described by a set of key parameters, represented as context information. This information is exchanged bidirectionally between the layers by applying cross-layer context adaptation. Transferring significant contexts in a unified format transversally between the layers facilitates the optimization of both important intra-layer operations, as well as the overall performance of an architecture based on this framework (e.g., selecting the best routing or forwarding scheme according to mobility information).
The entire framework is driven by context data exchange and decisions based on it, so node internal architecture can be defined around the idea of context exchange in a layered approach, by emphasizing the three key components – mobility, connectivity and application. Each component features mechanisms for processing context and feeds it to a cross-layer component which centralizes all of the context data (including that from the other components). The cross-layer component makes intelligent decisions and then feeds back key input context, influencing the behavior of the component. Such architecture can be applied to all types of entities, such as unclustered nodes, clusters and roadside infrastructure nodes. The architecture driven by context information exchange is based on:
a layered functional structure centered on mobility, connectivity and application,
a cross-layer transversal interaction, in order to optimize intra-layer and overall system performance,
a relatively simple architecture, ideal for adding new functionality to improve intralayer operations.
This generic architecture for the Abstract Node (AN) being the basic entity inside the proposed framework is depicted in Figure 2. In order to enable incremental upgrades, an implementation calls for a modular design to be derived from the defined framework and applied to the AN.
Abstract Node and Abstract Module architecture
As mentioned in the previous section, we are applying a modular design for the AN. This design is based on a hierarchy of modules (see Figure 2), implementing specific functions related to mobility, connectivity and application.
The proposed abstract node architecture has a hierarchical structure and consists of a Context Processing Engine (CPE) and three dedicated High-Order Modules (HOMs). HOMs, together with CPE, create a fixed core. Each of the HOMs, specifically the Mobility Context Module (MCM), Connectivity Context Module (CCM) and Application Context Module (ACM) correspond to a different layer of the framework and is functionally separated from the other modules. There is no direct transfer between them – the only way to communicate with each other is a bi-directional exchange of context information with the CPE using the same established interface in all three cases. The CPE performs a context adaptation and enables the cross-layer transfer of the relevant data in order to perform in the most suitable way. A dedicated Context Manager (CM) in each of the HOMs and a Translation Logic (TL) in CPE are directly responsible for data exchange between the top level modules. They all are also involved in the core logic of their parent modules. The typical communication looks as follows – the TL receives a context information from specific CMs, then it does some data processing, e.g., translation of the received data into some unified language, and afterwards it feeds the other modules with a newly obtained information according to their needs. Due to a single module gathering context information from all functional planes and its proper processing and distribution, it can be helpful in selecting some specific behaviors inside a particular HOM, e.g., choosing the routing/forwarding mechanism best suitable to a certain node mobility information.
In addition to the above HOMs there exists the second tier of the modules hierarchy which are called Low-Order Modules. They are introduced into the framework to make it easily extensible by enabling a possibility of adding new mechanisms and algorithms, e.g., new routing schemes or new data dissemination mechanisms. Such approach allows the integration of the existing VANET concepts and leads to the diversity of choices in order to increase the overall performance of the system. LOMs are by design exchangeable user-defined modules which provide specific VANET algorithms. Each of the LOMs has to be attached to one of the HOMs depending on its destination for mobility, connectivity or application layer.
As it was already mentioned the fixed core of the architecture consisting of the CPE and three HOMs secures the integrity of the framework together with a functional separation between the defined layers. The role of the LOMs is to allow a flexible definition of new algorithms and their integration into the overall logic of the system. This makes the proposed architecture open – also for the many existing VANET solutions. An important fact is that all LOMs are built on a common internal definition of the generic module, called the Abstract Module (AM), which is presented in the bottom part of Figure 2. Due to this fact, all LOMs can be integrated into framework and handled in a very similar way.
The Abstract Module definition assumes the use of a simple interface to exchange data between LOM and the parent top level module. As the whole architecture is built around the idea of context-awareness, also in this case the exchanged data can be seen as some specific context encoded using some generic format. Depending on its role in the system the LOM can provide context information to the system or require such information. However, in most cases the LOM can do the both. The capabilities of each module together with its needs are registered in the system using a built-in Driver during a module initialization phase. If all the needs are fulfilled, which means the LOM can be fed with the required input context information; the module is ready to work. The received data are processed by the Core Logic and the proper output context information is provided as the result. The Core Logic implements the algorithm or mechanism for which the module is intended, e.g., a routing scheme or a scheduling mechanism. The processing part of the module can be constrained by a set of adjustable internal parameters.
The majority of developed LOMs implement functions related to one of the three HOMs corresponding to one of the three functional layers, although it is possible to define a LOM for some particular CPE functionality, such as scheduling of DTN bundles. Therefore the most typical connection will be between low and high order modules. LOMs are plugged in the proper Context Manager, so the role of the Context Manager is to register such LOM inside the TL of CPE and to manage all of the LOMs connected to it. This means the CM is actively involved in the HOM logic and the context processing is not focused on CPE, but rather it is distributed in the core of the framework with some of the decisions being shifted to the CMs.
The defined framework features three functional layers built on the importance of mobility, connectivity and application context information. As described in the previous section, each of these three layers has a corresponding High-Order Module in the module hierarchy defining the Abstract Node architecture.
The Mobility Context Module is responsible for processing of nodes mobility data. Among its functionalities there is the network topology discovery. Whenever it is appropriate it can group the network nodes into a set of clusters, obtaining this way a topology composed of virtual entities called Abstract Nodes. When a clustering is not performed in the network, each Abstract Node will correspond to one real node. This HOM monitors a set of mobility parameters, such as geographical position and velocity vectors, as well as the neighboring nodes behavior and inter-nodes dependencies.
As the framework is thought to be mobility driven this module is of great importance. The collected and processed context mobility data can be used for many purposes. First of all some clustering algorithm can be fed with this data to optimize its operations. Clusters of nodes can be treated as virtual Abstract Nodes with their own mobility contexts defined for example in relation to distinguished real node being a cluster head.
The mobility context of the node itself and of the neighborhood can be used to make some movement prediction. Such information, distributed among the other modules using a Context Manager connected with a Translation Logic has a potentially great value for routing and forwarding schemes – especially those dealing with delay tolerant networking. An important advantage is that introducing MCM allows making all mobility context related data gathering and processing only once in a single dedicated place for many different protocols and mechanisms.
The Connectivity Context Module is presented in the Figure 3. The main goal of this module is providing connectivity between the virtual Abstract Nodes created in MCM. This means the module is responsible for routing and forwarding functionalities. The routing functionality uses a logic implemented in the Routing Manager (RM) which finds routes to particular network destinations using the best Routing Scheme selected from the available ones. The Context Manager managing all the connected LOMs participates in this selection process. The forwarding duties are performed by the Forwarding Manager (FM) which makes the decisions such as selecting the right forwarding scheme and choosing the next hop. The choices are depended on many factors, e.g., application context containing the information about QoS requirements. There is also some additional custody transfer mechanism implemented by the dedicated Custody Manager to support disruption-tolerant forwarding. Moreover, the CCM cares about its local routing table to be up-to-date. Another important group of the module duties is computing the performance metrics related to routing or even DTN forwarding and providing this data as a connectivity context to other modules.
Connectivity Context Module architecture
The Application Context Module implements functions similar to those included in the Application Layer in the OSI stack. It is closest to the end user of the system and it interacts with some applications. New context based services can be defined and integrated in a similar way, by using LOMs.
One of key issues in implementing the proposed architecture is the addressing of nodes and services, especially if there is the requirement of enabling disruption-tolerant communication between the nodes. In the case of the highly dynamic vehicular environment, most applications involve a kind of controlled broadcast of information and there is little need for unicast applications.
In this case, assigning a constant address to the node is irrelevant. The address of the destination is not known and is not bound to the source, since the destination is constantly on the move. To address the groups of destination nodes characterized by high mobility, much more important is the context information related to location and neighborhood of the group, as well as its structure and interaction with other groups. In a dynamic network the services are context-addressable, hence the importance of context information exchange between modules.
The Context Processing Engine which internal architecture is shown in Figure 4 is the most crucial part of the framework. It is a module where majority of system intelligence is hidden, which gathers and scatters important context information from and to the three HOMs and which manages a local Repository in which the context data is stored. The output data from the other modules is continuously monitored, filtered and processed, not to mention that sometimes future predictions are made in order to improve specific functions inside HOMs, e.g., the prediction related to the node mobility pattern can help to optimize routing and forwarding. CPE feeds the other modules with the context data according to their requirements reported in the initial registration phase. Hence, a registration is a moment when a set of rules and dependencies in relation to the already registered LOMs is created. These rules are then used to store and manage context data to meet the requirements of the newly attached LOM. Another area of responsibilities of CPE is scheduling of DTN bundles which is performed by a Scheduling Manager, while DTN bundles are queued and stored in the Repository.
Context Processing Engine architecture
The Translation Logic included in CPE adapts the received information and delivers it to the proper Context Module for being handled. The TL has some basic logic which makes use of Context Ontology (CO) engine. Use of ontology concept is necessary because an open architecture allows attaching many different LOMs which exchange data in many possibly different formats, so that translation into one formal context information representation is needed. The CO consists of a set of keywords, rules and structures for describing context data and all context relations using a common ”language” which can be easily understandable and interpreted by the Context Managers. Usually the three representations are used. The CO approach allows for integration of new solutions into the framework which can be expressed using contexts, even if the offered capabilities were not available in the beginning stage of the designed system based on the framework.
Context in the presented framework is not just a set of external constraints on the system for a given instance. It is redefined to model every piece of information, be it internal control data, instance related data or external data. Building context information is done in accordance with the implemented ontology. Defining such a CO is in fact adding a new ”template” to the architecture itself, which becomes context-aware, making it more robust.
Inside the CPE the Scheduling Manager is responsible for choosing the best Scheduling Scheme for DTN bundles before passing them to the CCM. There exists a possibility to integrate new scheduling schemes in the form of LOMs attached directly to the Scheduling Manager. The selection of a particular scheduling scheme, together with the context information monitoring and adaptation are part of a broader cognitive functionality inside the CPE, specifically the capability of the system to behave differently according to the given external context and learn from previous experiences.
To implement the architecture in a real network, other functions will need to extend the CPE logic, such as security functions related to data validation and user authorization, as well as convergence components to support inter-working with multiple communication stacks for different radio technologies. Although these functionalities are not yet handled, they are very important issues related to VANET and need to be solved in the future.
A challenge in implementing the new system architecture is the design of the interfaces for data exchange between modules. Useful parameters and data are adapted to context information and passed between entities, to ensure compatibility and inter-working between them. The most important interfaces are described in Table 2.
Interface | Description |
---|---|
CM generic interface | Bi-directional generic interface for exchanging context information with Context Managers – both between a HOM and the CPE, specifically between a CM and the TL and between HOM and attached LOMs. |
Bundle transfer interface | Aside from the standard CM-TL generic interface, there is also a second bi-directional interface between CPE and CCM, for sending and receiving DTN bundles. It is up to the CPE to provide the necessary adaptation of the Application Data Units (ADUs) to the bundles. |
External I/O interface | The AN external I/O interface is responsible for physical communication with other devices in the network. This bi-directional interface connects to the CPE. |
ADU transfer interface | Aside from the standard CM-TL generic interface, there is also a second bi-directional interface between the ACM and CPE, for sending and receiving ADUs (Application Data Units). |
Description of the interfaces
All the listed interfaces are quite simple which allows for easier framework expansions by user developed modules. This simplicity can be assured due to context-aware design of CARAVAN.
To make the CARAVAN concept easier to understand a sample use case is presented in this section. As it is shown in Figure 5, the sample system built on the framework has following Low Order Modules attached:
Topology Discovery Module (TDM) – the mobility layer module which uses GPS device and beacon messages to gather mobility context data of the node itself and from the neighboring nodes,
Density Based Clustering Module (DBCM) – the mobility layer module implementing DBC clustering algorithm, responsible for assigning roles of cluster visitors, cluster candidates and cluster members to neighboring nodes, for finding stable groups of nodes, for selecting clusterhead node being a cluster representative, and for choosing nodes being cluster border gateways,
Optimized Link State Routing Module (OLSRM) – the connectivity layer module which makes sure that the routing tables for intra-cluster communication are up to date using OLSR routing protocol,
Ad hoc On Demand Distance Vector Module (AODVM) – the connectivity layer module implementing AODV routing protocol for short range communication with nodes connected using the stable paths,
Epidemic Routing Module (ERM) – the connectivity layer module which is used by context-aware services that can deal with longer delays,
File Transfer Protocol Module (FTPM) – the application layer module allowing data transfer between node with a stable connection using FTP protocol,
Obstacles Warning Assistant Module (OWAM) – the application layer module which warns other vehicles about road obstacles to increase driving safety.
Sample use case of the framework
All the Low Order Modules are connected using the generic CM interface for bi-directional exchange of the context data. Each of the modules has to be previously registered in the system using the built-in driver. For example the TDM will advertise itself that it is able to provide necessary nodes position and mobility data with no requirements for system input. The DBCM as the input needs some data generated by the TDM and as the output it offers information about nodes relations such as identification of stable clusters and about nodes which are bad candidates for cluster members, for example because they are moving faster than the group (however, this makes them potential candidates for passing data in DTN forwarding schemes). There can be observed dependence between DBCM and TDM. Due to the registration phase and the logic embedded in the top level modules, every such LOMs dependence can be tuned. The DBCM requires only at specified intervals and only some subset of data which TDM is able to provide. Hence, the TDM knows that there is no point to deliver neither more data nor to do it more frequently than it is needed. Of course, a demand for context data can vary in time as it depends on activity of different modules. The discussion on the relationship between the DBCM and TDM is also a good opportunity to clarify another introduced concept of Translation Logic inside CPE and ontologies. Let us consider the case when DBCM modules need velocity vectors of neighboring nodes for proper work and when TDM is able to provide information about direction and speed of nodes movement. Although it is not exactly the same, there exists a very simple one-to-one correspondence between these notions. Such rule can be easily encoded in the ontology and therefore the translation can be easily done in TL.
Similar dependencies occur between the other modules in the presented sample system – e.g., FTP data transfer can be applied only when a stable connection is detected, so it is possible inside the cluster (OLSR routing protocol is used) or in the traffic jam (AODV routing protocol is used). The OWAM module is designed to warn about obstacle the drivers which are moving towards it – so in this case the delay-tolerant forwarding can be applied combined with the context-aware (in a given direction) data dissemination. The best candidates for passing messages, that is nodes which are moving quickly in a right direction, can be selected using context information from TDM and DBCM.
It should be clear that the presented system can be easily extended by other modules implementing new applications or vehicular services, as well as new protocols to allow a selection of the most suitable solution depending on both external and internal circumstances in order to optimize the overall system performance.
In this chapter a new approach to VANET has been proposed. The main idea of the proposal is to integrate many VANET concepts into a common framework and use them on the dependency of the service requirements, connectivity properties and node mobility characteristics. In the proposed framework context-aware approach is used. Contexts are related to service/applications requirements, communications ability, mobility vectors of cars/nodes and the mutual space-time relations between them. The usage of contexts provides high level of adaptability and flexibility. In the CARAVAN we defined three layers: the Mobility Layer, the Connectivity Layer and the Application Layer. Such functional decomposition of the architecture provides ability to incremental modification of every layer via adding or modifying layer internal components without the necessity of the redesign of other components of the architecture. In fact the operations which are most influential on the system behavior are performed by the Cross-Context Processing Engine, i.e., the component that is responsible for the selection of appropriate tools for a specific, overall context. The presented software oriented view together with a sample use case give some clues how the CARAVAN can be implemented and deployed to make vehicular networks idea closer to the reality.
Authors would like to gratefully thank Zygmunt Wereszczyński from Orange Labs Poland for his invaluable help.
The term ‘spinal deformity’ indicates the abnormal alignment or shape of the vertebral column and rib cage. Schwab et al. identifies the most common spinal deformities found in the population are scoliosis, lumbar lordoscoliosis, pelvic obliquity and either increased or decreased lumbar lordosis, with a high prevalence rate of 68% [1]. These spinal deformities are often linked to a range of different types of pain, physical dysfunction and psychosocial wellbeing [2, 3, 4, 5]. The clinical assessment of these spinal deformities often involves the assessment of posture and back shape together with the associated mobility of the spine, pelvis and rib-cage. Currently, there are a wide range of posture and back shape assessment tools available for clinical use. The choice varies from conventional approaches to advanced structured light methods. The advanced methods like ultrasound [6], 3D radiography [7] and inertial sensors [8] are not easily accessible for most clinicians, as they were either expensive, require specialist training or are complex or difficult to use. Thus, simple conventional methods like “eyeballing” photography [9] and the plumb line [10] are still used within clinical practice.
A comprehensive literature review was undertaken firstly to search and retrieve research papers related to the tools and scientific methods for assessing posture and back shape and secondly to critique which methods were best for assessing posture and back shape with regard to their cost, safety, reliability, validity, ease of use and duration. The primary research question for the current narrative review was ‘what are the different types of tactile and non-tactile measurement systems, for the measurement of posture and whole-body analysis in adults with spinal disorders?’. And the secondary research question is related to the critical evaluation of assessment methods in terms of cost, safety, reliability and validity of the tools.
A comprehensive literature search was performed in the following databases, PubMed, EMBASE, Scopus, CINAHL, Medline and Science Direct, for articles on posture and back shape from 1980 to 2017. The search keywords were ‘posture’, ‘back shape’, ‘spinal mobility’, ‘postural assessment’, ‘back surface measurement’, ‘postural alignment’, ‘posture’ and ‘reproducibility’, ‘posture’ and ‘reliability’, ‘posture’ and ‘accuracy’, ‘posture’ and ‘validity’, ‘posture’ and ‘spinal pain’ and ‘posture’ and ‘low back pain’. The author also combined each human body segment with ‘posture’ as keywords, ‘head posture’, ‘neck posture’, ‘cervical posture’, ‘thoracic posture’, ‘trunk posture’, ‘lumbar posture’, ‘shoulder posture’, ‘arm posture’, ‘upper limb posture’ and ‘lower limb posture’. In addition, the author searched for related articles from references cited in the articles identified from the original search. The search was limited to articles only written in English. No wildcards were used in this study.
All articles that assessed posture and back shape were considered in order to identify all possible methods for the evaluation of posture. Reviews of postural assessment and articles that discussed posture in some manner that could help the discussion were also included. Letters to the editor and conference proceedings were excluded.
The titles, keywords and abstracts of all research articles identified during the search were read to confirm whether they satisfied the inclusion criteria. Full text copies of all articles that met the inclusion criteria were obtained for analysis and data extraction. Preference was given to recent reviews on posture and back shape assessment and research papers on new or unusual forms of postural evaluation. Older articles with the same information contained in newer ones were excluded.
The author identified 66 articles representing 15 principal instruments that are currently used to assess posture and back shape (please refer to the PRISMA diagram in Figure 1). These included tactile, non-tactile, two-dimensional as well as three-dimensional (3D) methods. Tactile measurement methods are defined as methods used to measure posture or back shape through contact, for example, the flexiruler and goniometry, whereas non-tactile measurement methods measure posture and back shape without any direct contact to the skin by the operator. These included, for example, X-rays and photogrammetric methods. The literature primarily documented the reliability and validity of each postural measurement tool in normal individuals including a few patients with spinal deformities. Each method is described and critiqued below.
PRISMA flow diagram of literature search and selection process.
The flexiruler for the evaluation of posture is common for clinical and research purposes [11, 12]. This objective method of postural measurement requires the manual placement of the flexiruler onto the contours or curvatures of the spine followed by the tracing and calculation of these angles onto paper (see Figure 2A and B).
An example of the flexiruler method (A) data collection and (B) measurement of lumbar lordosis based on the captured data [
Greenfield et al. [13] used a flexiruler to measure the mid-thoracic curvature, while Rheault et al. [14] observed the inter-rater reliability of the flexiruler for measuring cervical lordosis in two different positions (neutral and fully flexed) in 20 healthy subjects [13, 14]. In both studies, the flexiruler was placed on the curvature of the spine, with its tip at the most proximal part of the curvature and the other end at the distal end of the spine.
Following the measurement of the spine, the flexiruler was placed on a paper, to trace its curve. Greenfield et al. [13] reported good to moderate Pearson correlation for intrarater (r = 0.90) and interrater reliability (r = 0.70). Furthermore Rheault et al. [14] reported no significant difference between raters (t = 1.24; p>0.05) at the two different positions of the cervical spine. The results of both Greenfield et al. and Rehault et al. studies suggest that the flexible ruler is a reliable measuring tool between raters for measuring sagittal plane curvature.
Concerning validity, many researchers have demonstrated a high correlation between radiographic and surface measurements for measuring the lumbar spine curvature [16, 17]. For example, Hart and Rose [18] compared the angles of the curve taken with a flexible ruler to the angle obtained by the standard roentgenographic technique and found good validity with the Pearson product moment correlation of +0.87. Burton further substantiated the result by reporting a correlation of +0.87 for the validity of the flexible ruler in comparison to the radiographic method for measuring lumbar lordosis [16]. Even though the above studies demonstrated good validity, the main limitation was that the results were based on a very low sample size (n = 8). In addition, the measurement of postural variables through a flexiruler is always two-dimensional. The presentation of spinal curvature is not necessary always two-dimensional. There is a possibility of the deviation of curvature being in more than one plane. In this scenario, the obtained spinal curvature angle might not represent the real degree.
It is important to note that most of the above studies reported their results based on the data collected from young normal healthy participants. Although the use of the flexible ruler is important for this population, there is a possibility that the flexible ruler may be more difficult to use for patients with pain, disease, or postural deformity. Other limitations of this method of postural assessment are the following. Firstly, it is difficult for patients to maintain one position during data collection. Secondly, the literature reports only one measurement plane (sagittal). It is difficult to measure both the frontal and the transverse plane posture variables. Third, this method of postural assessment has a high possibility of manual error during data collection and angle measurement [19].
In clinical practice, goniometers are commonly used to measure joint range of motion (ROM) [20]. Icn et al. reported the use of a goniometer for the assessment of a number of posture variables [21]. This method of direct body measurement used a goniometer to quantify posture variables with a value from zero to 360 degrees. The results of their study demonstrated moderate correlation (r = 0.47) to measure the tibiotarsal angle, knee flexion/extension angle, quadriceps angle as well as the sub-talar angle in relation to photogrammetry.
Conversely, Harrison et al. reported poor interrater reliability when using manual goniometry for the measurement of sagittal postural angles in the neck inclination angle (craniovertebral angle) and cranial rotation (sagittal head tilt) (see Figure 3) [22]. The ICC measures were found to be r = 0.68 and r = 0.34 for the cervical rotation angle and neck inclination angle, respectively. The authors attributed the poor results to the difficulty in maintaining the arm of the goniometer parallel with the horizontal axis.
Measurement of shoulder and neck inclination angle using goniometer (reproduced from Harrison et al. [
Fortin et al. ([9], pp. 381-382) suggest that the main limitation for this type of individual measurement of postural variables is the lengthy evaluation process involved for both the therapist and the patient. The author states that ‘this approach may be appropriate for the assessment of one body segment or a variable, but not for the whole body or posture’.
The two-dimensional evaluation of posture, using a plumb line, is very common, due to its low-cost and simplicity [23]. Kendall et al. postulated guidelines to evaluate posture in accordance with the alignment of the ideal plumb line for the measurement of the sagittal and frontal planes [24]. Kendall et al. state that the ideal alignment of sagittal plane posture is when the plumb line intersects the ear lobe, through the shoulder joint; then through the greater trochanter of the hip, just in front of the knee joint; and finally slightly in front of the lateral malleolus of the ankle before it reaches the floor. Williams and McClay reported that the plumb line method had a good intra-rater reliability for measuring postural variables with an average ICC of 0.80 in both 10 and 90% of body weight bearing scenarios in standing [10]. The standard error of the mean (SEM) reported was between 2 and 5 mm for the lower limb indices and from 5 to 10 mm for patients with a trunk list or lateral shift. List is defined as ‘the lateral displacement, in millimetres, of a surface marking of the spinous processes of T12 from that of S1’ (McKenzie and May [25], p. 214). Furthermore, Hickey et al. evaluated the reliability of using the plumb line to measure resting head posture in a large sample size of 122 healthy volunteers (80 women and 42 men, ages 18–60 years) [26]. In this study, all participants were screened for cranial, cervical and/or upper thoracic dysfunction. The results of this study demonstrated the plumb line method to have high intra-rater reliability with ICCs ranging from 0.83 to 0.84 for the measurement of resting head posture. Although the plumb line method has been reported to have good intra-rater reliability and is a useful and easy to use instrument for measuring posture, its limitations include the difficulty of minimising movement error or postural sway [9, 27]. Additionally, this plumb line method only measures one plane.
Schwab et al. considers the radiographic method of spinal screening to be the traditional and “gold standard” method for the assessment and screening of patients with spinal deformities [28]. Furthermore, Schwab et al. suggests that radiography is an essential tool for the accurate diagnoses of spinal abnormalities/deformities and accurately reveals the degree and severity of the problem [29].
In this method, an X-ray image is captured when a beam of X-ray light is passed through the spine and the amount of radiation emerging on the other side is recorded. Since the bones of the spine absorb the radiation and soft tissues allow it to pass through, a clear image of the spine is captured. McVey et al. suggests that the captured radiographic image provides essential information on spinal bone structure, which can be used to analyse individual vertebrae and the overall contour of the spine [30].
In addition to the assessment of spinal curvature, X-rays are also used to record and monitor the progression of spinal deformities and dysfunction [31, 32]. Therefore, in adolescent patients it is performed every few months in order to detect any changes in the progression of the spinal deformity.
The main drawback of the radiographic method of spinal assessment is associated with the increased radiation that has been found to increase the incidence of cancer in later years [33, 34]. Doody et al. in their retrospective cohort study estimated the carcinogenic risk and the patterns in breast cancer mortality among female patients with scoliosis [35]. This study included a large sample size (5,573 female patients with scoliosis, or abnormal curves). The results suggested that due to the high exposure to cumulative x-ray radiation of 10.8 cGy (from childhood to adolescence), breast cancer risk increased by 70%. Similarly, Beir in his review, reported that the exposure to radiation during periods of rapid growth, potentially amplified the deleterious biological effects [36].
Due to its high cost and risk of exposure towards harmful radiation, studies by van Niekerk et al. and Kilinç et al., recommended using alternative non-invasive methods for the assessment and screening of postural variables [37, 38]. In the next section, photogrammetry tools, together with methods to analyse postural variables are discussed. As stated by Furlanetto et al., the simplicity and convenience, has made the photogrammetry method very popular among clinical practitioners [39].
In the last two decades, the photogrammetric method of postural evaluation and its applicability has been widely reported in the literature [9, 39]. Low-cost, quantitative evaluation together with its use in reducing the exposure to radiation, makes this method much more feasible for healthcare practitioners to use within their clinical practice. The following research studies have assessed the reliability, and validity of photogrammetry together and its application in different scenarios. Souza et al. and Fortin et al. have proposed a number of diverse photographic methods for evaluating postural variables and conducting postural diagnosis [9, 40]. Several authors [41, 42] have reported the use of photographic methods for the quantification together with the reliability of measuring postural variables. Santos et al. (2009) reported good to excellent inter-rater reliability (interclass correlation coefficient [ICC] values were between 0.84 and 0.99) for the photographic measurement of 33 postural variables in standing in 122 normal healthy children aged 7–10 years [41].
However, Souza et al. in their study on measuring 20 postural variables found mixed results. The ICC values for inter and intra-rater reliabilities for trunk and hip angle were found out to be 0.62 (
Although numerous studies [9, 43, 44] have reported the photogrammetric method of posture analysis, the most common limitation is the inconsistency used in the data collection procedure. For example, the distance between the subject and the placement of the camera varied between studies. The body segment length increases or decreases depending on how close the camera is to the surface of the human body. Additionally, from 2D photographic methods, it is very difficult to study deformities which have a rotational component in the transverse plane [9, 45]. Similarly, in the sagittal plane, there is a possibility that the muscle mass of the erector spinae can obscures the median furrow of the back surface; thereby it is very difficult to study the true spinal curvature [46].
In summary, two-dimensional spinal assessment tools do not provide a complete description of the three-dimensional nature of the back and other spinal deformities. To obtain the detailed three-dimensional description of spinal deformities together with the information of the 3D back surface, various three-dimensional surface and posture measurements tools have been reported in recent years. In the following section, three-dimensional measurement systems (both tactile and non-tactile methods) have been used to assess posture and back shape variables. These are reviewed below.
In the last decade, three-dimensional analysis of posture and back shape has not only developed significantly, but its use in both the spinal research and clinical environment has also been extended to include both tactile and non-tactile instruments, which will be discussed below.
The Posturometer-S is a specially designed, electronic, objective, non-invasive body posture measuring device [47] (see Figure 4). This tool consists of three coupled systems: ‘P’ which is a pointer to indicate the position of a measured point (mechanical), an element to compute the position of the pointer in a three-dimensional space (electronic) and an ‘informatique’ which is used to analyse the results obtained. This system not only enables a practitioner to visualise the curvature of the spine in all three planes but also provides a quantitative description of the postural parameters.
Schema of Posturometer-S device (source: Stachoń et al. [
Previous research [47, 48] has demonstrated not only the reliability of the posturometer but also its applicability in the assessment of posture in different age groups. Lichota et al. using the Posturometer-S examined the postures of 46 athletes who were aged between 20 and 24 years [49]. A total of four sports groups were examined, namely, handball (n = 16), athletics (n = 9), taekwondo (n = 5) and volleyball (n = 13). In this study, the ‘Posturometer-S’ was used to describe various angles of the spine, for example, lumbar lordosis, thoracic kyphosis, upper thoracic segment (α angle), the thoracolumbar segment (β angle) and the lumbosacral segment (γ angle). The highest values for α angle, β angle and γ angle were reported in volleyball (15.2°), athletics (12.6°) and taekwondo (14.0°) groups, respectively. The lowest values for the α angle, β angle and γ angle were observed in athletics (12.4°), handball (8.8°) and handball (8.0°) groups, respectively. The authors contended that posture was affected by the specific type of sports training and that the type of sport influenced the type of posture. The main limitation the authors reported in the study was that the Posturometer-S was not user-friendly, consumes more space in the room and requires a thorough understanding of the equipment together with training before it can be used.
Cheung et al. demonstrated the use of a radiation-free three-dimensional ultrasound system for the assessment of spinal curvature in 29 scoliosis patients [6]. Similarly, Kowalski et al. used an ultrasound-based volume projection imaging method to compare the lumbar lordosis and thoracic kyphosis angle in patients with scoliosis as well as normal subjects or other people with spinal disorders [50]. In this volume projection imaging method, the 3D representation of the spinal anatomy was generated using the ultrasound images together with the corresponding 3D spatial information (see Figure 5). The structure of the spine anatomy was reconstructed from image data ranging from 16 to 96 MB in size [6]. The results of this feasibility study showed good intra- and interrater reliability with ICCs larger than 0.92 (p < 0.001). The results also showed that the spinal curvature obtained by the new method had a good linear correlation with the X-ray Cobb method (r2 = 0.8; p < 0.001).
Illustration of 3-D ultrasound system for the measurement of spinal deformity [
Although these results suggest that the ultrasound volume projection imaging method can be a promising approach for the assessment of spinal deformity, there were still a number of factors that contributed to errors. For example, the ultrasound system and its data were susceptible to the distortion of the electromagnetic field, leading to a system offset/counteract or transient jitter in the spatial and orientation data. Therefore, precaution must be taken especially if the supporting frame is made of metal. The additional limitations of using the ultrasound volume projection imaging method were as follows: (a) heavy to carry around, (b) expensive, (c) relatively dependent on the skilled operator [51, 52], (d) only measures the spinal curvature and not the whole back and (d) time-consuming for the assessment of the whole spine. Therefore, this suggests that it is not an appropriate tool for clinical practice.
In summary, the main disadvantage of all tactile posture measurement systems is the error produced due to electromagnetic and patient interference during data acquisition process. This is because it is difficult for patients to maintain a static standing position for a long time.
In the following section, non-surface measuring systems, such as 3D radiographic imaging systems and inertial measuring units, will be discussed. This is followed by various surface measurement tools, such as Moiré topography, integrated shape imaging system, laser triangulator system and the Kinect sensor system.
Cheriet et al. demonstrated the use of biplanar X-ray images for the reconstruction of the three-dimensional spine and rib cage [7]. These images are useful in evaluating patients with spinal deformities like scoliosis. In this method, the reconstruction of images is based on a direct linear transformation technique (DLT), which requires the explicit calibration of an object with known 3D coordinates (see Figure 6). This method produced accurate 3D reconstruction of six manually identified anatomical landmarks per vertebra (centres of superior and inferior vertebral endplates and the tips of both pedicles). Similarly, the absolute differences between the Cobb angle obtained with the standard DLT and the explicit calibration methods were as low as 0.3 ± 0.42°. The absolute differences of the frontal and sagittal balance were 0.15 ± 0.15°and 0.37 ± 0.25°, respectively.
Biplanar X-ray (posterior anterior (PA) and lateral view) acquisition system with calibration apparatus (Cheriet et al. [
Using 3D X-rays for clinical or research purposes has the same motion and radiation issues as the use of 2D X-rays. Additionally, most of these tools are complex to set up, are heavy and only can be applied in laboratory environments.
The recent advancement and application of electronic systems and sensors, namely, accelerometers, gyroscopes, flexible angular sensors, electromagnetic tracking systems and sensing fabrics, have enhanced the quality of clinical practice. Godfrey [53] and Fathi [8] all reported the use of sensors in the evaluation of human posture. The following section reviews their clinical applications, together with their problems and limitations.
An inertial measurement unit (IMU) is an electronic device that primarily contains accelerometers, gyroscope and magnetometer sensors. All these sensors are based on measuring and converting the global position of human body segment, momentum/inertia or changes of path length. An accelerometer is a sensor which measures a specific force and acceleration. In this context, an accelerometer is used to determine the orientation of the spinal segment in relation to the Earth’s gravitational field. A gyroscope sensor measures the rate of change of angles. Using these sensors, a three-dimensional (3-D) position together with displacement data is calculated by combining inertial sensors orientation data, together with its known distance between the sensors [54, 55].
Kent et al., in their randomised controlled study, used dorsaVi’s hardware (which contains two IMU movement sensors) (see Figure 7) to measure posture and movement in subacute and chronic low back pain patients (n = 58) [56]. The results not only demonstrated that the procedure was suitable for posture measurement but also demonstrated its applicability in providing postural biofeedback. Similarly, Fathi and Curran demonstrated the effective application of wireless IMU sensors to detect the curvature of the spine with 85–95% accuracy in ankylosing spondylitis patients [8].
ViMove wearable motion-sensor system with IMU sensors and surface EMG electrodes (Kent et al. [
Other portable, non-invasive sensors used in the assessment of posture are e-textiles. Many studies [57, 58] have reported the use of textile sensors to detect the curvature of the spine. The specially designed fabric contains an inductive sensor, a circuit board and a piezoelectric actuator (a component of a machine responsible for moving and controlling the piezoelectric system) (see Figure 8). Any change in posture and spinal movement is calculated by a change in the length or position of the sensors together with the percentage of change in electrical resistance.
E-textile with inductive sensors [
Sardini et al. compared the e-textile output data with an optical motion system (Vicon) [58]. The trials performed on four subjects obtained on different days demonstrated that the wireless wearable sensor described in this paper is capable of producing reliable data compared with the data obtained with the optical system.
As the above IMU and e-textile tools were low-cost, portable and easy to use, it might be appropriate to use these for monitoring movement. The reliability of the above tools for measuring spinal curvatures or other back parameters has not yet been reported. The potential limitation of the IMU and e-textile tools is that their interaction with metal in the environment could affect the sensor data extraction due to its capacity to distort electromagnetic waves. In addition, these tools do not provide back surface and whole-body data.
Berryman et al. detail that back surface observation and measurement methods have been widely used by both clinicians and researchers for the evaluation of posture and spinal curvature in patients with spinal disorders [59]. The following section aims to review both the qualitative and quantitative studies that describe skin surface measurement tools.
Moiré topography and rastereo photography systems are the most valuable and widely used non-radiographic tools in the measurement of posture/back surface. Additionally, these instruments are also used for screening three-dimensional spinal deformities and furthermore for quantifying the progression of the 3D spinal curvature.
The above topographical systems work on the basis of projecting a structured light onto the back surface. Based on the reflection of the structured light from the subject, Moiré topography images are produced (see Figure 9). The contour map image helps to visualise back asymmetry and record the spatial information of the subject’s three-dimensional back shape and posture. The quantification of Moiré fringes typically involves the derivation of quantitative angular and/or linear measures by comparing the left and right side back surfaces.
Example of Moiré topographic images of a subject with scoliosis (reproduced from Kotwicki et al. [
Numerous authors [60, 61] have described the use of the Moiré topography method to evaluate back shape and spinal deformity. The main limitation of the Moiré topography method is that the measurement depends on the absolute order of Moiré fringes.
A Moiré pattern is a low-frequency line image produced from two high-frequency line images or grids. For example, by projecting a high-frequency grid onto an object and viewing the reflection of this projected pattern through another high-frequency grid is called Moiré fringes [62]. The formation of the Moiré fringes depends on a patient’s position. A slight change in the patient’s position or movement can produce considerable changes in the Moiré topogram. Thus, a direct inspection of Moiré fringes may be misleading. Further Stokes and Moreland states that the data analysis is a complex procedure, requiring much expertise [63]. Additionally, Nissinen et al. also reported that the correlation of Moiré topographs with X-rays is poor and ranges from r = 0.24–0.45 [64].
The Integrated Shape Imaging System (ISIS) is a widely used optical scanning system for the measurement of human back shape and posture within a clinical environment [65, 66]. The ISIS system consists of an optical scanner (A), which projects a horizontal beam of structured white light onto the patient’s back (B). The camera (C), mounted below the projector, captures the position of the light blade on the back from different perspectives (see Figure 10). Based on the geometry of the illumination/camera system together with the coordinates of the blade of light, the three-dimensional shape information is derived.
Integrated shape imaging system (ISIS2) (reproduced from Porto et al. [
The validation of this system was carried out in the late 1980s and early 1990s [67, 68]. Although the reliability and validity of this tool was good to excellent for clinical use, the original ISIS system was getting old and data acquisition was slow which led to potential movement errors. The system was modified and redesigned by Berryman et al. with the new addition of a clinical parameters and renamed ISIS2 [59]. This automated non-invasive surface topography system measures three-dimensional shape of the back with improved speed, accuracy, reliability and ease of use [69].
Berryman et al. [59] described the data collection procedure, involving palpation and marking bony landmarks on the subject’s back with small coloured stickers. A digital camera is then used to take a photo. The projector then projects a grid of horizontal black lines onto the patient’s back. The pixel size is approximately 0.5 mm with fringe frequency of approximately 0.16 fringes/mm. Fourier transform profilometry is used to convert the distortion of the reference grid lines into a three-dimensional surface map of the back.
The data processing with ISIS2 takes only 40 s, compared to 10 min in ISIS. Knott et al. [70] suggest that by reducing the duration of data collection, the error due to natural postural sway of the body decreases, thereby increasing the accuracy (±1 mm). The results are stored in a database so that the data of the particular patient can be recalled at any given point of time. ISIS2 helps in the screening and monitoring of the development of spinal deformity over time [71, 72].
Zubović et al. [69] carried out a study to validate the ISIS2 system against X-rays. They reviewed 520 ISIS2 scans on 242 scoliosis patients not only for quantifying postural variables but also to assess their validity. The average number of scans per patient was 2.01 with a range of 1–10 scans. The median values and 95% CI were reported for the linear, angular and volumetric asymmetry of scoliosis patients. The results of this study showed no statistically significant differences in their investigations between ISIS measurements and X-ray images.
Similarly, Berryman et al. [59], in their study on measuring three-dimensional back shape in scoliosis patients, also found good correlations (r = 0.84) between the Cobb angle and the lateral asymmetry of the ISIS scans.
As seen in Figure 11, the ISIS2 system provides additional data to simple radiographic examination, describing the three-dimensional characteristics of the back surface [59, 74]. Previous studies [71, 72] have demonstrated that the ISIS2 produces reliable, valid and accurate data that can monitor the progression of spinal deformities. Berryman et al. [59], Frerich et al. [75], Sadani et al. [76], Brewer et al. [77] and Knott et al. [33] suggest that the additional advantage of ISIS2 is to reduce the exposure to radiation.
Illustration of data processing and a sample report of ISIS2 method [
However, Fortin et al. [9] and Bettany-Saltikov et al. [46] identify the ISIS2 system as being very heavy, is not easily moved and requires skilled clinicians to operate it. In addition, Berryman et al. [59] suggests that identifying the bony landmarks for marking spinous process is more difficult for patients who are extremely obese or have heavy musculature. Similarly, the above authors also found it difficult to mark bony landmarks in patients with congenital curves that had little rotation. The main limitation of the ISIS2 system is that it can only measure back shape and not the whole body. Non-contact optical imaging techniques for the assessment of back shape and posture has also been achieved by using the laser triangulators method.
Čelan et al. [78] and Poredoš et al. [79] used the laser triangulation method to evaluate the three-dimensional human spine curvature. The main purpose of these studies was to estimate the spatial bend of the thoracic and lumbar spine curvatures in all three planes. The laser triangulation imaging system used in Poredoš et al.’s study consisted of two basic elements: a greyscale camera (A) and a laser line projector (B) (see Figure 12). The spinal path or region of interest (ROI) of the human model is manually marked by the palpation of the subject’s bony landmarks. The laser projector illuminates the light onto the subject’s back, and the intersection of the laser line with the spinal path or ROI provides the intersection curve, which is then measured using a greyscale camera. The distance between the laser projector and the camera is known. The intersection angle in 3D space is calculated using the triangular method [80].
Illustration of one-laser-plane triangulation method in all planes (reproduced from Poredoš et al. [
The laser scanning triangulation method was assessed for both validity and repeatability. Using a point-to-point analysis, the average error (±1 mm S.D) (distance between markers) for a regular shape (cylinder) was as low as 4.99 ± 1.56 mm, versus 6.91 ± 2.29 mm for an irregular shape (mannequin) [81]. Research by Majid et al. [82] demonstrated the performance of the 3D laser scanning system. In this laboratory-based study, craniofacial measurements of mannequins demonstrated that the photogrammetric/3D laser scanning system had an accuracy of ±0.7 mm (1 standard deviation [SD]).
The same measurement in human models demonstrated an accuracy of ±1.2 mm. This decrease in accuracy was due to facial movement during data acquisition.
However, this method also has limitations. The manual spinal path determination is also likely to cause palpation errors. This limits the usage of the system to only experienced healthcare practitioners who have good palpation skills. Additionally, this tool is capable of only measuring the shape of the human spine and not the complete back or human body.
Microsoft kinetic sensors are currently being used in a range of disciplines from biomechanics to clinical applications [83, 84]. Castro et al. [85] described the use of the Microsoft’s Kinect™ to measure back surface and posture. The Kinect sensor consists of two cameras, a colour camera (RGB camera) (A) and a depth (infrared IR) camera (B), and a projector (C) (please see Figure 13). These cameras do not require passive markers to determine anatomical landmarks. By measuring the deformations of the projected speckle pattern, a 3D map of the dorsal skin surface is created by using the appropriate software.
Microsoft Kinect sensor.
The results from previous studies have demonstrated that the depth sensor is valid in measuring 3D back surface in patients with scoliosis and in healthy volunteers [85, 86]. The Microsoft Kinect™ system had comparable intertrial reliability (ICC difference = 0.06 ± 0.05; range, 0.00–0.16) and excellent concurrent validity against a benchmark reference, a multiple-camera 3D motional analysis system, with Pearson’s r-values >0.90 for the majority of measurements (r = 0.96 ± 0.04; range, 0.84–0.99).
Whilst the Microsoft Kinect™ is inexpensive, portable and offers good repeatable of the 3D map of the back surface, it also has a few limitations. The measurements are limited only to the back surface and not the whole body. Additionally, the Kinect system software is mainly restricted to the Microsoft operating system and is not applicable to any other mobile applications.
A number of different techniques for the assessment of posture and back shape within clinical practice and research have been described above. Most are expensive, are difficult to use, need specialised training, are heavy to move or cannot be used for regular clinical use (Fortin et al. [9]). When considering a new system, the following requirements are necessary:
A novel tool needs to be simple, portable, low-cost, easy to use and less time-consuming for the purpose of using within clinical practice. This can be achieved by innovatively using a mobile low-cost scanner, such as the Structure Sensor™ together with freeware software. This has previously been used in the construction and fashion industry [87, 88].
The most conventional photographic systems, used in clinical practice at present, do not provide the three-dimensional information of patients’ posture and back shape. A novel portable system providing three-dimensional information of patient’s posture and back shape would help to better understand the three-dimensional nature of spinal deformities.
Most existing systems described in this review provide information on either back shape or spinal posture and not the whole body. A system providing information on the whole body and its relation to spinal posture would yield more information on the relationship between the orientations of the extremities to the trunk.
Technological advances in imaging and computerised image-processing led to the development of new 3D image acquisition techniques. There is a demand for bridging the gap between technological advancement and medical practice for the assessment and treatment of spinal disorders [89, 90]. The continuous increase in 3D imaging technology provides opportunities for the development of a novel system that provides reliable and valid results for assessment of whole-body posture and back shape.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5818},{group:"region",caption:"Middle and South America",value:2,count:5287},{group:"region",caption:"Africa",value:3,count:1757},{group:"region",caption:"Asia",value:4,count:10539},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15929}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"25"},books:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!0,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:null,bookSignature:"Prof. Yusuf Bozkurt and Dr. Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10665",title:"Updates on Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!0,hash:"639a0b9be32348e863437a425cf18a4a",slug:null,bookSignature:"Dr. Catrin Rutland and Prof. Samir El-Gendy",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",editedByType:null,editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"104",title:"Geology and Geophysics",slug:"geology-and-geophysics",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:62,numberOfAuthorsAndEditors:1326,numberOfWosCitations:1675,numberOfCrossrefCitations:910,numberOfDimensionsCitations:2038,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geology-and-geophysics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editedByType:"Edited by",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7747",title:"Isotopes Applications in Earth Sciences",subtitle:null,isOpenForSubmission:!1,hash:"a529383ebff555e89d4e3d39c7cf20f2",slug:"isotopes-applications-in-earth-sciences",bookSignature:"Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7747.jpg",editedByType:"Edited by",editors:[{id:"92718",title:"Prof.",name:"Rehab",middleName:"O.",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9247",title:"Mineralogy",subtitle:"Significance and Applications",isOpenForSubmission:!1,hash:"5149699e666cbb61c220646173769f18",slug:"mineralogy-significance-and-applications",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/9247.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7677",title:"Forecasting Volcanic Eruptions",subtitle:null,isOpenForSubmission:!1,hash:"5afd431dd1f4f5081355b017fd17f237",slug:"forecasting-volcanic-eruptions",bookSignature:"Angelo Paone and Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/7677.jpg",editedByType:"Edited by",editors:[{id:"182871",title:"Prof.",name:"Angelo",middleName:null,surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8223",title:"Processing and Analysis of Hyperspectral Data",subtitle:null,isOpenForSubmission:!1,hash:"02b920d9c266e28152227280ff18ebbe",slug:"processing-and-analysis-of-hyperspectral-data",bookSignature:"Jie Chen, Yingying Song and Hengchao Li",coverURL:"https://cdn.intechopen.com/books/images_new/8223.jpg",editedByType:"Edited by",editors:[{id:"218017",title:"Dr.",name:"Jie",middleName:null,surname:"Chen",slug:"jie-chen",fullName:"Jie Chen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8257",title:"Seismic Waves",subtitle:"Probing Earth System",isOpenForSubmission:!1,hash:"6a7acf0b6350ff87cc629283bfe248f8",slug:"seismic-waves-probing-earth-system",bookSignature:"Masaki Kanao and Genti Toyokuni",coverURL:"https://cdn.intechopen.com/books/images_new/8257.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7315",title:"Minerals",subtitle:null,isOpenForSubmission:!1,hash:"f0d5c2a9a5f37e6effcb8486c661d217",slug:"minerals",bookSignature:"Khalid S. Essa",coverURL:"https://cdn.intechopen.com/books/images_new/7315.jpg",editedByType:"Edited by",editors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8361",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",subtitle:null,isOpenForSubmission:!1,hash:"788c034eec48a4e2f1f6a2f1788d3346",slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8361.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",middleName:null,surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7392",title:"New Insights into the Stratigraphic Setting of Paleozoic to Miocene Deposits",subtitle:"Case Studies from the Persian Gulf, Peninsular Malaysia and South-Eastern Pyrenees",isOpenForSubmission:!1,hash:"594f4fbefe32dfe2375e4153b30235aa",slug:"new-insights-into-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-case-studies-from-the-persian-gulf-peninsular-malaysia-and-south-eastern-pyrenees",bookSignature:"Gemma Aiello",coverURL:"https://cdn.intechopen.com/books/images_new/7392.jpg",editedByType:"Edited by",editors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7578",title:"Satellite Information Classification and Interpretation",subtitle:null,isOpenForSubmission:!1,hash:"008b174b5e2cc7ff0f68f953c54dba36",slug:"satellite-information-classification-and-interpretation",bookSignature:"Rustam B. Rustamov",coverURL:"https://cdn.intechopen.com/books/images_new/7578.jpg",editedByType:"Edited by",editors:[{id:"59174",title:"Dr.",name:"Rustam B.",middleName:null,surname:"Rustamov",slug:"rustam-b.-rustamov",fullName:"Rustam B. Rustamov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7214",title:"Turbulence and Related Phenomena",subtitle:null,isOpenForSubmission:!1,hash:"8117272a7c6e0aff9f446b6c43a92b12",slug:"turbulence-and-related-phenomena",bookSignature:"Régis Barillé",coverURL:"https://cdn.intechopen.com/books/images_new/7214.jpg",editedByType:"Edited by",editors:[{id:"198019",title:"Prof.",name:"Regis",middleName:null,surname:"Barille",slug:"regis-barille",fullName:"Regis Barille"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7504",title:"Renewable Geothermal Energy Explorations",subtitle:null,isOpenForSubmission:!1,hash:"d47d551b0fcf11a4328c8a38f2499844",slug:"renewable-geothermal-energy-explorations",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7504.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",middleName:"I.",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:62,mostCitedChapters:[{id:"37859",doi:"10.5772/50009",title:"Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic",slug:"plate-tectonic-evolution-of-the-southern-margin-of-laurussia-in-the-paleozoic",totalDownloads:4862,totalCrossrefCites:12,totalDimensionsCites:41,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Jan Golonka and Aleksandra Gawęda",authors:[{id:"16567",title:"Dr.",name:"Jan",middleName:null,surname:"Golonka",slug:"jan-golonka",fullName:"Jan Golonka"}]},{id:"17663",doi:"10.5772/24120",title:"Relationships between Lithospheric Flexure, Thrust Tectonics and Stratigraphic Sequences in Foreland Setting: the Southern Apennines Foreland Basin System, Italy",slug:"relationships-between-lithospheric-flexure-thrust-tectonics-and-stratigraphic-sequences-in-foreland-",totalDownloads:3362,totalCrossrefCites:10,totalDimensionsCites:41,book:{slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"Salvatore Critelli, Francesco Muto,\nVincenzo Tripodi and Francesco Perri",authors:[{id:"55590",title:"Prof.",name:"Salvatore",middleName:null,surname:"Critelli",slug:"salvatore-critelli",fullName:"Salvatore Critelli"},{id:"55592",title:"Prof.",name:"Francesco",middleName:null,surname:"Muto",slug:"francesco-muto",fullName:"Francesco Muto"},{id:"55593",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Tripodi",slug:"vincenzo-tripodi",fullName:"Vincenzo Tripodi"},{id:"85117",title:"Dr.",name:"Francesco",middleName:null,surname:"Perri",slug:"francesco-perri",fullName:"Francesco Perri"}]},{id:"17670",doi:"10.5772/20299",title:"The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling",slug:"the-qatar-south-fars-arch-development-arabian-platform-persian-gulf-insights-from-seismic-interpreta",totalDownloads:7183,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"C.R. Perotti, S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi",authors:[{id:"38310",title:"Dr.",name:"Stefano",middleName:null,surname:"Carruba",slug:"stefano-carruba",fullName:"Stefano Carruba"},{id:"42459",title:"Prof.",name:"Cesare",middleName:null,surname:"Perotti",slug:"cesare-perotti",fullName:"Cesare Perotti"},{id:"42460",title:"Dr.",name:"Marco",middleName:null,surname:"Rinaldi",slug:"marco-rinaldi",fullName:"Marco Rinaldi"},{id:"42465",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Bertozzi",slug:"giuseppe-bertozzi",fullName:"Giuseppe Bertozzi"},{id:"42466",title:"Dr.",name:"Luca",middleName:null,surname:"Feltre",slug:"luca-feltre",fullName:"Luca Feltre"},{id:"42467",title:"Dr.",name:"Mashallah",middleName:null,surname:"Rahimi",slug:"mashallah-rahimi",fullName:"Mashallah Rahimi"}]}],mostDownloadedChaptersLast30Days:[{id:"63059",title:"Generation, Evolution, and Characterization of Turbulence Coherent Structures",slug:"generation-evolution-and-characterization-of-turbulence-coherent-structures",totalDownloads:1869,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"turbulence-and-related-phenomena",title:"Turbulence and Related Phenomena",fullTitle:"Turbulence and Related Phenomena"},signatures:"Zambri Harun and Eslam Reda Lotfy",authors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"},{id:"252195",title:"Dr.",name:"Eslam",middleName:null,surname:"Reda",slug:"eslam-reda",fullName:"Eslam Reda"}]},{id:"64027",title:"Stages of a Integrated Geothermal Project",slug:"stages-of-a-integrated-geothermal-project",totalDownloads:2347,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"renewable-geothermal-energy-explorations",title:"Renewable Geothermal Energy Explorations",fullTitle:"Renewable Geothermal Energy Explorations"},signatures:"Alfonso Aragón-Aguilar, Georgina Izquierdo-Montalvo,\nDaniel Octavio Aragón-Gaspar and Denise N. Barreto-Rivera",authors:[{id:"258358",title:"Dr.",name:"Alfonso",middleName:null,surname:"Aragón-Aguilar",slug:"alfonso-aragon-aguilar",fullName:"Alfonso Aragón-Aguilar"}]},{id:"17670",title:"The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling",slug:"the-qatar-south-fars-arch-development-arabian-platform-persian-gulf-insights-from-seismic-interpreta",totalDownloads:7183,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"C.R. Perotti, S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi",authors:[{id:"38310",title:"Dr.",name:"Stefano",middleName:null,surname:"Carruba",slug:"stefano-carruba",fullName:"Stefano Carruba"},{id:"42459",title:"Prof.",name:"Cesare",middleName:null,surname:"Perotti",slug:"cesare-perotti",fullName:"Cesare Perotti"},{id:"42460",title:"Dr.",name:"Marco",middleName:null,surname:"Rinaldi",slug:"marco-rinaldi",fullName:"Marco Rinaldi"},{id:"42465",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Bertozzi",slug:"giuseppe-bertozzi",fullName:"Giuseppe Bertozzi"},{id:"42466",title:"Dr.",name:"Luca",middleName:null,surname:"Feltre",slug:"luca-feltre",fullName:"Luca Feltre"},{id:"42467",title:"Dr.",name:"Mashallah",middleName:null,surname:"Rahimi",slug:"mashallah-rahimi",fullName:"Mashallah Rahimi"}]},{id:"66703",title:"P-Wave Teleseismic Tomography: Evidence of Imprints of Deccan Mantle Plume below the Kachchh Rift Zone, Gujarat, India",slug:"p-wave-teleseismic-tomography-evidence-of-imprints-of-deccan-mantle-plume-below-the-kachchh-rift-zon",totalDownloads:944,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"forecasting-volcanic-eruptions",title:"Forecasting Volcanic Eruptions",fullTitle:"Forecasting Volcanic Eruptions"},signatures:"Prantik Mandal",authors:[{id:"279344",title:"Dr.",name:"Prantik",middleName:null,surname:"Mandal",slug:"prantik-mandal",fullName:"Prantik Mandal"}]},{id:"37864",title:"Role of the NE-SW Hercynian Master Fault Systems and Associated Lineaments on the Structuring and Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Northern Tunisia",slug:"role-of-the-ne-sw-hercynian-master-fault-systems-and-associated-lineaments-on-the-structuring-and-ev",totalDownloads:6620,totalCrossrefCites:14,totalDimensionsCites:23,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Fetheddine Melki, Taher Zouaghi, Mohamed Ben Chelbi, Mourad Bédir and Fouad Zargouni",authors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"},{id:"147368",title:"Dr.",name:"Fetheddine",middleName:null,surname:"Melki",slug:"fetheddine-melki",fullName:"Fetheddine Melki"}]},{id:"44925",title:"Earth Rotation – Basic Theory and Features",slug:"earth-rotation-basic-theory-and-features",totalDownloads:4442,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"geodetic-sciences-observations-modeling-and-applications",title:"Geodetic Sciences",fullTitle:"Geodetic Sciences - Observations, Modeling and Applications"},signatures:"Sung-Ho Na",authors:[{id:"163177",title:"Dr.",name:"Sung-Ho",middleName:null,surname:"Na",slug:"sung-ho-na",fullName:"Sung-Ho Na"}]},{id:"49608",title:"Remote Sensing of Mountain Glaciers and Related Hazards",slug:"remote-sensing-of-mountain-glaciers-and-related-hazards",totalDownloads:1674,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"environmental-applications-of-remote-sensing",title:"Environmental Applications of Remote Sensing",fullTitle:"Environmental Applications of Remote Sensing"},signatures:"Pratima Pandey, Alagappan Ramanathan and Gopalan\nVenkataraman",authors:[{id:"18342",title:"Prof.",name:"Ramanathan",middleName:null,surname:"Alagappan",slug:"ramanathan-alagappan",fullName:"Ramanathan Alagappan"},{id:"177179",title:"Dr.",name:"Pratima",middleName:null,surname:"Pandey",slug:"pratima-pandey",fullName:"Pratima Pandey"},{id:"178231",title:"Prof.",name:"Gopalan",middleName:null,surname:"Venkataraman",slug:"gopalan-venkataraman",fullName:"Gopalan Venkataraman"}]},{id:"37849",title:"3D Modelling and Basement Tectonics of the Niger Delta Basin from Aeromagnetic Data",slug:"3d-modelling-and-basement-tectonics-of-the-niger-delta-basin-from-aeromagnetic-data",totalDownloads:4862,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"A.A. Okiwelu and I.A. Ude",authors:[{id:"139812",title:"Prof.",name:"Anthony",middleName:"Afam",surname:"Okiwelu",slug:"anthony-okiwelu",fullName:"Anthony Okiwelu"},{id:"141872",title:"M.Sc.",name:"Ikechi",middleName:null,surname:"Ude",slug:"ikechi-ude",fullName:"Ikechi Ude"}]},{id:"60592",title:"Applications of Remote Sensing in Geoscience",slug:"applications-of-remote-sensing-in-geoscience",totalDownloads:2394,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"recent-advances-and-applications-in-remote-sensing",title:"Recent Advances and Applications in Remote Sensing",fullTitle:"Recent Advances and Applications in Remote Sensing"},signatures:"Hakim Saibi, Mohand Bersi, Mohamed Bodruddoza Mia, Nureddin\nMohamed Saadi, Khalid Mohamed Saleh Al Bloushi and Robert W.\nAvakian",authors:[{id:"155975",title:"Dr.",name:"Hakim",middleName:null,surname:"Saibi",slug:"hakim-saibi",fullName:"Hakim Saibi"},{id:"205896",title:"Dr.",name:"Nouredine",middleName:null,surname:"Saadi",slug:"nouredine-saadi",fullName:"Nouredine Saadi"},{id:"205897",title:"Dr.",name:"Mohand",middleName:null,surname:"Bersi",slug:"mohand-bersi",fullName:"Mohand Bersi"},{id:"217413",title:"Dr.",name:"M. Bodruddoza",middleName:null,surname:"Mia",slug:"m.-bodruddoza-mia",fullName:"M. Bodruddoza Mia"},{id:"218110",title:"Dr.",name:"Khalid Mohamed Saleh",middleName:null,surname:"Al Bloushi",slug:"khalid-mohamed-saleh-al-bloushi",fullName:"Khalid Mohamed Saleh Al Bloushi"}]},{id:"57384",title:"A Review: Remote Sensing Sensors",slug:"a-review-remote-sensing-sensors",totalDownloads:2488,totalCrossrefCites:10,totalDimensionsCites:20,book:{slug:"multi-purposeful-application-of-geospatial-data",title:"Multi-purposeful Application of Geospatial Data",fullTitle:"Multi-purposeful Application of Geospatial Data"},signatures:"Lingli Zhu, Juha Suomalainen, Jingbin Liu, Juha Hyyppä, Harri\nKaartinen and Henrik Haggren",authors:[{id:"213512",title:"Dr.",name:"Lingli",middleName:null,surname:"Zhu",slug:"lingli-zhu",fullName:"Lingli Zhu"},{id:"213522",title:"Dr.",name:"Suomalainen",middleName:null,surname:"Juha",slug:"suomalainen-juha",fullName:"Suomalainen Juha"},{id:"213523",title:"Prof.",name:"Jingbin",middleName:null,surname:"Liu",slug:"jingbin-liu",fullName:"Jingbin Liu"},{id:"220941",title:"Prof.",name:"Juha",middleName:null,surname:"Hyyppä",slug:"juha-hyyppa",fullName:"Juha Hyyppä"},{id:"220942",title:"Prof.",name:"Harri",middleName:null,surname:"Kaartinen",slug:"harri-kaartinen",fullName:"Harri Kaartinen"},{id:"220943",title:"Prof.",name:"Henrik",middleName:null,surname:"Haggren",slug:"henrik-haggren",fullName:"Henrik Haggren"}]}],onlineFirstChaptersFilter:{topicSlug:"geology-and-geophysics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/281640/yunji-seol",hash:"",query:{},params:{id:"281640",slug:"yunji-seol"},fullPath:"/profiles/281640/yunji-seol",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()