The electrocardiogram (ECG) signal is a fundamental tool for patient treatment, especially in the cardiology domain, due to the high mortality rate of heart diseases. The main objective of this paper is to present the most optimal techniques that can link the processing and analysis of ECG signals. This work is divided into two steps. In the first one, we propose a comparison between some denoising techniques that can reduce noise affecting the ECG signals; these techniques are the empirical mode decomposition (EMD), the ensemble empirical mode decomposition (EEMD), and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). In the second one, we make a comparison of three time-frequency techniques: the Choi-Williams (CW), the periodogram (PE), and the smoothed pseudo Wigner-Ville (SPWV). Firstly, the obtained results illustrate the effectiveness of the CEEMDAN in reducing noise that interferes with ECG signals compared to other denoising methods. Secondly, they show that the periodogram time-frequency technique gives a good detection and localization of the main components in the time-frequency plan of ECG signals. This work proves the utility of the combination of the periodogram and CEEMDAN techniques in analyzing the ECG signals.
Part of the book: Practical Applications of Electrocardiogram