This chapter describes a three-dimensional simulation technology for physical processes in concentric hydraulic brakes with a throttling-groove partly filled hydraulic cylinder. The technology is based on the numerical solution of a system of Navier–Stokes equations. Free surface tracking is provided by the volume of fluid (VOF) method. Recoiling parts are simulated by means of moving transformable grids. Numerical solution of the equations is based on the finite-volume discretization on an unstructured grid. Our technology enables simulations of the whole working cycle of the hydraulic brake. Results of hydraulic brake simulations in the counter-recoil regime are reported. The results of the simulations are compared with experimental data obtained on JSC “KBP” test benches. The calculated and the experimental sets of data are compared based on the piston velocity as a function of distance. The performance of the hydraulic brake is studied as a function of the fluid mass and firing elevation of the gun.
Part of the book: Computational Models in Engineering