Methods used to assess the durability of resistive heating textiles.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8446",leadTitle:null,fullTitle:"Zinc Oxide Based Nano Materials and Devices",title:"Zinc Oxide Based Nano Materials and Devices",subtitle:null,reviewType:"peer-reviewed",abstract:"This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.",isbn:"978-1-78923-958-4",printIsbn:"978-1-78923-957-7",pdfIsbn:"978-1-78984-317-0",doi:"10.5772/intechopen.78819",price:119,priceEur:129,priceUsd:155,slug:"zinc-oxide-based-nano-materials-and-devices",numberOfPages:146,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"7c1d14eb8eac769093f8d7a219a3884f",bookSignature:"Ahmed M. Nahhas",publishedDate:"October 9th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8446.jpg",numberOfDownloads:10075,numberOfWosCitations:12,numberOfCrossrefCitations:14,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:25,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 6th 2018",dateEndSecondStepPublish:"November 5th 2018",dateEndThirdStepPublish:"January 4th 2019",dateEndFourthStepPublish:"March 25th 2019",dateEndFifthStepPublish:"May 24th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"140058",title:"Prof.",name:"Ahmed",middleName:"M.",surname:"Nahhas",slug:"ahmed-nahhas",fullName:"Ahmed Nahhas",profilePictureURL:"https://mts.intechopen.com/storage/users/140058/images/system/140058.jpg",biography:"Ahmed M. Nahhas received his Master’s degree in Computer Engineering from Illinois Institute of Technology, Chicago, Illinois, USA in 1996 and a Ph.D. in Electrical Engineering (Electronics) from the University of Pittsburgh, Pittsburgh, Pennsylvania, USA in 2001. Professor Nahhas’s research has been centered on developing new photonic and electronic devices at micro and nano-scales involving various functional materials such as rare-earth-doped oxides, wideband gap semiconductors, and nanostructured materials. Prof. Nahhas’s research investigates epitaxial growth and fabrication of ZnO and GaN optical devices. Fabrication of MSM photo-detectors has been developed on a macro-scale area of wafer surface using a directed self-organization method and has been investigated as an interaction medium in optical, electrical, chemical, and biological domains. Surface-Plasmon phenomena occurring in structures are of particular interest since many novel properties can be derived from those and can be incorporated into an on-chip configuration for interaction. Professor Nahhas has participated in reviewing several academic articles and dissertations in the area of electrical, electronics, communications, control engineering, and e-learning. He is an official reviewer of journals such as the American Journal of Nanomaterials—USA, many International conferences, and holds the Associate Professor position at several Saudi Universities. Professor Nahhas served in many prestigious leading positions including Dean of the College of Engineering at Al-Lith, head of the Department, Vice Dean at Umm Al Qura University, Makkah. Currently, he works at the College of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Kingdom of\nSaudi Arabia.",institutionString:"Umm al-Qura University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science"}],chapters:[{id:"66694",title:"Introductory Chapter: Overview of ZnO Based Nano Materials and Devices",doi:"10.5772/intechopen.85969",slug:"introductory-chapter-overview-of-zno-based-nano-materials-and-devices",totalDownloads:809,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ahmed M. Nahhas",downloadPdfUrl:"/chapter/pdf-download/66694",previewPdfUrl:"/chapter/pdf-preview/66694",authors:[{id:"140058",title:"Prof.",name:"Ahmed",surname:"Nahhas",slug:"ahmed-nahhas",fullName:"Ahmed Nahhas"}],corrections:null},{id:"64716",title:"Structural and Luminescence Properties of ZnO Nanoparticles Synthesized by Mixture of Fuel Approach in Solution Combustion Method",doi:"10.5772/intechopen.82467",slug:"structural-and-luminescence-properties-of-zno-nanoparticles-synthesized-by-mixture-of-fuel-approach-",totalDownloads:1115,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Zinc oxide has been used for many applications, for example optoelectronic devices, ceramics, catalysts, pigments, varistors and many other important applications. In this study, ZnO nanoparticles were synthesized by mixture of fuel approach in solution combustion method. Mixtures of urea, glycine and citric acid were mixed at room temperature with Zinc nitrates as fuels resulting in spontaneous ignition resulting in production of ZnO nanopowder. The crystal structure and size of the synthesized powder were determined by X-ray diffractometer (XRD), which revealed that the synthesized ZnO nanopowder has the pure wurtzite structure having crystallite size 26–40 nm. Optical studies of nanomaterial were examined by FTIR and UV-Visible absorption spectrum. The luminescence studies also investigated in the visible region 360–800 nm with excitation 325 nm laser. These nanomaterials may be used in solid-state lightening devices.",signatures:"Trilok K. Pathak and H.C. Swart",downloadPdfUrl:"/chapter/pdf-download/64716",previewPdfUrl:"/chapter/pdf-preview/64716",authors:[{id:"242320",title:"Dr.",name:"Trilok Kumar",surname:"Pathak",slug:"trilok-kumar-pathak",fullName:"Trilok Kumar Pathak"}],corrections:null},{id:"65533",title:"Green Synthesis of Zinc Oxide Nanostructures",doi:"10.5772/intechopen.83338",slug:"green-synthesis-of-zinc-oxide-nanostructures",totalDownloads:3799,totalCrossrefCites:8,totalDimensionsCites:13,hasAltmetrics:0,abstract:"ZnO-based nanomaterials have been proven to be of great use for several leading applications since the beginning of nanoscience due to the abundance of zinc element and the relatively easy conversion of its oxide to nanostructures. Nowadays, ZnO as nanoparticles, nanowires, nanofibers as well as plenty of other sophisticated nanostructures takes place among the pioneer nanomaterials employed in the photovoltaic systems, fuel cells, and biomedical fields. Nevertheless, optimizing energy consumption and being eco-friendly are the challenging requirements that are still to be overcome for their synthesis. Green chemistry has been strongly presented recently in the scientific arena as an adequate potential alternative; worldwide investigations have been held on subjects involving bacteria, fungus, or algae-based synthesis as efficient options, and some of the intriguing scientific findings on this subject are reported hereafter.",signatures:"Tuğba Isık, Mohamed Elhousseini Hilal and Nesrin Horzum",downloadPdfUrl:"/chapter/pdf-download/65533",previewPdfUrl:"/chapter/pdf-preview/65533",authors:[{id:"262515",title:"Dr.",name:"Nesrin",surname:"Horzum",slug:"nesrin-horzum",fullName:"Nesrin Horzum"},{id:"278120",title:"Mr.",name:"Mohamed",surname:"Elhousseini Hilal",slug:"mohamed-elhousseini-hilal",fullName:"Mohamed Elhousseini Hilal"},{id:"278122",title:"Ms.",name:"Tuğba",surname:"Isık",slug:"tugba-isik",fullName:"Tuğba Isık"}],corrections:null},{id:"68125",title:"Doped Zinc Oxide Nanostructures for Photovoltaic Solar Cells Application",doi:"10.5772/intechopen.86254",slug:"doped-zinc-oxide-nanostructures-for-photovoltaic-solar-cells-application",totalDownloads:1326,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Zinc oxide and doping effects of Cu on its structural, morphological, optical, and surface wettability properties and the consequent influence on photoelectrochemical solar cell performance has been reviewed. Cu dopant in the doping solution is varied in the range of 1 to 5 at.% which significantly affected the properties of ZnO. Slight changes in the lattice parameters of the Cu-doped zinc oxide (CZO) electrodes were reported, due to the successful substitution of Zn2+ by Cu2+ and also enhancement in crystallinity of the films at 3 at.% Cu due to reduction in crystallographic defects in the film. Surface morphologies were reported with densely grown nanorods over the varied range of Cu, with 3 at.% having the densest microstructures with average diameter approximately 125 nm. A review of optical properties indicated significant enhancement in absorption edge of approximately 60 nm into the visible band for the nanorods with 3 at.% Cu content due to light scattering. Optical energy band-gaps decrease from 3.03 to 2.70 eV with Cu doping. Surface wettability was adjudged hydrophilic for all the films, implying high porosity and water contact angles depended on Cu content. Photoelectrochemical cell performance indicated an n-type photoactivity in sodium sulfate (Na2SO4) electrolyte, which motivates to check its feasibility in solar cell applications.",signatures:"Tyona MD",downloadPdfUrl:"/chapter/pdf-download/68125",previewPdfUrl:"/chapter/pdf-preview/68125",authors:[{id:"277047",title:"Dr.",name:"Mrumun David",surname:"Tyona",slug:"mrumun-david-tyona",fullName:"Mrumun David Tyona"}],corrections:null},{id:"64820",title:"Pyrolysis of Carbon-Doped ZnO Nanoparticles for Solar Cell Application",doi:"10.5772/intechopen.82098",slug:"pyrolysis-of-carbon-doped-zno-nanoparticles-for-solar-cell-application",totalDownloads:918,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"It is very important to find new methods for improving the properties of nanostructured materials that can be used to replace the highly expensive and complicated techniques of fabricating ZnO nano-powders for solar cell applications. Pneumatic spray pyrolysis method offers a relatively inexpensive way of fabricating ZnO nanomaterials of controllable morphology, good crystallinity and uniform size distribution, which makes it a good candidate for the production of ZnO nanoparticles. Additionally, it has the advantage of producing ZnO NPs in one step directly on the substrate without the need for other wet chemistry processes like purification, drying and calcination. To that end, the present study emphasizes more on the design and optimization of spray pyrolysis system as well as on the pneumatic spray pyrolysis conditions for the production of carbon-doped ZnO nanoparticles. The un-doped and carbon-doped ZnO NPs were prepared using pneumatic spray pyrolysis employing zinc acetate as a precursor solution and tetrabutylammonium as a dopant. The fabricated un-doped and C-ZnO NPs were characterized for their morphological, structural and optical properties using SEMEDX, XRD and DRS. SEM analysis has revealed that the fabricated un-doped and C-ZnO NPs have spherical shape with mesoporous morphology. The cross-sectional SEM has also revealed that the film thickness changes with increasing dopant concentration from 0.31 to 0.41 μm at higher concentrations. Moreover, the EDX spectra have confirmed the presence of Zn and O atoms in the PSP-synthesized ZnO NPs. XRD analysis of both un-doped and C-ZnO has revealed the peaks belonging to hexagonal Wurtzite structure of ZnO. Additionally, the DRS has revealed a decrease in energy band gap of the synthesized ZnO NPs, with the increase in carbon dopant level.",signatures:"Luyolo Ntozakhe and Raymond Tichaona Taziwa",downloadPdfUrl:"/chapter/pdf-download/64820",previewPdfUrl:"/chapter/pdf-preview/64820",authors:[{id:"196100",title:"Dr.",name:"Raymond",surname:"Taziwa",slug:"raymond-taziwa",fullName:"Raymond Taziwa"},{id:"278261",title:"Mr.",name:"Luyolo",surname:"Ntozakhe",slug:"luyolo-ntozakhe",fullName:"Luyolo Ntozakhe"}],corrections:null},{id:"65480",title:"Surface-Enhanced Raman Spectroscopy (SERS) Based on ZnO Nanorods for Biological Applications",doi:"10.5772/intechopen.84265",slug:"surface-enhanced-raman-spectroscopy-sers-based-on-zno-nanorods-for-biological-applications",totalDownloads:1020,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:1,abstract:"Detection of nanometer-sized biomarkers is a research topic that attracts much attention as an application for early diagnosis of diseases. Biopsy monitoring by analyzing cell secretion in a non-destructive way has many advantages in the field of biomedicine. We introduce the Raman signal enhancement method on a biosensing chip based on surface-enhanced Raman diagnosis. This approach has the advantage because the ZnO nanorods are grown to form nanoscale porosity and are coated with gold to enable size selective biomarker detection. After sputtering gold on the grown ZnO nanostructures, the unique feature of clustering the nanorod’s heads first appeared. The grain formation on the head was the main factor for the localized surface plasmon resonance (LSPR) enhancement, and this fact could be verified by finite element analysis. It has been demonstrated in breast cancer cell line that the cell viability is also high in such gold-clad ZnO nanostructure-based surface-enhanced substrates. For bioapplication, interstitial cystitis/bladder pain syndrome (IC/BPS) animal model was prepared by injecting HCl into the bladder of a rat, and urine was collected a week later to conduct Raman spectroscopy experiments.",signatures:"Sanghwa Lee and Jun Ki Kim",downloadPdfUrl:"/chapter/pdf-download/65480",previewPdfUrl:"/chapter/pdf-preview/65480",authors:[{id:"7162",title:"Prof.",name:"Jun Ki",surname:"Kim",slug:"jun-ki-kim",fullName:"Jun Ki Kim"},{id:"280897",title:"Dr.",name:"Sanghwa",surname:"Lee",slug:"sanghwa-lee",fullName:"Sanghwa Lee"}],corrections:null},{id:"67613",title:"Anodic ZnO-Graphene Composite Materials in Lithium Batteries",doi:"10.5772/intechopen.86169",slug:"anodic-zno-graphene-composite-materials-in-lithium-batteries",totalDownloads:1091,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"An important area to cope with in the implementation of technologies for the generation of energy from renewable sources is storage, so it is a priority to develop new ways of storing energy with high efficiency and storage capacity. Experimental reports focused on ZnO-graphene composite materials applied to the anode design which indicated that they show low efficiencies of around 50 %, but values very close to the theoretical capacity have already been reported in recent years. The low efficiency of the materials for the anode design of the Li-ion battery is mainly attributed to the pulverization and fragmentation of the material or materials, caused by the volumetric changes and stability problems during the charge/discharge cycles. In this chapter, we will discuss the development of composite materials such as ZnO-graphene in its application for the design of the anode in the Li-ion battery.",signatures:"Herrera-Pérez Gabriel, Pérez-Zúñiga Germán, Verde-Gómez Ysmael, Valenzuela-Muñiz Ana María and Vargas-Bernal Rafael",downloadPdfUrl:"/chapter/pdf-download/67613",previewPdfUrl:"/chapter/pdf-preview/67613",authors:[{id:"152334",title:"Dr.",name:"Gabriel",surname:"Herrera-Pérez",slug:"gabriel-herrera-perez",fullName:"Gabriel Herrera-Pérez"},{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"},{id:"300122",title:"MSc.",name:"Germán",surname:"Pérez-Zúñiga",slug:"german-perez-zuniga",fullName:"Germán Pérez-Zúñiga"},{id:"301446",title:"Dr.",name:"Ana Maria",surname:"Valenzuela-Muñiz",slug:"ana-maria-valenzuela-muniz",fullName:"Ana Maria Valenzuela-Muñiz"},{id:"301447",title:"Dr.",name:"Ysmael",surname:"Verde-Gómez",slug:"ysmael-verde-gomez",fullName:"Ysmael Verde-Gómez"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6408",title:"Novel Nanomaterials",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f3585d338d78e4d31c200d9991b03692",slug:"novel-nanomaterials-synthesis-and-applications",bookSignature:"George Z. Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/6408.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Prof.",name:"George",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6833",title:"Chemical Vapor Deposition for Nanotechnology",subtitle:null,isOpenForSubmission:!1,hash:"31d2b0b2a437691b6a657030687b0096",slug:"chemical-vapor-deposition-for-nanotechnology",bookSignature:"Pietro Mandracci",coverURL:"https://cdn.intechopen.com/books/images_new/6833.jpg",editedByType:"Edited by",editors:[{id:"80989",title:"Prof.",name:"Pietro",surname:"Mandracci",slug:"pietro-mandracci",fullName:"Pietro Mandracci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8385",title:"Nanocrystalline Materials",subtitle:null,isOpenForSubmission:!1,hash:"cf72d957868565da82cc4ad919e6c4d7",slug:"nanocrystalline-materials",bookSignature:"Behrooz Movahedi",coverURL:"https://cdn.intechopen.com/books/images_new/8385.jpg",editedByType:"Edited by",editors:[{id:"150371",title:"Prof.",name:"Behrooz",surname:"Movahedi",slug:"behrooz-movahedi",fullName:"Behrooz Movahedi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6218",title:"Carbon Nanotubes",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"9f38af20209e9d816b7d57ecbba386b9",slug:"carbon-nanotubes-recent-progress",bookSignature:"Mohammed Muzibur Rahman and Abdullah Mohamed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/6218.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6501",title:"Electrospinning Method Used to Create Functional Nanocomposites Films",subtitle:null,isOpenForSubmission:!1,hash:"c28620c5ccc64e4b32eb9758302a1679",slug:"electrospinning-method-used-to-create-functional-nanocomposites-films",bookSignature:"Tomasz Tański, Pawel Jarka and Wiktor Matysiak",coverURL:"https://cdn.intechopen.com/books/images_new/6501.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7684",title:"Multilayer Thin Films",subtitle:"Versatile Applications for Materials Engineering",isOpenForSubmission:!1,hash:"fd04577df0c895320c3f06d98308ea67",slug:"multilayer-thin-films-versatile-applications-for-materials-engineering",bookSignature:"Sukumar Basu",coverURL:"https://cdn.intechopen.com/books/images_new/7684.jpg",editedByType:"Edited by",editors:[{id:"50632",title:"Prof.",name:"Sukumar",surname:"Basu",slug:"sukumar-basu",fullName:"Sukumar Basu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6960",title:"Flame Retardants",subtitle:null,isOpenForSubmission:!1,hash:"506ea55aeb09b1a47f9113cc66594291",slug:"flame-retardants",bookSignature:"Fahmina Zafar and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/6960.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7652",title:"Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"ad1e5c5f214960269e89371d1110cbc0",slug:"nanostructures",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/7652.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6326",title:"Novel Aspects of Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"6585d128fb06c600192cc380a8eec4cb",slug:"novel-aspects-of-nanofibers",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/6326.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"11124",leadTitle:null,title:"Next-Generation Textiles",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tNext-generation textiles represent an exciting and interesting topic within the textiles sector. They are an intersection set between life science (for example medicine, microbiology, and comfort or strain) and technical applications (textile chemistry, engineering, and testing and certification). Developments in one of these areas affect the other one; for example, the invention of superabsorbent and gel-forming materials affected the production of a new type of baby diapers. Next-generation textiles can also be considered an important part of technical textiles, being used for different purposes such as chemical and biohazard protection. They present an important aspect from an economic point of view and the necessity for their production has been increasing; for example, a huge necessity for smart medical textiles comes from the increase of the elderly population in developed countries. In the last few decades, the rapid development of command cotton fabrics also occurred. This affects all textile sectors, for example, biodegradable fibers for implantations, three-dimension spacer fabrics, and reduction of bacterial growth by using silver ion-based textiles finishing. In this and other ways, the fields concerning the next-generation textiles have been growing rapidly and are becoming a more complex area to understand.
",isbn:"978-1-80355-883-7",printIsbn:"978-1-80355-882-0",pdfIsbn:"978-1-80355-884-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"093f9e26bb829b8d414d13626aea1086",bookSignature:"Dr. Hassan Ibrahim",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",keywords:"Next-Generation Textile, Intelligent Textile, Smart Textile, Technical Textile, Next-Generation Material, Medical Textile, Sustainable Textile, Nanofiber, Fabric, Smart Material, Biodegradable Fiber, Technological Innovation",numberOfDownloads:27,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 5th 2021",dateEndSecondStepPublish:"February 24th 2022",dateEndThirdStepPublish:"April 25th 2022",dateEndFourthStepPublish:"July 14th 2022",dateEndFifthStepPublish:"September 12th 2022",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Hassan Ibrahim was the Egyptian National Representative of the Chemistry and Human Health Division Committee (VII) at the International Union of Pure and Applied Chemistry (IUPAC) in 2018-2019 and is currently a member of several national committees of pure and applied chemistry. He has been awarded the best Ph.D. thesis in 2010 from the national research center, Cairo, Egypt.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",middleName:null,surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim",profilePictureURL:"https://mts.intechopen.com/storage/users/90645/images/system/90645.jpeg",biography:"Dr. Hassan Ibrahim is an associate professor of Textile Chemistry and Technology at National Research Center, Cairo, Egypt. He received his Ph.D in Organic Chemistry in 2011 from Ain Shams University. He published 24 technical papers, one review article, and one book chapter with international publishers. He supervised 8 PhD and M.Sc. thesis, and participated in 14 national and international projects dealing with organic and environmental chemistry, hazardous wastes, medical textiles, nanotechnology, and electrospun nanofibers formation. He has expertise in applied chemistry and technology of organic chemistry, especially in carbohydrates, polymers, pollution prevention, preparation, and applications of nanoparticles (polymer chemistry, chemistry of chitosan, chitosan modification, nanoparticles preparation, and electrospinning technique). He built this model after years of research and teaching at university and research centers. He was the Egyptian National Representative of the Chemistry and Human Health Division Committee (VII) at the International Union of Pure and Applied Chemistry (IUPAC) in 2018-2019, and is currently a member of several national committees of pure and applied chemistry. He has been awarded for the best PhD thesis in 2010 from national research center, Cairo, Egypt.",institutionString:"National Research Centre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Research Centre",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:[{id:"81032",title:"Healthcare and Hygiene Products Application in Medical Textile",slug:"healthcare-and-hygiene-products-application-in-medical-textile",totalDownloads:16,totalCrossrefCites:0,authors:[{id:"336997",title:"Dr.",name:"Ramratan",surname:"Guru",slug:"ramratan-guru",fullName:"Ramratan Guru"},{id:"337607",title:"Prof.",name:"Anupam",surname:"Kumar",slug:"anupam-kumar",fullName:"Anupam Kumar"},{id:"337608",title:"Mr.",name:"Rohit",surname:"Kumar",slug:"rohit-kumar",fullName:"Rohit Kumar"}]},{id:"81855",title:"Progress of Recycled Polyester in Rheological Performance in Molding, and Economic Analysis of Recycled Fibers in Fashion and Textile Industry",slug:"progress-of-recycled-polyester-in-rheological-performance-in-molding-and-economic-analysis-of-recycl",totalDownloads:0,totalCrossrefCites:null,authors:[null]},{id:"81618",title:"To Study the Implantable and Non-Implantable Application in Medical Textile",slug:"to-study-the-implantable-and-non-implantable-application-in-medical-textile",totalDownloads:11,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"12045",title:"Reliable Data Forwarding in Wireless Sensor Networks: Delay and Energy Trade Off",doi:"10.5772/10168",slug:"reliable-data-forwarding-in-wireless-sensor-networks-delay-and-energy-trade-off",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/12045.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/12045",previewPdfUrl:"/chapter/pdf-preview/12045",totalDownloads:1770,totalViews:91,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:29,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"September 28th 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/12045",risUrl:"/chapter/ris/12045",book:{id:"3663",slug:"communications-and-networking"},signatures:"Gianluca Mazzini, Mohamed Khaled Chahine and Chiara Taddia",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3663",type:"book",title:"Communications and Networking",subtitle:null,fullTitle:"Communications and Networking",slug:"communications-and-networking",publishedDate:"September 28th 2010",bookSignature:"Jun Peng",coverURL:"https://cdn.intechopen.com/books/images_new/3663.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-114-5",pdfIsbn:"978-953-51-5953-7",reviewType:"peer-reviewed",numberOfWosCitations:19,isAvailableForWebshopOrdering:!0,editors:[{id:"12069",title:"Dr.",name:"Jun",middleName:null,surname:"Peng",slug:"jun-peng",fullName:"Jun Peng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"529"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"12032",type:"chapter",title:"Transform Domain Based Channel Estimation for 3GPP/LTE Systems",slug:"transform-domain-based-channel-estimation-for-mimo-ofdm-systems-",totalDownloads:4766,totalCrossrefCites:1,signatures:"Moussa Diallo, Rodrigue Rabineau, Laurent Cariou and Maryline Helard",reviewType:"peer-reviewed",authors:[null]},{id:"12033",type:"chapter",title:"Channel Estimation for Wireless OFDM Communications",slug:"channel-estimation-for-wireless-ofdm-communications",totalDownloads:3706,totalCrossrefCites:1,signatures:"Jia-Chin Lin",reviewType:"peer-reviewed",authors:[null]},{id:"12034",type:"chapter",title:"OFDM Communication with Cooperative Relays",slug:"ofdm-communication-with-cooperative-relays",totalDownloads:2975,totalCrossrefCites:0,signatures:"Hao Lu, Homayoun Nikookar and Tao Xu",reviewType:"peer-reviewed",authors:[null]},{id:"12035",type:"chapter",title:"High Throughput Transmissions in OFDM Based Random Access Wireless Networks",slug:"high-throughput-transmissions-in-ofdm-based-random-access-wireless-networks",totalDownloads:1719,totalCrossrefCites:0,signatures:"Nuno Souto, Rui Dinis, João Carlos Silva, Paulo Carvalho and Alexandre Lourenço",reviewType:"peer-reviewed",authors:[null]},{id:"12036",type:"chapter",title:"Joint Subcarrier Matching and Power Allocation for OFDM Multihop System",slug:"joint-subcarrier-matching-and-power-allocation-for-ofdm-multihop-system",totalDownloads:2162,totalCrossrefCites:0,signatures:"Wenyi Wang and Renbiao Wu",reviewType:"peer-reviewed",authors:[null]},{id:"12037",type:"chapter",title:"MC-CDMA Systems: a General Framework for Performance Evaluation with Linear Equalization",slug:"mc-cdma-systems-a-general-framework-for-performance-evaluation-with-linear-equalization-",totalDownloads:1886,totalCrossrefCites:1,signatures:"Barbara Masini, Flavio Zabini and Andrea Conti",reviewType:"peer-reviewed",authors:[null]},{id:"12038",type:"chapter",title:"Wireless Multimedia Communications and Networking Based on JPEG 2000",slug:"wireless-multimedia-communications-and-networking-based-on-jpeg-2000",totalDownloads:1959,totalCrossrefCites:0,signatures:"Max Agueh",reviewType:"peer-reviewed",authors:[null]},{id:"12039",type:"chapter",title:"Downlink Capacity of Distributed Antenna Systems in a Multi-Cell Environment",slug:"downlink-capacity-of-distributed-antenna-systems-in-a-multi-cell-environment",totalDownloads:2291,totalCrossrefCites:0,signatures:"Wei Feng, Yunzhou Li, Shidong Zhou and Jing Wang",reviewType:"peer-reviewed",authors:[null]},{id:"12040",type:"chapter",title:"Innovative Space-Time-Space Block Code for Next Generation Handheld Systems",slug:"innovative-space-time-space-block-code-for-next-generation-handheld-systems",totalDownloads:1863,totalCrossrefCites:0,signatures:"Youssef Nasser and Jean-François Helard",reviewType:"peer-reviewed",authors:[null]},{id:"12041",type:"chapter",title:"Throughput Optimization for UWB-based Ad-Hoc Networks",slug:"throughput-optimization-for-uwb-based-ad-hoc-networks",totalDownloads:1766,totalCrossrefCites:0,signatures:"Chuanyun Zou",reviewType:"peer-reviewed",authors:[null]},{id:"12042",type:"chapter",title:"Outage Probability Analysis of Cooperative Communications over Asymmetric Fading Channel",slug:"outage-probability-analysis-of-cooperative-communications-over-asymmetric-fading-channel",totalDownloads:2764,totalCrossrefCites:0,signatures:"Youssef Nasser, Sudhan Majhi and Jean-Francois Helard",reviewType:"peer-reviewed",authors:[null]},{id:"12043",type:"chapter",title:"Indoor Radio Network Optimization",slug:"indoor-radio-network-optimization",totalDownloads:3441,totalCrossrefCites:0,signatures:"Lajos Nagy",reviewType:"peer-reviewed",authors:[null]},{id:"12044",type:"chapter",title:"Introduction to Packet Scheduling Algorithms for Communication Networks",slug:"introduction-to-packet-scheduling-algorithms-for-communication-networks-",totalDownloads:5447,totalCrossrefCites:17,signatures:"Tsung-Yu Tsai, Yao-Liang Chung and Zsehong Tsai",reviewType:"peer-reviewed",authors:[null]},{id:"12045",type:"chapter",title:"Reliable Data Forwarding in Wireless Sensor Networks: Delay and Energy Trade Off",slug:"reliable-data-forwarding-in-wireless-sensor-networks-delay-and-energy-trade-off",totalDownloads:1770,totalCrossrefCites:0,signatures:"Gianluca Mazzini, Mohamed Khaled Chahine and Chiara Taddia",reviewType:"peer-reviewed",authors:[null]},{id:"12046",type:"chapter",title:"Cross-Layer Connection Admission Control Policies for Packetized Systems",slug:"cross-layer-connection-admission-control-policies-for-packetized-systems",totalDownloads:1694,totalCrossrefCites:0,signatures:"Wei Sheng and Steven Blostein",reviewType:"peer-reviewed",authors:[null]},{id:"12047",type:"chapter",title:"Advanced Access Schemes for Future Broadband Wireless Networks",slug:"advanced-access-schemes-for-future-broadband-wireless-networks",totalDownloads:1600,totalCrossrefCites:0,signatures:"Cedric Gueguen and Sebastien Baey",reviewType:"peer-reviewed",authors:[null]},{id:"12048",type:"chapter",title:"Medium Access Control in Distributed Wireless Networks",slug:"medium-access-control-in-distributed-wireless-networks",totalDownloads:1733,totalCrossrefCites:0,signatures:"Jun Peng",reviewType:"peer-reviewed",authors:[null]},{id:"12049",type:"chapter",title:"Secure Trust-based Cooperative Communications in Wireless Multi-Hop Networks",slug:"secure-trust-based-cooperative-communications-in-wireless-multi-hop-networks",totalDownloads:2534,totalCrossrefCites:1,signatures:"Kun Wang, Meng Wu and Subin Shen",reviewType:"peer-reviewed",authors:[null]},{id:"12050",type:"chapter",title:"Wireless Technologies and Business Models for Municipal Wireless Networks",slug:"wireless-technologies-and-business-models-for-municipal-wireless-networks",totalDownloads:4551,totalCrossrefCites:0,signatures:"Zhe Yang and Abbas Mohammed",reviewType:"peer-reviewed",authors:[null]},{id:"12051",type:"chapter",title:"Data-Processing and Optimization Methods for Localization-Tracking Systems",slug:"data-processing-and-optimization-methods-for-localization-tracking-systems",totalDownloads:1989,totalCrossrefCites:0,signatures:"Giuseppe Abreu, Giuseppe Destino and Davide Macagnano",reviewType:"peer-reviewed",authors:[null]},{id:"12052",type:"chapter",title:"Usage of Mesh Networking in a Continuous-Global Positioning System Array for Tectonic Monitoring",slug:"usage-of-mesh-networking-in-a-continuous-global-positioning-system-array-for-tectonic-monitoring",totalDownloads:1690,totalCrossrefCites:0,signatures:"Hoang-Ha Tran and Kai-Juan Wong",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"7602",title:"Internet of Things (IoT) for Automated and Smart Applications",subtitle:null,isOpenForSubmission:!1,hash:"55ad7d0965cba5aebe448cb43766c45e",slug:"internet-of-things-iot-for-automated-and-smart-applications",bookSignature:"Yasser Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7602.jpg",editedByType:"Edited by",editors:[{id:"255636",title:"Dr.",name:"Yasser",surname:"Ismail",slug:"yasser-ismail",fullName:"Yasser Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"69788",title:"Introductory Chapter: Internet of Things (IoT) Importance and Its Applications",slug:"introductory-chapter-internet-of-things-iot-importance-and-its-applications",signatures:"Yasser Ismail",authors:[{id:"255636",title:"Dr.",name:"Yasser",middleName:null,surname:"Ismail",fullName:"Yasser Ismail",slug:"yasser-ismail"}]},{id:"65738",title:"Privacy of IoT-Enabled Smart Home Systems",slug:"privacy-of-iot-enabled-smart-home-systems",signatures:"Avirup Dasgupta, Asif Qumer Gill and Farookh Hussain",authors:[{id:"277383",title:"Mr.",name:"Avirup",middleName:null,surname:"Dasgupta",fullName:"Avirup Dasgupta",slug:"avirup-dasgupta"},{id:"278569",title:"Dr.",name:"Asif",middleName:null,surname:"Gill",fullName:"Asif Gill",slug:"asif-gill"},{id:"278570",title:"Dr.",name:"Farookh",middleName:null,surname:"Hussain",fullName:"Farookh Hussain",slug:"farookh-hussain"}]},{id:"65877",title:"Smart Home Systems Based on Internet of Things",slug:"smart-home-systems-based-on-internet-of-things",signatures:"Menachem Domb",authors:[{id:"222778",title:"Prof.",name:"Menachem",middleName:null,surname:"Domb",fullName:"Menachem Domb",slug:"menachem-domb"}]},{id:"67035",title:"IOT Service Utilisation in Healthcare",slug:"iot-service-utilisation-in-healthcare",signatures:"Mohammed Dauwed and Ahmed Meri",authors:[{id:"248015",title:"Dr.",name:"Ahmed",middleName:null,surname:"Meri",fullName:"Ahmed Meri",slug:"ahmed-meri"},{id:"276426",title:"Dr.",name:"Mohammed",middleName:null,surname:"Ahmed Dauwed",fullName:"Mohammed Ahmed Dauwed",slug:"mohammed-ahmed-dauwed"}]},{id:"67395",title:"IoT-Enabled Health Monitoring and Assistive Systems for in Place Aging Dementia Patient and Elderly",slug:"iot-enabled-health-monitoring-and-assistive-systems-for-in-place-aging-dementia-patient-and-elderly",signatures:"Thierry Edoh and Jules Degila",authors:[{id:"234682",title:"Ph.D.",name:"Thierry",middleName:null,surname:"Edoh",fullName:"Thierry Edoh",slug:"thierry-edoh"},{id:"302761",title:"Dr.",name:"Jules",middleName:null,surname:"Degila",fullName:"Jules Degila",slug:"jules-degila"}]},{id:"68035",title:"Optimizing a Centralized Control Topology of an IoT Network Based on Hilbert Space",slug:"optimizing-a-centralized-control-topology-of-an-iot-network-based-on-hilbert-space",signatures:"Jesús Jaime Moreno Escobar, Oswaldo Morales Matamoros, Hugo Quintana Espinosa, Ricardo Tejeida Padilla and Ana Gabriela Ramŕez Gutiérrez",authors:[{id:"299599",title:"Dr.",name:"Jesús Jaime",middleName:null,surname:"Moreno Escobar",fullName:"Jesús Jaime Moreno Escobar",slug:"jesus-jaime-moreno-escobar"}]},{id:"66766",title:"Living Function-Resilient Society in the Centenarian Era: Living Safety Technology Based on Connective, Artificial Intelligence",slug:"living-function-resilient-society-in-the-centenarian-era-living-safety-technology-based-on-connectiv",signatures:"Yoshifumi Nishida and Koji Kitamura",authors:[{id:"16545",title:"Dr.",name:"Yoshifumi",middleName:null,surname:"Nishida",fullName:"Yoshifumi Nishida",slug:"yoshifumi-nishida"}]}]}],publishedBooks:[{type:"book",id:"7602",title:"Internet of Things (IoT) for Automated and Smart Applications",subtitle:null,isOpenForSubmission:!1,hash:"55ad7d0965cba5aebe448cb43766c45e",slug:"internet-of-things-iot-for-automated-and-smart-applications",bookSignature:"Yasser Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7602.jpg",editedByType:"Edited by",editors:[{id:"255636",title:"Dr.",name:"Yasser",surname:"Ismail",slug:"yasser-ismail",fullName:"Yasser Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10419",title:"Internet of Things",subtitle:null,isOpenForSubmission:!1,hash:"b21e10fdf3ada7c3324502f1aaccbccb",slug:"internet-of-things",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10419.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6664",title:"Recent Advances in Cryptography and Network Security",subtitle:null,isOpenForSubmission:!1,hash:"1fcee77b5c7beb3810f335c1a7f063cf",slug:"recent-advances-in-cryptography-and-network-security",bookSignature:"Pinaki Mitra",coverURL:"https://cdn.intechopen.com/books/images_new/6664.jpg",editedByType:"Edited by",editors:[{id:"89103",title:"Prof.",name:"Pinaki",surname:"Mitra",slug:"pinaki-mitra",fullName:"Pinaki Mitra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10452",title:"Computer-Mediated Communication",subtitle:null,isOpenForSubmission:!1,hash:"ed2d494d96079740341956fe830814ac",slug:"computer-mediated-communication",bookSignature:"Indrakshi Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10452.jpg",editedByType:"Edited by",editors:[{id:"321151",title:"Dr.",name:"Indrakshi",surname:"Dey",slug:"indrakshi-dey",fullName:"Indrakshi Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"75712",title:"Smart Textiles Testing: A Roadmap to Standardized Test Methods for Safety and Quality-Control",doi:"10.5772/intechopen.96500",slug:"smart-textiles-testing-a-roadmap-to-standardized-test-methods-for-safety-and-quality-control",body:'The smart/electronic textile market has recently exploded, mostly driven by personal healthcare. The term “smart textiles” refers to the “smart functionality” of a product, whereas “electronic textiles” (e-textiles) refer to the “hardware and/or technology” that is responsible for the smart functionality [1]. The market size of smart textiles already reached USD 4.72 billion in 2020 with Asia-Pacific countries leading the chart followed by Americas and Europe [2]. Vista Medical Ltd. (Canada), Myant (Canada), Interactive Wear (Germany), Schoeller Textiles (Switzerland), Intelligent Clothing (England), Google (US), International Fashion Machines (US), Textronics (US), Gentherm Incorporated (US), and Sensoria (US) are the major key players in the smart textile industry.
The convergence between textile substrates and conformable electronics like embedded sensors or actuators has given rise to wearable smart/e-textiles. E-textiles can augment the level of protection, comfort, and physiological performance of humans, with applications in many industries, including medicine, protective clothing, military, and automotive. A few authors have analyzed these current and potential applications. For instance, Honarvar and Latifi described the components, structures, and major application areas of smart e-textiles, including ambulatory measurements for patients with cardiovascular diseases, nonwovens for electromagnetic interference (EMC protection) for security, protective GPS-suits for military, bleeding sensor threads for surgeons, and flexible electronic keypads for dialing phone numbers [3]. Ismar et al. explored the use of e-textiles for futuristic clothes [4]. Dolez et al. analyzed the potential of smart textile technologies for occupational health and safety (OH&S) [5]. Finally, Stoppa et al. described different biomedical smart textile projects conducted within the European Commission’s 6th and 7th framework programs: WEALTHY, MyHeart, BIOTEX, PROTEX, STELLA, OFSETH, CONTEXT, WearIT, and PLACE-it [6]. This convergence between clothing and electronics could pose some critical challenges for regulatory bodies, including US Food and Drug Administration (FDA), Health Canada, and National Institute for Occupational Safety and Health (NIOSH). Appropriate quality control methods are a critical tool for them to ensure that e-textiles do not to endanger users’ health, safety, and privacy among others.
The lack of standardization of e-textiles is also considered one of the primary restraining factors for industrial growth. Even though the e-textile industries have generally been keen on designing products with improved safety and performance features, their efforts may not have met market expectations due to the current lack of dedicated standardized test methods. The two main disciplines at the root of e-textiles - textiles and electronics - are so much at odds with each other that dedicated standardization methods for smart/e-textiles are critical. However, progress in this area is lagging behind in comparison to the rapid pace of technological innovation. In this chapter, we will highlight critical challenges and provide some suggestions for the development of standardized test methods for smart/e-textiles.
As consumer electronics are marching towards the era of the Internet of Things (IoT), so are smart/e-textiles. Gradually, conformable electronics are embedded within textiles of various configurations to offer an on-body platform for pervasive computing, especially for healthcare and OH&S applications. Examples include a smart trouser for forest workers that can detect the proximity of chain saw and automatically turn it off [5]; industrial protective gloves that alert users of air toxicity by changing their color [5]; power vests to prevent unsafe movements of caregivers while lifting heavy weights [7]; and Myant’s recent VOC (volatile organic compound) sensing facemasks to detect airborne infectious agents [8]. Also, smart textiles have been designed for protection against sexual assaults, with the SHE (Society Harnessing Equipment) anti-rape lingerie that can deliver a 3800 kV shock [9]. On a lighter note, Microsoft patented a smart cloth that alerts a user of an incoming text message or daily activity reminders, by generating a mild electric shock to the body [10].
A survey of technologies, solutions, and products based on smart textiles and flexible materials was done in 2017 [5]. The different technologies, solutions, and products in terms of sensors and actuators identified were grouped into seven categories based on the input signal or stimulus for the sensors and the output signal for actuators. These categories are thermal, mechanical, chemical/biological, electrical, physical environment, optical, and power. Figure 1 shows the distribution of the technologies, solutions, and products based on smart textiles and flexible materials identified by the researchers in these different categories. In the case of sensors, the dominant category is associated with a mechanical stimulus, with 59% of the sensors. Electrical sensors account for 23%. In the case of the actuators, thermal, optical, and power outputs represent each about a quarter of the technologies, solutions, and products identified.
Distribution of technologies, solutions, and products relevant to smart textiles and flexible materials as a function of the stimulus for sensors (left) and output signal for actuators (right) [
However, before the mass adoption of smart/e-textile products is possible, some burning questions need to be addressed: for instance, what is a safe electrical shock, both for user alert and assailant deterrence? Could a malfunctioning smart garment prevent activating a safety emergency shut-off system? What about potential privacy issues associated with the data generated by e-textiles? In an attempt to standardize their assessment of wearable electronic product performance, a group of electrical engineers evaluated the safety performance of wearable energy harvesters based on the device failures and user-related hazards [11]. However, to date, no one has provided a response to the questions customers could legitimately ask for the different applications smart/e-textiles are aiming for.
For instance, according to experts, the lack of standardization and quality control poses the highest barriers to smart textiles entry into the healthcare market (Figure 2) [12]. Since wearable electronic components are often worn close to the body, special attention is required to prevent health hazards. There are also potential issues of efficiency associated with the interconnections between the different components. The lack of standardized processes for welding, soldering or glueing for instance can significantly reduce the performance, durability, esthetic, and hand-feel of the product. Other barriers include product cost, public awareness, lack of education and knowledge [12]. Strategic industrial partnerships and multidisciplinary alliances among key players in textile, electrical, and biomedical engineering can positively impact the product design and test method development processes.
Barriers to entrance of smart textiles in the healthcare market (based on data from [
This section will describe different issues, reported or foreseen, associated with the durability, safety, and efficiency of smart/e-textile products, including health monitoring apparels, protective clothing, automotive actuator textiles, and textile-based physiological sensors.
Electrical elements embedded into textile structures to produce e-textiles include electronic circuits, electrodes and printed tracks. They must be extremely rugged, robust, and durable because of their regular exposure to mechanically demanding environments [13]. The issues of durability reported with e-textile products are discussed in the next sections.
A first aspect of durability deals with the e-textile manufacturing process itself. For instance, conductive yarns embroidered on a textile may be damaged by three dominant forces: tension, bending, and shearing [14]. In particular, conductive fibers generally exhibit a low bending radius [15]. However, for flexible display applications, they would be typically subjected to bending radii lower than 1 mm. They also have to withstand friction stresses associated with the embroidery operations. In the case of weaving, fibers must possess the capacity to withstand bending radii as small as 160 μm and 20% tensile strains.
An apparel product is subjected to large biomechanical stresses during wear, including during donning and doffing. For example, a research conducted with Canadian combat clothing showed that maximum stresses of 2410 and 2900 N/m occur during squatting across the back seat of trousers and coveralls, respectively [16]. Other movements like when bending elbows (for sleeves), bending knees (for trouser legs) or bending over exerted significant stresses on combat clothing of Canadian Forces. If the smart/e-textile product is not robust enough to withstand such biomechanical stresses, they will be easily damaged and experience a loss in functionality like sensing, communication, data-transfer or power supply. Such problems of loss in functionality could cause safety issues for soldiers or first responders in the line of action. Using stretchable connection and electrode designs could allow accommodating body-induced stresses applied on e-textiles. Figure 3 displays examples of strategies to produce stretchable electro-conductive textiles.
Examples of stretchable electro-conductive textiles. (a) Elastic behavior of a conductive yarn (white on the pictures) under increasing deformation (i) undeformed, (ii) medium deformation, and (iii) high deformation. The conductivity was maintained even at high deformations. (b) Experimental set-up to measure the electrical resistance of a knitted electrode under stretch in a mechanical test frame.
Researchers conducted tensile and bending resistance tests to assess the durability and elastic properties of smart/e-textiles. For example, PEDOT:PSS ((poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)) dyed cotton and silk yarns exhibited a tensile strength of 260 and 136 MPa with a conductivity of 12 S/cm compared to 305 and 157 MPa for the pristine (uncoated) cotton and silk yarns, respectively [17]. The conductive polymer coated silk yarns showed a robust electrical performance, displaying a reduction of conductivity of around 50% after 1000 bending cycles. Using a fabric test tester, Qui et al. measured the durability of a power generating textile fabric [18]; it did not exhibit any measured degradation after 10000 bending cycles of mechanical stimulation, showing superior durability. Table 1 displays different test methods used by researchers to assess the durability of textile resistive heaters (Table 1).
Conductive elements | Test condition | Form factor | Durability test method | Study |
---|---|---|---|---|
Carbon nanotube (CNT) ink | — | Printed element | Tensile strength | [19] |
Silver filament | 80, 100, and 120 °C in oven for 264 h | Yarn | Tensile strength | |
Silver yarn | 65% RH and 20 °C as per EN ISO 2062:2009 | Plain, rib, and interlock fabric | Stretchability | [20] |
Stainless steel yarn | — | Plain and interlock fabric | Stretchability | [21] |
Copper nanowire -polyurethane film | — | Nylon glove with the printed film | Stretchability | [22] |
LIG (Laser Induced Graphene) on polyimide film | — | LIG film in contact with copper tape and Ag-paint | Bending test | [23] |
Composite ink (graphene-tourmaline- polyurethane) | — | Printed heater on woven cotton wrist band | Abrasion resistance | [24] |
CNT-polypyrrole polymer | — | Polymer coated cotton yarn | Bending test | [25] |
Multiwalled CNT | — | Coated cotton woven fabric | Bending test | [26] |
Carbonized modal knit encapsulated with Ecoflex silicone rubber | Weft knitted fabric | Bending test | [27] |
Methods used to assess the durability of resistive heating textiles.
Besides biomechanical stresses, different surface phenomena such as wear, corrosion, chemical contamination could destroy the transmission functionalities of smart textile components like optical glass fibers [28]. For instance, Figure 4 illustrates the effect of abrasion on a smart/e-textile webbing (white on the left image (a)) than includes conductive yarns. The multimeter on the right image (b) records the electrical resistance after successive series of abrasion cycles.
Abrasion testing on a white webbing with conductive yarns (a). A multimeter measured the change in resistance after successive series of abrasion cycles (b).
To simulate wear behavior, different mechanical tests can be conducted on textiles, for example to measure their abrasion resistance [29]; a lower abrasion resistance would potentially indicate a poor durability of the electrical functionality for conductive tracks on smart textiles. Recent work on a graphene-coated aramid fabric reported a resistance of up to 150 abrading cycles before the complete loss of electrical conductivity [30]. The stability to wear of a power generating textile fabric was analyzed after prolonged use of up to 15 days [18]. The fabric was successful at lighting up an array of LEDs under different dynamic conditions: raising hands, shaking clothes, and human running.
Durability against environmental degradation is another critical factor for smart textiles. For instance, silver-plated textile electrodes may lose their functionality if exposed to air for a longer period because metals are prone to atmospheric corrosion, including silver [31]. When silver is exposed to atmospheric pollution, the surface tarnishes due to a reaction between silver and reduced sulfur compounds in the ambient air [32]. As a result, a dark layer of Ag2S (silver sulphide) is formed over the silver plating. Sulfur releasing bacteria could also be present in our washing machines, which may lead to a secondary sulfidation of textile silver electrodes [33]. Salt from body sweat during workouts or from seawater in marine applications may also corrode metallic elements of smart textiles [34].
Resistance to heat is a critical factor for electro-thermal e-textiles, for example heating textiles. The heating components and the material in contact have to be able to sustain the heat generated with in operation without losing their conductivity, strength and other performance, and without getting on fire or melting. For instance, Liu et al. characterized the impact of heat exposure on Ag fabric heaters [35]. The study reviewed the heating performance of three different knitted fabric heaters, viz., plain single jersey (PSF), ribbed stitch (RSF), and interlock knit (ILK), fabricated with silver plating compound yarns (SPCYs) and polyester staple fiber spun yarns (PSFSYs). After 264 h of prolonged heating of the SPCYs in an oven at three different temperatures, 80, 100, and 120 °C, the electrical resistance of the SPCYs were evaluated. The resistance of the heater increased by ∼17% and ∼ 75% after the 264 h aging period at 80 and 100 °C, respectively. After 24 h of aging at 120 °C, the resistance exceeded the measuring range of the multimeter. In addition, the textile structure used may affect the thermal resistance of the system. For example, it was reported that a fabric woven with Ag-coated nylon and cotton yarn powered at 15 V exhibited different degradation temperatures depending on the weave structures: 69.8 °C for plain weave, 80.6 °C for twill weave, and 103.5 °C for sateen [36].
Washability is a massive barrier to successful commercialization and widespread adoption of e-textiles. It is a critical concern for e-textile users as the washing and drying processes subject the product to damaging conditions and could eventually destroy the connectivity between the electronic components or the electronic components themselves [37]. Chemical stress (detergent, surfactants), thermal stress (washing/drying temperature), solvent (water), and mechanical stress (e.g., friction, abrasion, flexion, hydro-dynamic pressure, garment twist) are the four dominant forces that could damage electronic components during washing cycles. A protective layer is typically used to protect the smart textile or its electronic components from getting damaged or exposed during laundry. Polyurethane (PU) is largely used as a waterproofing encapsulation layer for e-textiles [38]. It has the great advantage of being flexible and stretchable and can accommodate the stretch of the fabric underneath. Polypropylene thin films have also be laminated to provide protection to metallized polymer films on e-textiles against repetitive washing and abrasion [39]. However, the encapsulation may not be durable. For example, the extremity of metal wires encapsulated in an e-textile product could damage the encapsulation layer due to their intrinsic rigidity and configuration geometry. Figure 5 shows how the extremity of soldered metal wires pierced through a PU lamination after repeated washing cycles.
Soldered wires in a smart/e-textile product piercing through the wash-resistant polyurethane encapsulation layer.
Concerns also exist for non-textile rigid elements that are sewn to e-textiles for instance. The laundering process may damage them if they are fragile. They may also hit the flexible conductive interconnects when the textile is tumbled during washing or drying. Figure 6 displays the example of a resistive heating blanket. The plastic connector between the non-washable electronic modules and the blanket could get damaged when exposed to the mechanical stresses and the elevated temperatures associated with laundering and tumble drying.
Resistive heating blanket: (a) electronic control module with wiring for power supply; (b) connection between electronic module and the blanket (identified with the red box). The rigid connector is sewn to the blanket with a single row of stitches (shown in the inset).
Another issue is associated with the tendency of some textile fibers to absorb water. As water swells the hydrophilic fibers, it influences their physical properties [40]. It can also reduce the flexural strength, modulus, strength, hardness, and fracture toughness at the textile fiber-polymer matrix interface [41]. Even hydrophobic fibers can transport moisture by capillary action. The water can reach the different e-textile components and damage them. Electronic modules and batteries are the most sensitive to water ingress, which can instantly and permanently damage them [42, 43]. Proper encapsulation is once again the solution when complete unplugging is not possible [37]. Alternatively, a water-free, air-based laundry system has been designed for smart garments [44].
Product lifetime is very important for consumers. A typical 100% cotton t-shirt provides serviceability for at least 20 washes [45]. Hence, the expectation of consumers is no less for smart textiles, especially due to their high price tag. OMsignal claimed that their smart t-shirt, designed for tracking heart and respiration rate, could undergo 50 wash cycles [46]. However, the company no longer exists. Karaguzel et al. designed a silver ink screen-printed nonwoven electro-textile circuit that could resist up to 25 wash cycles [47]. Cho et al. reported no change in conductivity of an rGO-coated meta-aramid woven fabrics after ten 6-min washing cycles at 40 °C using a Laundero-meter [30]. Similarly, intrinsic conductive polymers like PEDOT:PSS were used to exhaust-dye silk yarns and showed no change in electrical conductivity for up to 4 washing cycles [17]. Laminated and metallized textile yarn electrodes sustained successfully 20 domestic washing cycles according to EN ISO 6330 [39].
Researchers also used prolong washing to demonstrate the stability-to-laundering of smart textiles. Qui et al. observed a constant electrical output (voltage: ∼110 V, current: 2 μA) for their piezoelectric energy harvesting fabric based on biomechanical body movements after up to 2 h of continuous washing [18]; only a minor degradation in the output (voltage: ∼106 V, current: 1.9 μA) was recorded after 12 h of prolonged washing. The impact of powder detergent (containing conventional chlorine-based bleaching agents), liquid detergent, and sodium percarbonate (an unconventional stain remover based on oxygen bleach) was compared when testing the resistance of Ag-plated nylon electrodes to 30 washing cycles [42]. Detergents with bleaching agents were reported to be more damaging to the Ag-electrodes, as the bleaching agents oxidize the Ag layer, making the conductive layer vulnerable to mechanical rubs and progressive wash cycles. The researchers recommended using liquid detergents, free of any form of bleaching agents, for e-textiles. Recently, researchers from the University of Toronto and the University of Waterloo developed two different electrocardiogram (ECG) electrodes made of silver-coated and carbon-suffused nylon yarns [48]. Although silver-coated ECG electrodes resisted well up to 35 washes, the carbon yarns yielded a longer lifespan and maintained a reasonable signal quality for the ECG biosignals.
Safety is the biggest concern for e-textile users because of the fear of electric shocks from embedded electronics. Even though the embedded electronics are responsible for the smart behavior of e-textiles, the safety of the product should not be compromised by the presence of electronic components.
Embedded electronics in e-textiles may suffer from short-circuits or mechanical failures, e.g. due to body sweat or ambient moisture, similarly to what is observed for electronic devices in marine environments [49]. Such malfunctioning can cause serious health hazards or fire accidents. For instance, a recall was issue for the Omni-Heat electric jackets of the company Columbia [50]. A manufacturing defect was detected in the heating component of the wrist cuff, which could create an electric short and lead to burn injuries. The electrical insulation of conductive components can be achieved by surrounding the conductive components with an electrically insulating layer, for instance through core spinning, using a tubular intarsia knitting, or by encapsulation in a water-resistant polymer for instance [51].
Burns due to exposure to high temperatures is a serious safety concern for users of heating textiles. Skin temperature is around 34-35 °C although it differs slightly between different regions of the human body while the core temperature of the human body is maintained at around 37 °C [52, 53]. Figure 7 illustrates the effect of exposure of the human skin to different temperatures [54, 55, 56]. While the burning pain threshold is at 43 °C, extended exposure of the skin to 45 °C can lead to 2nd and 3rd degree burns. Temperature overshooting or the malfunctioning of heating textiles could cause severe burn injuries, in particular for people with impaired sensations. For instance, a 26-year-old male patient with paraplegia suffered from a hip burn due to a heated car seat while driving a 2004 Jeep Cherokee for 30 minutes [57]. While the patient was unaware that the car seat was preprogrammed to a high setting (∼41 °C), it was later revealed that the seat heater malfunctioned and exceeded 41 °C.
Resistance of the human skin layers to low and elevated temperatures. Data retrieved from [
Similar unfortunate cases include a 42-year-old post-traumatic paraplegic patient in Germany who required several reconstructive surgeries as a result of burns caused by a heated car seat [58], a 54 old paraplegic patient driving a 1999 Chrysler Town & Country minivan who suffered from blisters in the rear and upper thigh [59], and a 50-year-old diabetic and paraplegic woman who suffered from a partial-thickness burn on her medial buttocks [60]. Canada has cold winters and people use heated car seats during the winter; however, most of the heated seats do not display the temperature reached during operation. Figure 8 displays the example of a North American 2020 full-sized sedan car with its heated car seats and different levels of heat settings; no indication of the actual temperature reached by the heated seats is available. As shown in Figure 7, an overheating at 50 °C may cause a 2nd or 3rd degree burn within 4 minutes. Beside medical patients, a temperature overshoot may also increase the risk of fire in the case of apparel articles with poor fire retardancy.
A full-sized sedan with its heated seat (a) and dashboard control modules with set temperatures (b). The car seat heat indicator is in tally marks (with no reference of actual temperature) (c).
Similar smart heating technologies are also used by diabetic patients. Diabetic patients often suffer from nerve damages, termed as neuropathy, which involves sensory or motor impairment of small and large fibers of the body muscles [61]. The weakness of feet nerves is the most common type of diabetic neuropathy affects. Foot ulcers, sharp or burning pains in feet, and numbness of toes are other neuropathy symptoms [62]. To keep neuropathic pain under a manageable level, patients often undertake different physical therapies, including heat therapies by heating pads (Figure 9a) [63]. Since diabetic patients may suffer localized feet numbness and these heating pads are in direct contact with the skin, any temperature overshoot may cause serious skin burn injuries. Unfortunately, different heating textiles like heating blankets, mattress pads or throws (Figure 9b) are sold to consumers without proper instructions or clear indications. For instance, the heat regulator does not indicate the level of temperature it generates for its different heat settings (high, medium, low) (Figures 9c). Such an approach could harm sensitive skins as the heat tolerance level differs from person to person and patients with diabetes or paraplegia suffer from reduced or impaired sensitive body organs. Operation manuals also miss indications about the temperatures at the different heat settings and warnings about the dangers of prolonged heating times.
Examples of heating textile products. (a) a heating pad; (b) a 120 V (A.C.)/60 Hz/ 115 W electronic heating throw made of 100% polyester fiber; (c) heating control module without numerical indication of temperature levels for the three different heat settings (high, medium, low).
In addition, the accumulation of heat over time could also make the users of different electronic wearables feel uncomfortable [64]. Such issue is particularly critical in the case of joule heating textiles where it could lead to burns for the user or instance of fires. Due to the accumulation of heat in the textile over the successive heating/cooling cycles for instance, the temperature may keep on increasing even if the power input remains constant – a phenomenon which was marked in smart nylon gloves embedded with a polyurethane-copper nanowire (PU-CuNW) resistive heating element [22]. Kim et al. reported a temperature increase of 5 °C, from 85 °C to 90 °C, during a 10 h prolong heating period of the smart nylon gloves [22]. This temperature increase over time could potentially be associated with the ∼7% increase they observed in the resistance of the conductive element of the PU-CuNW-nylon glove after the 10 h heating period. Thermal inertia may also lead to issues of overheating as the temperature experienced may exceed the set value, which can be associated with a phenomenon of overshooting.
Recently, the US Homeland Defense and Security Information Analysis Center described the need for integrating multiple energy harvesting textiles on US military protective clothing [65]. Indeed, most wearable electronic systems need to be powered to be able to function. Strategies for textile-based energy harvesting are generally based on triboelectric (based on the friction between pieces of garments during body motion) [66], piezoelectric (from deformation during body motion [67], thermoelectric (using body heat) [68], and photovoltaic (from solar energy) power generation [69]. Recent scientific works also showed the potential of producing biochemical energy from body sweat using textile-based biofuel cell systems [70]. An overview of different energy harvesting textile platforms is illustrated in Figure 10 for an application for dismounted soldiers.
An overview of energy harvesting systems for autonomous and self-charging protective military clothing with a simplified block diagram for wireless communication platform.
In addition to energy harvesting, on-body batteries or supercapacitors are needed to store the energy from these energy harvesting fabrics and/or provide some power supply autonomy to the wearable clothing system [71]. However, these integrated batteries could suffer from battery ignition. One such incident was reported by the Department of Police in Arkansas (USA); a smart jacket caught on fire due to the ignition of its built-in battery [72]. Another example concerns the Omni-Heat electric jacket models of the company Columbia [50]. A recall resulted from defective batteries that could overheat and ignite the jacket. Similar incidents could have dramatic consequences, in particular in the military where an increasing number of e-textile systems are being encountered. For instance, in the US, the Future Force Warrior, Scorpion, and Land Warrior programs take advantage of copper and tinsel wire-based textile USB, radiating conductor, and electro-textile cables among others for improved flexibility and real-time information technology in military protective clothing systems [73].
The reliance on smart textiles in case of emergencies is a growing trend for the biomedical, OH&S, and transportation industries. Any inconsistency or flaw in the interconnecting conductive tracks may render the emergency smart textiles dysfunctional, with potential dramatic consequences. Moreover, if the textile antennas or wireless communication system suffer any disruption in the communication protocol, it will make the user vulnerable to life-threatening situations. For example, Smart Enjoy Interact Light (SEIL) backpacks are manufactured for cyclists to avoid traffic accidents by displaying built-in LED lights or by expressing images in real-time [74]. The bag allows the user to show traffic signals like left/right, stop and emergency signs using a wireless controller. Any flaw in the conductive tracks or quality issues with PCBs (printed circuit boards) may disrupt the direct signal transduction, thereby putting the cyclists in danger. Other examples of smart textiles employed for health monitoring and disease prevention by early detection include the Vivago WristCare to monitor and transmit data on a person’s health condition 24 hours a day – with benefits beyond the traditional push-button alarm; MARSIAN smart gloves to monitor and wirelessly transmit ANS (nonconscious) activities and real-time physiological (skin microcirculation, respiration rate, etc.) data; SenseWear body armband for measuring physiological parameters (motion, temperature, skin electrical conductance); VTAM biomedical t-shirt for teleassistance in medicine to monitor shock, fall, respiration, temperature, and location; and Vivometric’s LifeShirt for ambulatory and plethysmographic respiration monitoring [75].
Thus far, the current chapter has discussed several aspects associated with the durability and safety of smart/e-textiles. Efficiency covers aspects such as the actuating performance against applied stimulus level or the quality of the biosignal detection in physiological applications. These aspects are also critical for the satisfaction of the smart/e-textile user.
Response time can be defined as the delay between the input, i.e., the activation by the stimulus, and the output of the smart/e-textiles. In the case of joule heating textiles, the response time can be determined from the time–temperature curves. Researchers have used different parameters to characterize the response time of heating textiles. For instance, R90 refers to the time required to reach 90% of the steady state temperature [24]. Xiao et al. reported a decrease in the R90 of a heating e-textile based on a carbon black nanoparticle-PU (polyurethane) composite film as the applied voltage was increased [76]. Another parameter used by researchers is the heat time constant (HTIME) [25]. This is also known as response time constant (τ) [77]. The parameter τ characterizes the system’s inertia [77]. It is defined as the time required to reach 63.2% of the maximum value, in this case the maximum temperature, according to the following equation (see Eq. (1)):
One solution developed by researchers to improve the reaction/response time of the carbon-based conductive materials is to take advantage of different metal fillers. For example, Ag nanowires were added to graphene oxide to prevent lattice defects during the reduction to rGO [78].
As many smart/e-textiles require power to operate, power efficiency is critical to maximize the wearability of the device. For joule heating textiles, researchers generally express the maximum temperature reached as a function of the applied power density to characterize the heating performance of the heating system, for example flexible graphene heaters for wearable electronics [79]. Work on thermoregulatory devices for cooling and heating applications, stretchable knit heating cotton gloves, and stretchable smart textile heaters based on copper nanowires have relied on heat flux density measurements to quantify the resistive heating performance [22, 24, 25, 80]. However, power efficiency is still a weakness for products currently on the market [5].
The uniformity of actuation is a critical parameter when considering heating textiles. For example, Hao et al. characterized the uniformity of the heating performance of a cotton woven fabric spray-coated with a graphene nanosheet conductive mixture by showing the temperature distribution from four different perspectives
Comparison between the infrared temperature measurement of heating textiles using a conductive nonwoven structure (R1) and a conductive wire (R2).
A similar approach was undertaken by several researchers to evaluate the thermal stability of electrothermal textiles during repeated heating–cooling cycles of different amplitudes. The test would involve a series of stepwise or periodic or cyclic applied voltages, with the resulting temperature changes being recorded [76]. Some researchers also used specific actuation patterns. For example, Sun et al. characterized his segregated carbon Nanotube/thermoplastic polyurethane (s-CNT/TPU) heater with three different types of heating–cooling cyclic patterns [19]: (a) ten on/off periodic cycles at 6 V, (b) three cycles of 1.5–3-4.5-6 V step increase followed by an off period, and (c) five on/off periodic cycles at increasing then decreasing voltages (3–4.5-6-4.5-3 V). In general, two types of approaches have been observed among researchers investigating the efficiency of wearable heaters: (a) cyclic heating–cooling tests at a fixed voltage, and (b) repetitions of the continuous profile of variable voltages.
Smart/e-textiles for biomedical applications often incorporate textile sensors or electrodes. The efficiency of these devices depends on the quality of the biosignals recorded. Dry textile sensors suffer from high contact impedance between the skin and the electrodes [81]. This results in high signal distortion and level of noise, lowering the overall efficiency of the biomedical devices. To overcome this challenge, researchers have integrated a water reservoir to continuously dispense moisture vapor to a Ag/Ti-coated polyester yarn embroidered electrode and lower the motion artifacts [82]. However, this system still does not offer a long-term solution as the reservoir dries out after a few hours, disrupting the signal measurement protocols, and thereby, the product efficiency [83]. Ultimately, the efficiency in the linearity of the output signals will have to be improved by reducing the impact of temperature, mechanical vibrations, ambient relative humidity, and other atmospheric factors [84].
Moisture reduces the performance of all types of batteries, including textile batteries or batteries integrated into smart textiles [43]. Moisture may also cause chemical and physical interferences in the control module of e-textiles, reducing its efficiency before a total failure occurs [85]. Besides the possibility of electric shocks or complete signal loss from corrosion, marine e-textiles could also experience decreased efficiency when exposed to the salt of seawater. As soon as the saltwater propagates the localized corrosion process of textile electrodes or conductive interconnects, it could affect the overall signal quality, lowering the transduction efficiency [49].
For the consumer satisfaction, the longevity of the system supplying power to the e-textile, either a battery or an energy harvesting component, is critical. Unfortunately, the same situation experienced in the mobile phone sector will potentially be observed with e-textiles, in particular with batteries and chargers. Components may even reach obsolescence faster due to the combination of specific life cycle factors associated with both the electronics and textile sectors [86].
Fault detection and maintenance are another critical aspect of e-textiles. Due to their seamless integration into smart textiles, routine maintenance of electronic components can be extremely difficult. Also, any attempt to repair of the defective components may permanently damage the smart textile products.
In an effort towards real-time data analytics, smart textiles provide a platform for portable computing for the consumers, for instance for biosignal and physiological data collection. Any difficulty to update the electronic components, firmware, networking protocols, and software could seriously jeopardize the lifetime of the e-textile product.
E-waste already raises a major challenge. With e-textiles, the situation becomes even worse as they are more integrated, have a shorter life span, and will be more likely disposed of with their batteries [86]. In addition, if people own one cell phone, they have several tee shirts in their wardrobe. E-textiles may lead to contamination of other materials’ recycling processes as well the increased release of toxic substances. Hence, proper standardization and appropriate regulations are needed for the safe disposal of this new generation of electronics.
Several national and international standardization organizations have been working over the last 10 years towards the development of standards for smart/e-textiles. This includes the European Committee for Standardization (CEN) with technical committee CEN TC 248/WG 31, the International Electrotechnical Commission (IEC) with technical committee IEC TC 124, ASTM International with technical committee ASTM D13.50, the International Organization for Standardization with technical committee ISO/TC 38/WG 32, and the American Association of Textile Chemists & Colorists (AATCC) with technical committee AATCC RA111. Several of them have published and/or are working on the development of test methods for smart/e-textiles. A total of 18 published/in-development standard test methods are listed in Table 2. They are organized according to the classification shown in Figure 1. Four documents relative to terminology are also included in the table.
Test method | Document |
---|---|
ASTM WK61479- Durability of textile electrodes exposed to perspiration (in development) | [87] |
ASTM WK61480- Durability of textile electrodes after laundering (in development) | [88] |
AATCC RA111(a)- Electrical resistance of electronically integrated textiles (in development)* | [89] |
AATCC RA111(b)- Electrical resistance changes after home laundering (in development)* | [90] |
CEN EN 16812:2016- Linear electrical resistance of conductive tracks* | [91] |
IEC 63203–204-1- Washable durability for leisure and sportswear e-textile system (in development)* | [92] |
IEC 63203–201-3- Electrical resistance of conductive textiles under simulated microclimate (in development)* | [93] |
IEC 63203–250-1- Snap button connectors (in development)* | [94] |
IEC 63203–201-1- Basic properties of conductive yarns (in development)* | [95] |
IEC 63203–201-2- Basic properties of conductive fabric and insulation materials (in development)* | [96] |
CEN EN 16806–1:2016- PCM - Heat storage and release capacity | [97] |
CEN EN 16806–2 PCM- Heat transfer using a dynamic method (in development) | [97] |
CEN EN 16806–3 PCM- Determination of the heat transfer between the user and the product (in development) | [97] |
IEC 63203–406-1- Measuring skin contact temperature (in development) | [98] |
IEC 63203–401-1 - Stretchable resistive strain sensor (in development) | [99] |
IEC 63203–402-1 – Finger movements in glove-type motion sensors (in development) | [100] |
IEC 63203–402-2 - Fitness wearables – step counting (in development) | [101] |
IEC 63203–301-1 - Electrochromic films for wearable equipment (in development) | [102] |
ASTM D8248–19- Standard terminology for smart textiles | [103] |
ASTM WK61478- New terminology for smart textiles (in development) | [104] |
CEN 16298 - Definitions, categorization, applications and standardization needs | [105] |
IEC 63203–101-1 – Terminology (in development) | [106] |
Standards (existing and in development) test methods for smart textiles.
Also applies to other categories of products/technologies.
The distribution of existing sensor and actuator-based textile technologies, solutions, and products by category of input/output signal (Figure 1) can be compared with the standard test methods (published and in development) identified (Figure 12). While most of the test method development efforts for e-textiles are in the electrical category, which accounts for 55% of the total test methods published and in development, technologies, solutions, and products in the electrical category only represent 28% and 5% of the sensors and actuators, respectively. For their part, mechanical test standards only represent 11% of the total, whereas technologies, solutions, and products in the mechanical category comprise 59% of the sensor-based smart/e-textiles. Also, very few standard test methods exist for thermal, optical and physical environmental aspects of e-textiles, while commercial products in these categories account for a large part of products/technologies in the market. No standards are available yet for power/energy harvesting and chemical/biological e-textiles, while some related products already exist on the market. This situation has led several researchers and research institutions to develop their own test methods [107]. It must be mentioned that test methods characterizing the electrical function were included in the electrical category while they may also, in a certain extent, apply to other categories of smart/e-textiles.
Existing/in-development standardized test methods for smart textiles as of December 2020.
Based on the number of commercial e-textile products currently available and issues reported in terms of safety, efficiency, and durability, there is thus a critical need for test methods for thermal applications, as well as to a lesser degree, for energy (power) harvesting and chemical and biological applications. For this purpose, a trifactor model of performance assessment is illustrated in Figure 13. The product assessment should also take into account the product features, longevity, benefits/cost ratio, and the user experience.
Tri-factor framework for assessing the performance of smart/e-textiles.
Applying this trifactor model, we have identified the need for more than thirty standard test methods in the specific case of thermal e-textile products (Tables 3–5). They include a full-sleeve resistive heating jacket, battery-powered resistive heating boots, resistive heating car seats, battery-powered resistive heating gloves, a reflective heating jacket, an air-exchange heating face mask, a cooling vest using water circulation and a Peltier module, and a thermo-regulated jacket with phase change materials. The few standard test methods already published and in development are also included in the tables when relevant: in several cases, the standard would not apply to the case of thermal e-textiles used as an example here. In the case of the durability assessment, the analysis considered the specificities of the application corresponding to the product under consideration.
Performance evaluation | Applicable standards |
---|---|
Efficiency of the overall functional/protective clothing system | Not available |
Efficiency of the heat transfer system between textile and user (at thecomponent level) | Not available |
Efficiency of the induction-charging system | Not available |
Test methods needed to evaluate the efficiency of smart/e-textiles.
Performance evaluation | Applicable standards |
---|---|
Efficiency of protection against shorts or open circuit, leading to shocks or fire hazards | IEC 63203–201-2 is in development, but it may not apply to high resistance conductive fabrics used for antistatic or heater purposes |
Efficiency of controls (i.e., power limit) to avoid over-heating, leading to skin burn or damage | IEC 63203–406-1 ED1 is in development but it appears to be limited to wearable electronic devices |
Impact of prolonged heating exposure on the skin and the surrounding environment | Not available |
Overshooting of temperature difference between set temperature and experienced temperature by the skin | Not available |
Test methods needed to evaluate the safety of smart/e-textiles (include test methods published and in development when relevant).
Performance evaluation | Applicable standards |
---|---|
Electrical resistance of the heater/resistive material to cleaning (washing/ laundering, dry-cleaning, drying)a,d | ASTM WK61480 (draft) AATCC RA11 (draft) IEC PN 63203–201-2 (draft) |
Electrical resistance of the heating element to exposure of perspiration (from different parts of the body)a,b,d | ASTM WK61479 (draft) IEC PN 63203–201-2 (draft) |
Electrical resistance of the heating element when subjected to mechanical stresses (tension /compression/ bending /fatigue/ abrasion/cutting /tearing / bodyweight)a,b,c,d | IEC PN 63203–201-2 is in development, but it does not appear to cover the aspects of abrasion, cutting, tearing, and fatigue |
Electrical resistance of conductive parts to steaming or ironing (after laundering)a | Not available |
Electrical resistance of the heating element to extreme weather conditions (e.g., rain and snow)a,b,c,d | Not available |
Electrical resistance of the heating elements after exposure to severe use conditions (hot/cold/high humidity)a,b,c,d | Not available |
Electrical resistance of the heating elements after exposure to different kinds of liquid (water, coffee, soft drinks)c,d | Not available |
Electrical resistance of conductive track to cleaninga,b,c,d | ASTM WK61480 (draft) AATCC RA11 (draft) IEC PN 63203–201-2 (draft) |
Electrical resistance of fasteners (e.g., switch, snaps, power supply) to cleaninga | Not available |
Electrical resistance of fasteners to power supply to repetitive connection/disconnection for cleaning, i.e., fatiguea,d | Not available |
Electrical resistance of fasteners to steaming/ironinga | Not available |
Electrical resistance of fasteners to the power supply to exposure of perspiration (e.g., corrosion)a | Not available |
Resistance of reflective thermal heating pattern to cleaning (washing/ laundering, dry-cleaning, drying)e | Not available |
Resistance of reflective thermal heating pattern to body abrasione | Not available |
Resistance of reflective thermal heating pattern to perspiratione | Not available |
Preservation of thermal heat reflection of liner fabric over time i.e., aging behaviore | Not available |
Resistance of antimicrobial property of ventilator to cleaning (washing/ laundering/ dry-cleaning/ drying)f | Not available |
Resistance of structural integrity of the ventilator against external compression and abrasionf | Not available |
Efficiency of the heat recovery of the ventilation system from the exhaled breathf | Not available |
Efficiency of the transformation mechanism of cold inhaled air into warm air inside the ventilatorf | Not available |
Resistance of structural integrity of the bladder/reservoir to compression and abrasion (with zipper track while detaching)g | Not available |
Heat storage and release capacity of phase change material (PCM)h | CEN EN 16806–1 (Part- 1) |
Resistance of PCM and coatings (many contain binders) to washing/ laundering/ dry-cleaning/ dryingh | Not available |
Resistance of PCM and coatings to abrasionh | Not available |
Resistance of PCM and coatings to perspirationh | Not available |
Determination of cooling or heat transfer of the PCM (coated or portable packs) technologyh | CEN EN 16806–1 (Part- 2) |
Resistance of PCM and coating to steaming and ironingh | Not available |
Efficiency of PCM (coated or portable packs) technology over the course of the time i.e., aging behavior (weather conditions)h | Not available |
Efficiency of PCM (coated or portable packs) technology to fatigueh | Not available |
Test methods needed to evaluate the durability of smart/e-textiles (include test methods published and in development when relevant).
Resistive heating jacket.
Resistive heating boot.
Resistive heating car seat.
Resistive heating gloves.
Reflective heating jacket.
Air-exchange heating face mask.
Cooling vest using water circulation and a Peltier module.
Thermo-regulated jacket with phase change material.
After a brief overview of smart/e-textile products and major barriers to market entry, this chapter discussed different issues reported as well as foreseeable challenges that may result in injuries for instance, with electric shocks, skin burns and fires. Aspects related to the user’s satisfaction, for instance in terms of the product longevity and the ability to maintain/repair it, were also covered. In particular, different conditions such as biomechanical stresses applied during use, ambient moisture, and laundering may reduce the life expectancy of the smart textile due to a damage of the conductive interconnects or a reduced actuation, for instance. As the world moves towards an increased adoption of smart e-textiles, such unwanted outcomes can put the lives of healthcare patients, first responders, and soldiers, for instance, at risk.
Due to the lack of dedicated standard test methods, manufacturers of e-textiles are limited in their attempt to control the quality of their products; as a result, they are unable to scale up and have their innovative e-textile technologies and products reach their full potential. It is clear that the issues reported in terms of safety, durability, and efficiency of e-textiles can be mitigated and eliminated through appropriate quality control using standard test methods. Currently, only 18 standard test methods published and in development by CEN, IEC, ASTM, and AATCC technical committees relevant to smart/e-textiles were identified. In some categories of e-textiles, e.g., thermal, chemical, biological, and energy harvesting, few or no test methods exist while several products are already on the market.
Using a trifactor model of performance assessment based on safety, efficiency, and durability, more than 30 standard test methods were identified for thermal e-textiles by considering a series of existing technologies/products: a full-sleeve resistive heating jacket, battery-powered resistive heating boots, resistive heating car seats, battery-powered resistive heating gloves, a reflective heating jacket, an air-exchange heating face mask, a cooling vest using water circulation and a Peltier module, and a thermo-regulated jacket with phase change materials. The development of such product-oriented test methods and their adoption by the manufacturing industries, will facilitate the design process towards a safer, more efficient, and durable smart/e-textile world. Adopting a collaborative and multidisciplinary approach, involving textile, materials, biomedical, and electrical engineers as well as relevant national and international standardization technical committees in textiles and electronics, is key to achieving this.
The authors disclosed receipt of the following financial support for the research: MITACS Canada and CTT Group, Canada.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25 FILLER ads"},books:[{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11878",title:"Advances in the Auditory and Vestibular Systems",subtitle:null,isOpenForSubmission:!0,hash:"a664ad52eded5aa2ca06403e76bab30a",slug:null,bookSignature:"Prof. Stavros Hatzopoulos and Dr. Andrea Ciorba",coverURL:"https://cdn.intechopen.com/books/images_new/11878.jpg",editedByType:null,editors:[{id:"174266",title:"Prof.",name:"Stavros",surname:"Hatzopoulos",slug:"stavros-hatzopoulos",fullName:"Stavros Hatzopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11580",title:"Recent Advances in Canine Medicine",subtitle:null,isOpenForSubmission:!0,hash:"1806716f60b9be14fc05682c4a912b41",slug:null,bookSignature:"Dr. Carlos Eduardo Fonseca-Alves",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",editedByType:null,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11873",title:"Arthroplasty - Advanced Techniques and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"ced605018c59717c3e55f59474339ca9",slug:null,bookSignature:"M.D. Alessandro Rozim Zorzi",coverURL:"https://cdn.intechopen.com/books/images_new/11873.jpg",editedByType:null,editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11586",title:"Schizophrenia - Recent Advances and Patient-Centered Treatment Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2ba14221aca01660b2547004d9b5c2d9",slug:null,bookSignature:"Dr. Jane Yip",coverURL:"https://cdn.intechopen.com/books/images_new/11586.jpg",editedByType:null,editors:[{id:"156214",title:"Dr.",name:"Jane",surname:"Yip",slug:"jane-yip",fullName:"Jane Yip"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11600",title:"Recent Update on Multiple Myeloma\ufeff",subtitle:null,isOpenForSubmission:!0,hash:"c8e2b12df4fc2d313aced448fe08a63e",slug:null,bookSignature:"Dr. Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/11600.jpg",editedByType:null,editors:[{id:"37255",title:"Dr.",name:"Khalid",surname:"Al-Anazi",slug:"khalid-al-anazi",fullName:"Khalid Al-Anazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11691",title:"Orthognathic Surgery and Dentofacial Deformities",subtitle:null,isOpenForSubmission:!0,hash:"413b0d1441beac767fe0fbf7c0e98622",slug:null,bookSignature:"Dr. H. Brian Sun",coverURL:"https://cdn.intechopen.com/books/images_new/11691.jpg",editedByType:null,editors:[{id:"184302",title:"Dr.",name:"H. Brian",surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11597",title:"Glioblastoma - Current Evidences",subtitle:null,isOpenForSubmission:!0,hash:"da69711754eb5ed95bdea15fcfab0b2a",slug:null,bookSignature:"Prof. Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/11597.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11655",title:"Atrial Fibrillation - Diagnosis and Management in the 21st Century",subtitle:null,isOpenForSubmission:!0,hash:"a0ecc730df6b37a0e1cb00968a5be34d",slug:null,bookSignature:"Dr. Ozgur Karcioglu and Associate Prof. Funda Karbek Akarca",coverURL:"https://cdn.intechopen.com/books/images_new/11655.jpg",editedByType:null,editors:[{id:"221195",title:"Prof.",name:"Ozgur",surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11595",title:"Recent Understanding of Colorectal Cancer Treatment",subtitle:null,isOpenForSubmission:!0,hash:"1c5db5892553734d258782d03d4384bb",slug:null,bookSignature:"Dr. Keun-Yeong Jeong",coverURL:"https://cdn.intechopen.com/books/images_new/11595.jpg",editedByType:null,editors:[{id:"258919",title:"Dr.",name:"Keun-Yeong",surname:"Jeong",slug:"keun-yeong-jeong",fullName:"Keun-Yeong Jeong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11660",title:"Supportive and Palliative Care for Cancer Patients",subtitle:null,isOpenForSubmission:!0,hash:"8be27d28bfeb3b3719120ac4c3e5a647",slug:null,bookSignature:"Dr. Bassam Abdul Rasool Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11660.jpg",editedByType:null,editors:[{id:"155124",title:"Dr.",name:"Bassam",surname:"Hassan",slug:"bassam-hassan",fullName:"Bassam Hassan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11728",title:"Antibody Engineering - Perspectives on Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"540fbc86b75458af5588f6dbb2eb9c07",slug:null,bookSignature:"Dr. Kalimuthu Karuppanan",coverURL:"https://cdn.intechopen.com/books/images_new/11728.jpg",editedByType:null,editors:[{id:"444087",title:"Dr.",name:"Kalimuthu",surname:"Karuppanan",slug:"kalimuthu-karuppanan",fullName:"Kalimuthu Karuppanan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:44},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:133},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"143",title:"Sustainable Development",slug:"environmental-sciences-sustainable-development",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:208,numberOfWosCitations:206,numberOfCrossrefCitations:167,numberOfDimensionsCitations:366,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"143",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9845",title:"Landscape Architecture",subtitle:"Processes and Practices Towards Sustainable Development",isOpenForSubmission:!1,hash:"e60932edd4a5d1f03606853a11f7616a",slug:"landscape-architecture-processes-and-practices-towards-sustainable-development",bookSignature:"Luís Loures and Mustafa Ergen",coverURL:"https://cdn.intechopen.com/books/images_new/9845.jpg",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8156",title:"Sustainability Assessment at the 21st century",subtitle:null,isOpenForSubmission:!1,hash:"222ef024272a36394c5213ab97c07d29",slug:"sustainability-assessment-at-the-21st-century",bookSignature:"María José Bastante-Ceca, Jose Luis Fuentes-Bargues, Levente Hufnagel, Florin-Constantin Mihai and Corneliu Iatu",coverURL:"https://cdn.intechopen.com/books/images_new/8156.jpg",editedByType:"Edited by",editors:[{id:"210968",title:"Dr.",name:"María José",middleName:null,surname:"Bastante-Ceca",slug:"maria-jose-bastante-ceca",fullName:"María José Bastante-Ceca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4697",title:"Greenhouse Gases",subtitle:null,isOpenForSubmission:!1,hash:"a571ed811b623e82680d1ade5b4feb98",slug:"greenhouse-gases",bookSignature:"Bernardo Llamas Moya and Juan Pous",coverURL:"https://cdn.intechopen.com/books/images_new/4697.jpg",editedByType:"Edited by",editors:[{id:"169368",title:"Dr.",name:"Bernardo",middleName:null,surname:"Llamas",slug:"bernardo-llamas",fullName:"Bernardo Llamas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2168",title:"Sustainable Development",subtitle:"Authoritative and Leading Edge Content for Environmental Management",isOpenForSubmission:!1,hash:"2390760489adb85a77ad5db8df83fa05",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",bookSignature:"Sime Curkovic",coverURL:"https://cdn.intechopen.com/books/images_new/2168.jpg",editedByType:"Edited by",editors:[{id:"139156",title:"Dr.",name:"Sime",middleName:null,surname:"Curkovic",slug:"sime-curkovic",fullName:"Sime Curkovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2016",title:"Sustainable Development",subtitle:"Policy and Urban Development - Tourism, Life Science, Management and Environment",isOpenForSubmission:!1,hash:"2afa6164c067274259fa5c28364e6592",slug:"sustainable-development-policy-and-urban-development-tourism-life-science-management-and-environment",bookSignature:"Chaouki Ghenai",coverURL:"https://cdn.intechopen.com/books/images_new/2016.jpg",editedByType:"Edited by",editors:[{id:"14569",title:"Prof.",name:"Chaouki",middleName:null,surname:"Ghenai",slug:"chaouki-ghenai",fullName:"Chaouki Ghenai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1368",title:"Biological Diversity and Sustainable Resources Use",subtitle:null,isOpenForSubmission:!1,hash:"2a2e4859e120fd16cbb50fe87a15d4a5",slug:"biological-diversity-and-sustainable-resources-use",bookSignature:"Oscar Grillo and Gianfranco Venora",coverURL:"https://cdn.intechopen.com/books/images_new/1368.jpg",editedByType:"Edited by",editors:[{id:"51992",title:"PhD.",name:"Oscar",middleName:null,surname:"Grillo",slug:"oscar-grillo",fullName:"Oscar Grillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"69212",doi:"10.5772/intechopen.89202",title:"Attributional and Consequential Life Cycle Assessment",slug:"attributional-and-consequential-life-cycle-assessment",totalDownloads:2319,totalCrossrefCites:16,totalDimensionsCites:39,abstract:"An attributional life cycle assessment (ALCA) estimates what share of the global environmental burdens belongs to a product. A consequential LCA (CLCA) gives an estimate of how the global environmental burdens are affected by the production and use of the product. The distinction arose to resolve debates on what input data to use in an LCA and how to deal with allocation problems. An ALCA is based on average data, and allocation is performed by partitioning environmental burdens of a process between the life cycles served by this process. A CLCA ideally uses marginal data in many parts of the life cycle and avoids allocation through system expansion. This chapter aims to discuss and clarify the key concepts. It also discusses pros and cons of different methodological options, based on criteria derived from the starting point that environmental systems analysis should contribute to reducing the negative environmental impacts of humankind or at least reduce the impacts per functional unit: the method should be feasible and generate results that are accurate, comprehensible, inspiring, and robust. The CLCA is more accurate, but ALCA has other advantages. The decision to make an ALCA or a CLCA should ideally be taken by the LCA practitioner after discussions with the client and possibly with other stakeholders and colleagues.",book:{id:"8156",slug:"sustainability-assessment-at-the-21st-century",title:"Sustainability Assessment at the 21st century",fullTitle:"Sustainability Assessment at the 21st century"},signatures:"Tomas Ekvall",authors:[{id:"293149",title:"Prof.",name:"Tomas",middleName:null,surname:"Ekvall",slug:"tomas-ekvall",fullName:"Tomas Ekvall"}]},{id:"49936",doi:"10.5772/62275",title:"Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs)",slug:"review-of-recent-developments-in-co2-capture-using-solid-materials-metal-organic-frameworks-mofs-",totalDownloads:4289,totalCrossrefCites:10,totalDimensionsCites:29,abstract:"In this report, the adsorption of CO2 on metal organic frameworks (MOFs) is comprehensively reviewed. In Section 1, the problems caused by greenhouse gas emissions are addressed, and different technologies used in CO2 capture are briefly introduced. The aim of this chapter is to provide a comprehensive overview of CO2 adsorption on solid materials with special focus on an emerging class of materials called metal organic frameworks owing to their unique characteristics comprising extraordinary surface areas, high porosity, and the readiness for systematic tailoring of their porous structure. Recent literature on CO2 capture using MOFs is reviewed, and the assessment of CO2 uptake, selectivity, and heat of adsorption of different MOFs is summarized, particularly the performance at low pressures which is relevant to post-combustion capture applications. Different strategies employed to improve the performance of MOFs are summarized along with major challenges facing the application of MOFs in CO2 capture. The last part of this chapter is dedicated to current trends and issues, and new technologies needed to be addressed before MOFs can be used in commercial scales.",book:{id:"4697",slug:"greenhouse-gases",title:"Greenhouse Gases",fullTitle:"Greenhouse Gases"},signatures:"Mohanned Mohamedali, Devjyoti Nath, Hussameldin Ibrahim and\nAmr Henni",authors:[{id:"147111",title:"Dr.",name:"Amr",middleName:null,surname:"Henni",slug:"amr-henni",fullName:"Amr Henni"},{id:"177302",title:"MSc.",name:"Mohanned",middleName:null,surname:"Mohamedali",slug:"mohanned-mohamedali",fullName:"Mohanned Mohamedali"},{id:"177303",title:"Dr.",name:"Hussameldin",middleName:null,surname:"Ibrahim",slug:"hussameldin-ibrahim",fullName:"Hussameldin Ibrahim"}]},{id:"38097",doi:"10.5772/45884",title:"Electronic Waste Management in Ghana - Issues and Practices",slug:"electronic-waste-management-in-ghana-issues-and-practices",totalDownloads:5453,totalCrossrefCites:14,totalDimensionsCites:28,abstract:null,book:{id:"2168",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",title:"Sustainable Development",fullTitle:"Sustainable Development - Authoritative and Leading Edge Content for Environmental Management"},signatures:"Martin Oteng-Ababio",authors:[{id:"144443",title:"Dr.",name:"Martin",middleName:null,surname:"Oteng-Ababio",slug:"martin-oteng-ababio",fullName:"Martin Oteng-Ababio"}]},{id:"38093",doi:"10.5772/45829",title:"Use of Remote Sensing in Wildfire Management",slug:"use-of-remote-sensing-in-wildfire-management",totalDownloads:3101,totalCrossrefCites:17,totalDimensionsCites:28,abstract:null,book:{id:"2168",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",title:"Sustainable Development",fullTitle:"Sustainable Development - Authoritative and Leading Edge Content for Environmental Management"},signatures:"Brigitte Leblon, Laura Bourgeau-Chavez and Jesús San-Miguel-Ayanz",authors:[{id:"122650",title:"Prof.",name:"Brigitte",middleName:null,surname:"Leblon",slug:"brigitte-leblon",fullName:"Brigitte Leblon"}]},{id:"38104",doi:"10.5772/48244",title:"The Compost of Olive Mill Pomace: From a Waste to a Resource - Environmental Benefits of Its Application in Olive Oil Groves",slug:"the-compost-of-olive-mill-pomace-from-a-waste-to-a-resource-environmental-benefits-of-its-applicatio",totalDownloads:3713,totalCrossrefCites:4,totalDimensionsCites:17,abstract:null,book:{id:"2168",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",title:"Sustainable Development",fullTitle:"Sustainable Development - Authoritative and Leading Edge Content for Environmental Management"},signatures:"Beatriz Gómez-Muñoz, David J. Hatch, Roland Bol and Roberto García-Ruiz",authors:[{id:"69393",title:"Dr.",name:"Roberto",middleName:null,surname:"García-Ruiz",slug:"roberto-garcia-ruiz",fullName:"Roberto García-Ruiz"},{id:"140998",title:"Dr.",name:"Beatriz",middleName:null,surname:"Gomez-Muñoz",slug:"beatriz-gomez-munoz",fullName:"Beatriz Gomez-Muñoz"},{id:"158485",title:"Dr.",name:"David J.",middleName:null,surname:"Hatch",slug:"david-j.-hatch",fullName:"David J. Hatch"},{id:"158486",title:"Dr.",name:"Roland",middleName:null,surname:"Bol",slug:"roland-bol",fullName:"Roland Bol"}]}],mostDownloadedChaptersLast30Days:[{id:"69212",title:"Attributional and Consequential Life Cycle Assessment",slug:"attributional-and-consequential-life-cycle-assessment",totalDownloads:2321,totalCrossrefCites:16,totalDimensionsCites:39,abstract:"An attributional life cycle assessment (ALCA) estimates what share of the global environmental burdens belongs to a product. A consequential LCA (CLCA) gives an estimate of how the global environmental burdens are affected by the production and use of the product. The distinction arose to resolve debates on what input data to use in an LCA and how to deal with allocation problems. An ALCA is based on average data, and allocation is performed by partitioning environmental burdens of a process between the life cycles served by this process. A CLCA ideally uses marginal data in many parts of the life cycle and avoids allocation through system expansion. This chapter aims to discuss and clarify the key concepts. It also discusses pros and cons of different methodological options, based on criteria derived from the starting point that environmental systems analysis should contribute to reducing the negative environmental impacts of humankind or at least reduce the impacts per functional unit: the method should be feasible and generate results that are accurate, comprehensible, inspiring, and robust. The CLCA is more accurate, but ALCA has other advantages. The decision to make an ALCA or a CLCA should ideally be taken by the LCA practitioner after discussions with the client and possibly with other stakeholders and colleagues.",book:{id:"8156",slug:"sustainability-assessment-at-the-21st-century",title:"Sustainability Assessment at the 21st century",fullTitle:"Sustainability Assessment at the 21st century"},signatures:"Tomas Ekvall",authors:[{id:"293149",title:"Prof.",name:"Tomas",middleName:null,surname:"Ekvall",slug:"tomas-ekvall",fullName:"Tomas Ekvall"}]},{id:"49907",title:"Carbon Dioxide Geological Storage (CGS) – Current Status and Opportunities",slug:"carbon-dioxide-geological-storage-cgs-current-status-and-opportunities",totalDownloads:3129,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Carbon dioxide sequestration has gained a great deal of global interest because of the needs and applications of mitigation strategy in many areas of human endeavors including capture and reduction of CO2 emission into atmosphere, oil and gas enhanced production, and CO2 geological storage. In recent years, many developed countries as well as some developing ones have extensively investigated all aspects of the carbon dioxide geological storage (CGS) process such as the potential of storage sites, understanding the behavior of CO2, and its interaction with various formations comprising trapping mechanisms, flow pattern, and interactions with formation rocks and so on. This review presents a summary of recent research efforts on storage capacity estimation techniques in most prominent storage options (depleted oil and gas reservoir, saline aquifers and coal beds), modeling and simulation means followed by monitoring and verification approaches. An evaluation of the more interesting techniques which are gaining attention in each part is discussed.",book:{id:"4697",slug:"greenhouse-gases",title:"Greenhouse Gases",fullTitle:"Greenhouse Gases"},signatures:"Kakouei Aliakbar, Vatani Ali, Rasaei Mohammadreza and Azin Reza",authors:[{id:"177143",title:"Ph.D. Student",name:"Aliakbar",middleName:null,surname:"Kakouei",slug:"aliakbar-kakouei",fullName:"Aliakbar Kakouei"},{id:"177149",title:"Dr.",name:"Mohammadreza",middleName:null,surname:"Rasaei",slug:"mohammadreza-rasaei",fullName:"Mohammadreza Rasaei"},{id:"177150",title:"Dr.",name:"Reza",middleName:null,surname:"Azin",slug:"reza-azin",fullName:"Reza Azin"},{id:"177151",title:"Dr.",name:"Ali",middleName:null,surname:"Vatani",slug:"ali-vatani",fullName:"Ali Vatani"}]},{id:"38103",title:"GIS for Environmental Problem Solving",slug:"gis-for-environmental-problem-solving",totalDownloads:12382,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2168",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",title:"Sustainable Development",fullTitle:"Sustainable Development - Authoritative and Leading Edge Content for Environmental Management"},signatures:"Koushen Douglas Loh and Sasathorn Tapaneeyakul",authors:[{id:"10635",title:"Dr.",name:"Koushen Douglas",middleName:null,surname:"Loh",slug:"koushen-douglas-loh",fullName:"Koushen Douglas Loh"},{id:"147886",title:"Ms.",name:"Sasathorn",middleName:null,surname:"Tapaneeyakul",slug:"sasathorn-tapaneeyakul",fullName:"Sasathorn Tapaneeyakul"}]},{id:"69954",title:"Green Building Rating Systems as Sustainability Assessment Tools: Case Study Analysis",slug:"green-building-rating-systems-as-sustainability-assessment-tools-case-study-analysis",totalDownloads:1495,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Building performance and occupants’ comfort lie at the core of building design targets. Principles of green architecture and building physics are not given enough thought and consideration. In the best cases, some thought is given to such factors but without a scientific methodology, which takes into consideration appropriate climatic data and appropriate assessment tools. Most importantly, the interference of the environmentalist in architecture projects comes usually very late in the design processes. Facing these facts has driven most countries to adopt official strategies and policies to deal with building’s performance. The rating systems are among these initiatives. The author of this chapter adapts a detailed methodology to aid the integration of the principles of the green architecture in the early stages of design using rating systems. The Leadership in Energy and Environmental Design (LEED) 1 that was developed in the USA by the U.S. Green Building Council (USGBC) for Core and Shell has been employed as the main design target. This chapter presents a brief about the world green initiatives and discusses the results of applying the methodology of integrating the green architectural principles at the early stages of design processes—through precedent analysis.",book:{id:"8156",slug:"sustainability-assessment-at-the-21st-century",title:"Sustainability Assessment at the 21st century",fullTitle:"Sustainability Assessment at the 21st century"},signatures:"Mady Mohamed",authors:[{id:"271848",title:"Dr.",name:"Mady",middleName:null,surname:"Mohamed",slug:"mady-mohamed",fullName:"Mady Mohamed"}]},{id:"38111",title:"Evaluation of Soil Quality Parameters Development in Terms of Sustainable Land Use",slug:"evaluation-of-soil-quality-parameters-development-in-terms-of-sustainable-land-use",totalDownloads:3233,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"2168",slug:"sustainable-development-authoritative-and-leading-edge-content-for-environmental-management",title:"Sustainable Development",fullTitle:"Sustainable Development - Authoritative and Leading Edge Content for Environmental Management"},signatures:"Danica Fazekašová",authors:[{id:"147786",title:"Associate Prof.",name:"Danica",middleName:null,surname:"Fazekašová",slug:"danica-fazekasova",fullName:"Danica Fazekašová"}]}],onlineFirstChaptersFilter:{topicId:"143",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:10,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]},overviewPageOFChapters:[],overviewPagePublishedBooks:[],openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/277150",hash:"",query:{},params:{id:"277150"},fullPath:"/profiles/277150",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()