Markers of pericytes for microscopic imaging (antibody availability)
\r\n\tThe book will present up to date knowledge on mentioned ADHD topics in order to be implemented in every day clinical practice.
",isbn:"978-1-83962-495-7",printIsbn:"978-1-83962-475-9",pdfIsbn:"978-1-83962-496-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"176f5275d9e1e06b24e0ae07b90c424f",bookSignature:"Prof. Hojka Gregoric Kumperscak",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9499.jpg",keywords:"Clinical Picture, Symptomatology, Symptoms, Clinical Presentation, Comorbidity, Pharmacotherapy, Nonpharmacological, Nutrition and Diet, Genetics, Neuroimaging, Neurotransmitters, Hormones",numberOfDownloads:528,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 10th 2020",dateEndSecondStepPublish:"August 6th 2020",dateEndThirdStepPublish:"October 5th 2020",dateEndFourthStepPublish:"December 24th 2020",dateEndFifthStepPublish:"February 22nd 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Kumperscak, MD, PhD graduated from the Faculty of Medicine in Ljubljana, Slovenia. She was trained in child and adolescent psychiatry in Slovenia and abroad. She has held the Chair of the Department of Psychiatry in the University of Maribor in Slovenia (2017) and has been Head of the Child and Adolescent Psychiatry Unit, University Clinical Center in Maribor (2008). She is a President of the Slovenian Association for Child and Adolescent Psychiatry and Adolescent Identity Treatment psychotherapist.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53417",title:"Prof.",name:"Hojka",middleName:null,surname:"Gregoric Kumperscak",slug:"hojka-gregoric-kumperscak",fullName:"Hojka Gregoric Kumperscak",profilePictureURL:"https://mts.intechopen.com/storage/users/53417/images/system/53417.jpg",biography:"Prof. Hojka Gregoric Kumperscak, MD, PhD was born in Maribor, Slovenia in 1970. She finished Faculty of Medicine in Ljubljana, Slovenia in 1996. She was trained in child and adolescent psychiatry in Slovenia and abroad (Italy, UK, Germany and Switzerland). \r\nShe has held the Chair of the Department of Psychiatry in the Faculty of Medicine, University of Maribor in Slovenia, since January 2017, and has been Head of the Child and Adolescent Psychiatry Unit, University Clinical Center in Maribor since 2008. She is a President of Slovenian Association for Child and Adolescent Psychiatry and Adolescent Identity Treatment psychotherapist. Her clinical work is mainly with adolescents with ADHD, personality and psychotic disorders.",institutionString:"University of Maribor",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Maribor",institutionURL:null,country:{name:"Slovenia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"73389",title:"Adult Attention-Deficit/Hyperactivity Disorder and Substance Use Disorder: A Systematic Review of the Literature",slug:"adult-attention-deficit-hyperactivity-disorder-and-substance-use-disorder-a-systematic-review-of-the",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"73816",title:"Role of Copy Number Variations in ADHD",slug:"role-of-copy-number-variations-in-adhd",totalDownloads:65,totalCrossrefCites:0,authors:[null]},{id:"73908",title:"Traditional Scales Diagnosis and Endophenotypes in Attentional Deficits Disorders: Are We on the Right Track?",slug:"traditional-scales-diagnosis-and-endophenotypes-in-attentional-deficits-disorders-are-we-on-the-righ",totalDownloads:114,totalCrossrefCites:0,authors:[null]},{id:"73881",title:"Comorbidity in Children and Adolescents with ADHD",slug:"comorbidity-in-children-and-adolescents-with-adhd",totalDownloads:67,totalCrossrefCites:0,authors:[null]},{id:"73105",title:"ADHD and Impact on Language",slug:"adhd-and-impact-on-language",totalDownloads:191,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42365",title:"Accessory Cells in Tumor Angiogenesis — Tumor-Associated Pericytes",doi:"10.5772/54523",slug:"accessory-cells-in-tumor-angiogenesis-tumor-associated-pericytes",body:'In contrast to the normal tissue vasculature, tumor vessels are structurally and functionally abnormal [1-3]. These abnormal tumor vessels are characterized by an irregular, disorganized, and tortuous architecture with a highly dysfunctional and leaky endothelial cell (EC) layer [1, 3]. ECs are often loosely connected with each other and are covered by fewer and abnormal mural pericytes (PCs) [2-4].
Research into the molecular mechanisms and physiology of PCs associated with tumor angiogenesis is a critical field in cancer research. In this chapter, we will focus on the pathophysiology of PCs in tumor angiogenesis, the role of PCs in resistance to anti-angiogenesis therapy, and PCs as a therapeutic target.
Despite the increasing evidence that PCs plays important roles in the angiogenic process, the origin of PCs is still not fully understood. They are commonly described as originating from various types of progenitors depending on their anatomical location in the body. For example, epicardial, mesenchymal, and neural crest cells are believed to be a source for pericytes in the cardiac coronary vasculature, dorsal aorta, and cardiac outflow tract, respectively [5].
Pericytes play an important role in stabilizing blood vessels in the microvasculature [6, 7]. A feature of pericyte function is their ability to provide vascular stability through crosstalk between PCs and endothelial cells (ECs). PCs deposit matrix or releasing factors that can promote EC differentiation or quiescence [8].
In blood vessels, the crosstalk between ECs and PCs plays a critical role in the regulation of vascular formation, maturation, remodeling, stabilization and function [9]. PCs communicate with ECs by direct physical contact and paracrine signaling pathways.
Gap junctions provide direct contact between PCs and ECs that enable the exchange of ions and small molecules. Adhesion plaques anchor PCs to ECs, while peg-and-socket junctions enable the cells to penetrate the vascular basement membrane [10].
A variety of signaling factors mediate PC–EC interactions, including platelet-derived growth factor subunit B (PDGFB) and angiopoietin/Tie 2 [11].
Crosstalk between endothelial cells and pericytes
Pericyte homeostasis in normal biology is regulated in significant part by signaling through the PDGF ligand and receptor system (Fig. 1) [12, 13]. PDGF is a potent mitogen for pericytes and fibroblasts. PDGF consists of A, B, C, and D polypeptide chains, and it forms the homodimers PDGF-AA, BB, CC, and DD, and the heterodimer PDGF-AB [14]. The specific tyrosine kinase receptors of the PDGFR family consist of PDGFR-α and PDGFR-β [15, 16]. PDGFR-α binds to PDGF-AA, BB, AB, and CC, whereas PDGFR-β binds with BB and DD [17].
Previous studies have shown that a <90% reduction in pericyte coverage in mice is compatible with postnatal survival [18], whereas loss of >95% of pericytes is lethal [18, 19], suggesting that a rather low threshold of pericyte density is required for basal function of microvasculature.
Activated ECs secrete PDGF-BB to attract PCs and PC progenitors, which are either tissue-resident cells and/or cells derived from bone marrow, and express PDGFRs [20], suggesting a paracrine signaling circuit [12, 18]. Pericyte deficiency, seen in knockout mice lacking PDGF-BB and its receptor, PDGFR-β, resulted in various changes in microvasculature, including endothelial hyperplasia, vessel dilation, tortuosity, leakage, and rupture, leading to widespread and lethal microhemorrhages and edema in late gestation [19, 21].
Studies of implanted tumors have shown that pericytes initially accumulate at the interface of tumor and host tissue and later around new blood vessels, exhibiting close contacts with ECs. Maturation of the tumor-associated vasculature is accompanied quantitatively by a reduced PC volume and qualitatively by morphological changes in whichPCs become flattened and elongated [22].
There is evidence that overexpression of PDGF-BB in tumor cells dramatically increases the PC coverage [23]. Moreover, Song et al. have also shown that tumor-derived PDGF-BB increases tumor PC coverage by activation of stromal-derived factor 1 alpha (SDF-1α) [24]. Thus, PDGF-BB appears to be a critical player in the recruitment of PCs to newly formed vessels [25].
The angiopoietin (Ang) family consists of several members including Ang-1, Ang-2, Ang-3 (murine specific), and Ang-4 (human specific), which have two tyrosine kinase receptors, Tie-1 and Tie-2.
Ang-1 was initially identified as an activating ligand for Tie-2, which is expressed by perivascular cells [26]. Genetic deletion of Ang-1 resulted in prenatal lethality, due to severe heart and vascular defects, very similar in phenotype to Tie-2-deficient mice [27]. Ang-1 is predominantly secreted by PCs and can bind with Tie-2 on ECs in a paracrine pattern. Ang-1 enhances PC-EC interactions, represses the proliferation and migration of ECs, and promotes the maturation of newly formed blood vessels [27, 28]. Constitutive Ang-1/Tie-2 signaling is required to maintain the quiescent vasculature [29-31] (Fig. 1).
Ang-2 was initially identified as a homologue of Ang-1 [32]. Ang-2 was found to bind to Tie-2 with an affinity similar to that of Ang-1. However, unlike Ang-1, exogenous Ang-2 produces only a very weak activation of Tie-2 on ECs. When ECs are activated by tumor-derived pro-angiogenic factors, Ang-2 acts as an autocrine antagonist of Ang-1/Tie-2 signaling [33]. Moreover, Ang-2 activates the downstream pathways including Pl3K/Akt, and thus functions as a promoter of angiogenesis [32]. Nasarre et al. have shown that tumors implanted into genetically Ang-2-ablated mice grew more slowly than those implanted into wild-type mice [34], which suggests that Ang-2 is a potent target for anti-tumor therapies (Fig. 1).
Tie-2 receptor expression recently has been identified in mesenchymal cells that are present in the stroma, implicating a repository for tumor vessel pericytes [35].
Many tumors express the pro-angiogenic vascular endothelial growth factor (VEGF) at high levels [36]. In contrast to ECs in normal tissues, ECs in the tumor vasculature are dependent on VEGF for survival [37]. Excessive VEGF signaling through VEGF receptor 2 (VEGFR2) loosens tight junctions of ECs, increasing permeability in the interstitial tumor microenvironment. Interestingly, in tumors with reduced levels of VEGF and other angiogenic regulatory factors, tumor vessels are less torturous, with normalized blood flow due to improved PC coverage, the so-called ‘‘vascular normalization’’ [3, 38, 39].
PCs stabilize ECs and mediate EC survival and maturation in normal vasculature, through both direct cell contact with ECs and paracrine signaling. It was reported that PCs in tumor vasculature are abnormal [40]. Low PC coverage correlates with poor clinical outcome in several different tumor types [41-43], but so far, the active involvement of PCs in tumor progression remains unclear. PCs are usually absent in tumor vasculature or have loose associations with ECs, leaving most of the tumor microvessels immature, the significance of which has been revealed in studies in which genetic or pharmacologic ablation of PC coverage facilitates metastatic dissemination of tumor cells [43, 44].
Activated PCs loosely attach to microvessels and develop cytoplasmic extensions into the tumor parenchyma [45]. Compared to quiescent PCs, activated PCs can change their genomic expression profiles [9], leading to phenotypes that are highly proliferative with the pluripotency to differentiate into other PCs, matrix-forming cells, smooth muscle cells, or adipocytes.
The challenges of defining a PC have not been made easier by the fact that a general pan-PC molecular marker has not been found. Because of the diverse characteristics, functions, and locations of PCs in various organs, it probably never will be discovered. There are, however, a few dynamic molecular markers that are present in PCs, albeit not exclusively, and that are commonly used for their detection. The expression patterns of these markers can vary in a tissue-specific manner or be dependent on the developmental or angiogenic stage of a blood vessel. Desmin and alpha-smooth-muscle actin (α-SMA) are contractile filaments, and regulator of G protein signaling 5 (RGS-5) is a GTPase-activating protein; all three are intracellular proteins. Neuron-glial 2 (NG2), a chondroitin sulfate proteoglycan, and platelet-derived growth factor receptor beta (PDGFRβ), a tyrosine-kinase receptor, are cell-surface proteins. Antibodies against these proteins (except RGS-5) are commonly used to identify PCs in tissue sections (Table 1). Desmin is a muscle-specific class III intermediate filament found in mature skeletal, cardiac, and smooth-muscle cells.
\n\t\t\t\tMolecular Marker\n\t\t\t | \n\t\t\t\n\t\t\t\tAlternative name\n\t\t\t | \n\t\t\t\n\t\t\t | \n\t\t\t\tMouse\n\t\t\t | \n\t\t\t\n\t\t\t\tHuman\n\t\t\t | \n\t\t
\n\t\t\t\ta-SMA\n\t\t\t | \n\t\t\tα-Smooth muscle actin | \n\t\t\tExpressed only locally by pericytes in tumor vasculature contractile filaments | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
\n\t\t\t\tPDGFR-β\n\t\t\t | \n\t\t\tPlatelet-derived growth factor β | \n\t\t\tTyrosine kinase receptor | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
\n\t\t\t\tDesmin\n\t\t\t | \n\t\t\t\n\t\t\t | Reactive to developing and developed pericyte contractile filaments | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
\n\t\t\t\tNestin\n\t\t\t | \n\t\t\t- | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tSmooth muscle myosin\n\t\t\t | \n\t\t\t- | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tTropomyosin\n\t\t\t | \n\t\t\t- | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tNG2 \n\t\t\t | \n\t\t\tNeuron-glial 2 (chondroitin sulfate proteoglycan) High-molecular-weight melanoma-associated antigen (HMWMAA) | \n\t\t\tTyrosine kinase receptor Expressed in pericytes in early stages of angiogenesis | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
\n\t\t\t\tAminopeptidase A\n\t\t\t | \n\t\t\tCD249, BP1 | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tAminopeptidase N\n\t\t\t | \n\t\t\tCD13 | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tMMP9\n\t\t\t | \n\t\t\tMatrix metalloproteinase-9, gelatinase B | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tSulphatide\n\t\t\t | \n\t\t\t3\'-sulphogalactosylceramide | \n\t\t\t\n\t\t\t | - | \n\t\t\t+ | \n\t\t
\n\t\t\t\tVEGFR1\n\t\t\t | \n\t\t\tvascular endothelial growth factor receptor-1 | \n\t\t\t\n\t\t\t | + | \n\t\t\t+ | \n\t\t
\n\t\t\t\tRGS5\n\t\t\t | \n\t\t\tRegulator of G-protein signaling-5 | \n\t\t\tNovel marker for pericytes and vascular smooth muscle cells GTPase-activating protein | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
\n\t\t\t\t3G5 Ganglioside antigen\n\t\t\t | \n\t\t\t- | \n\t\t\tSpecific for a pericyte surface ganglioside | \n\t\t\t- | \n\t\t\t+ | \n\t\t
Markers of pericytes for microscopic imaging (antibody availability)
Bone marrow–derived hematopoietic cells expressing the PC marker NG2 were identified in close contact with tumor blood vessels in animal models of melanoma [46], pancreatic islet carcinomas [47], and brain tumors [48, 49]. Thus, PC progenitor cells appear to be recruited to sites of angiogenesis from the bone marrow niche; however, intravenously injected PC progenitor cells may fail to migrate and integrate into the tumor vasculature [50].
Tumor hypoxia due to the vascular regression following anti-angiogenic therapy appears to induce recruitment of various bone marrow-derived cells to the tumor microenvironment [51]. Rajantie et al. demonstrated the significant contribution of bone marrow–derived cells using an inducible hypoxia-inducible factor 1 alpha subunit (HIF1-α) animal model. In response to hypoxia in glioblastomas [52, 53], not only Tie-2-, VEGFR1-, CD11b-, and F4/80-positive cells but ECs and PC progenitor cells are released into the circulation from the bone marrow through the HIF1-α signal pathway. Then, they contribute to the neovascularization of glioblastoma [51]. In an HIF1-α knock-down mouse model, fewer bone marrow-derived cells are recruited to the tumors, which severely impairs tumor growth. These data suggest paradoxical induction of tumor angiogenesis via bone marrow-derived vessel progenitor cells after anti-angiogenic therapy.
Although an anti-VEGF therapy, bevacizumab, has shown clinical efficacy in the treatment of several tumor types, its efficacy will ultimately be limited by acquired drug resistance. [54]. Putative mechanisms of resistance to anti-VEGF therapy include (1) activation and/or up-regulation of alternative pro-angiogenic pathways including PDGF/PDGFR signaling in the tumor [55], (2) recruitment of bone marrow-derived pro-angiogenic cells that differentiate into PCs, and (3) increased PC coverage of tumor microvasculature partially mediated by PDGFR signaling [56, 57].
Studies have shown that vessels without PC coverage are more dependent on VEGF signaling for survival [9] and that inhibition of VEGF leads to increased PC coverage of the tumor vasculature [58]. PCs may protect ECs from VEGF withdrawal, leading to PC-mediated resistance to anti-angiogenic therapies.
Although a series of anti-angiogenic strategies targeting VEGF or its receptor VEGFR2 have been shown to efficiently prevent the growth of many types of tumors [59, 60], reports have shown that targeting VEGF signaling alone is often ineffective at inducing vascular regression or preventing the rapid regrowth of tumor vessels [58, 61-63]. One possible explanation for this failure is that the anti-angiogenic inhibitors mainly target immature ECs lacking PCs coverage, while showing a limited effect on the PC-associated mature vessels [63-65].
Although tumor PCs are less abundant and more loosely attached to vessels than those in healthy tissues, they have emerged as a critical therapeutic target for anti-angiogenic therapy. Preclinical and clinical studies have largely focused on the role of tumor PCs in promoting EC survival and stabilizing the tumor vasculature through a variety of signaling networks. As noted earlier, PC recruitment to tumor neovessels is dependent on signaling through the PDGF-BB/PDGFRβ and Ang-1/Tie-2 networks.
PDGF-BB/PDGFRβ signaling appears to be critical for maintaining the PC–EC contacts needed for vessel stabilization. Vascular regression could also lead to the normalization of tumor microvessels and the opening of previously collapsed vessels [66] via decreased interstitial fluid pressure [67]. These data suggest that PDGF/PDGFR pathway inhibition is a potent target for anti-tumor therapies by leading to improved drug delivery [68-70].
\n\t\t\t\tDrug Name\n\t\t\t | \n\t\t\t\n\t\t\t\tTarget\n\t\t\t | \n\t\t\t\n\t\t\t\tType\n\t\t\t | \n\t\t\t\n\t\t\t\tClinical stage\n\t\t\t | \n\t\t
\n\t\t\t\tSunitinib (Sutent)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, FLT-3, CSF1R | \n\t\t\tSmall molecule inhibitor | \n\t\t\tApproved for metastatic RCC, imatinib-resistant GIST, PNET | \n\t\t
\n\t\t\t\tSorafenib (Nexavar)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, Raf, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tApproved for metastatic RCC, HPCC | \n\t\t
\n\t\t\t\tPazopanib (Votrient)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tApproved for metastatic RCC | \n\t\t
\n\t\t\t\tVandetanib (Caprelsa)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, EGFR | \n\t\t\tSmall molecule inhibitor | \n\t\t\tApproved for metastatic medullary thyroid cancer | \n\t\t
\n\t\t\t\tAxitinib (Inlyta)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tApproved for metastatic RCC | \n\t\t
\n\t\t\t\tMotesanib\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tPhase III | \n\t\t
\n\t\t\t\tCediranib (Recentin)\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tPhase III | \n\t\t
\n\t\t\t\tCabozantinib\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cMet, RET, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tPhase III | \n\t\t
\n\t\t\t\tTivozanib\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tPhase III | \n\t\t
\n\t\t\t\tRegorafenib\n\t\t\t | \n\t\t\tPDGFRs, VEGFRs, Raf, cKit | \n\t\t\tSmall molecule inhibitor | \n\t\t\tPhase III | \n\t\t
PDGF/PDGFR inhibitors that are approved and/or in clinical development
Combining PDGFRβ tyrosine kinase inhibition with VEGF inhibition more efficiently blocked tumor angiogenesis than VEGF inhibition alone in several experimental models [63, 71-74]. Bergers et al. have shown that combined treatment by anti-PDGFR agents together with anti-VEGF significantly reduces PC coverage and increases the success of anti-tumor treatment in the RIP1-TAG2 mouse model [63]. Similarly, PDGF inhibition disrupts PC support and sensitizes ECs to anti-angiogenic chemotherapy, resulting in regression of pre-existing tumor vasculature in a mouse model [13]. Long-term blockade of PDGF signaling by anti-PDGFRβ antibody reduces the concentration of PCs within the tumor tissue and also increases the apoptosis of ECs [73].
Several studies have tested the effects of combining anti-tumor agents with anti-PC agents that target PDGF or other PC markers, such as NG2 proteoglycan [75]. Involvement of the SDF-1α/CXCR4 axis in PC recruitment within PDGF-BB–overexpressing tumors suggests that a blockade of this axis may provide an additional target in anti-angiogenic tumor therapy [24].
Most recently, treatment of primary tumors in an animal model of breast cancer with combination VEGF and PDGF receptor therapy led to decreased PC coverage and an increased number of metastases. The observed promotion of metastasis by imatinib is consistent with previous reports demonstrating the key role of PDGFRβ signaling in PC recruitment and the importance of PCs in limiting tumor cell metastasis [43]. These findings provide the mechanistic basis for the differential effects these agents have on metastasis promotion.
However, a human clinical trial for renal carcinoma showed that inhibition of both the VEGF and PDGF pathways resulted in no therapeutic benefit when compared to inhibition of the VEGF pathway alone; in fact, the combined regimen exhibited toxicity [76]. Given these results, further preclinical studies are needed to clarify the mechanism(s) by which PDGF-targeted agents affect PC–EC interactions, and additional clinical studies are needed to clarify the potential benefits and risks associated with anti-PC tumor therapy.
PCs have been shown to stabilize blood vessels and provide EC survival signals through the Ang-1/Tie-2 pathway [73, 77]. Therefore, by targeting tumor PCs it may be possible to overcome PC-mediated resistance to VEGF pathway inhibition and achieve more effective tumor vessel destabilization through disruption of the PC–EC association or directly through PC loss.
Trebananib (AMG 386) is a peptide-Fc fusion protein that inhibits angiogenesis by neutralizing the interaction between the Tie-2 receptor and Ang-1 and Ang-2 [78]. In phase I testing, it was found to be well tolerated in combination with chemotherapy [79] and to reduce tumor blood flow or permeability [80]. In a phase II trial of trebananib in combination with paclitaxel in patients with recurrent ovarian cancer, although a statistically significant improvement in progression-free survival for the treatment arm was not observed, the objective response rates and progression-free survival at the higher dose are suggestive of an antitumor effect [81]. The toxicity profile, including peripheral edema but not bowel perforations, is consistent with a mechanism distinct from that of VEGF inhibitors. Trebananib plus paclitaxel is now being investigated in an ongoing phase III study (TRINOVA-1 [Trial in Ovarian Cancer-1]) for the treatment of recurrent ovarian cancer. Phase II trials in breast, colorectal, kidney, stomach, and liver cancers are underway.
CVX060 (PF-04856884) is a recombinant humanized monoclonal antibody fused to two Ang-2 binding peptides [82, 83]. In preclinical studies, CVX-060 was anti-angiogenic and decreased tumor proliferation. In phase I testing, this agent significantly decreased tumor blood flow and affected circulating serum Ang-2 levels. This agent is being evaluated in combination with sunitinib in renal cell carcinoma. Currently, a phase II trial for kidney and a phase I trial for other solid tumors are underway.
Other agents in development include monoclonal antibodies directed against Ang-2 (MEDI-3617, AMG 780, REGN910) and multi-targeted tyrosine kinase inhibitors inhibiting Tie-2 (CEP11981, ARRY614) [84].
At least two alternative therapeutic approaches appear plausible given the role of PCs in promoting tumor angiogenesis. The first approach is to promote excessive PC recruitment, thereby causing vessel stabilization and restricting vessel sprouting. This approach may limit tumor angiogenesis in blood vessels with normal PC investment of the EC and may prevent the dissemination of tumor cells into the circulation by reducing the leakiness of intratumoral blood vessels and, perhaps, by also blocking extravasation of circulating tumor cells.
The second approach involves the use of PC progenitor cells as a cellular vehicle for gene delivery. This idea is supported by previous work using progenitor ECs [85-87], and more recently, PCs [50] to deliver anti-angiogenic gene therapy.
Neither of these approaches promoting PC recruitment to the tumor vasculature has been tested in preclinical models or clinical trials; both are highly speculative and no proof-of-principle studies have been conducted in animal models.
Based on the crucial role of PCs in microvessel maturity and the concomitant histological evaluation of EC-PC interactions and tumor microvessel morphology, combining different chemotherapeutic agents and anti-angiogenic treatments that normalize tumor vasculature seems to be inevitable. Many new angiogenic inhibitors target pathways that are involved in the recruitment of PCs to tumor microvessels. Therefore, it is essential to assess PCs in parallel with ECs when studying tumor vasculature. This evaluation, which can be performed in a diagnostic pathology laboratory, can be used as a decision-making tool to select patients who might benefit from anti-angiogenic therapies.
Plant hormones (phytohormones) are not nutrients, but chemicals and not all plant cells respond to hormones, but those cells that do are programmed to respond at specific points in their growth cycle. The greatest effects occur at specific stages during the cell’s life, with diminished effects occurring before or after this period [1].
Plants need hormones at very specific times during plant growth and at specific locations. They also need to disengage the effects that hormones have when they are no longer needed. The production of hormones occurs very often at sites of active growth within the meristems, before the cells have fully differentiated. After production, they have sometimes moved to other parts of the plant, where they cause an immediate effect; or they can be stored in cells to be released later. Plants can also break down hormones chemically, effectively destroying them. Plant hormones frequently regulate the concentrations of other plant hormones [2, 3].
The small amounts of plant hormones promote, control, influence and develop the growth from embryo to reproductive development, also, stress tolerance and pathogen defense. According to the importance of plant hormones in this chapter will be divided into two main points: first: the effect of plant hormones on germination and growth of plants under internal or external suitable conditions, second: the effect of plant hormones on the germination and growth of plants under internal or external unsuitable environmental conditions.
Seed germination is attracted to the effective growth of the embryo when appropriate environmental conditions are present, leading to seed rupture and the appearance of a small plant. There are five basic steps to germination: water imbibition, enzyme activation, initiation of embryo growth, rupture of the seed coat and emergence of seedling, seedling establishment [4, 5].
In the second step stage of germination (enzyme activation), after the absorption of water through the natural openings in the casing of the seed and spread through the tissues of the seed, gibberellins which activate the formation of the hydrolytic enzymes, mainly α- amylase in the aleurone cells, which are responsible for hydrolysis of storage macro-molecules such as starch and proteins and convert them into available forms to the embryo, usage to increase in size, and raise the osmotic content of the seed, to increase water potential [6, 7].
In addition, plant hormones have an important role in plant growth not only germination such as cytokinins (CKs) which influence cell division, the formation of shoot and helping in delay tissues senescence [8, 9]. Also, the ratios of Cytokinins and auxins affect most major growth periods during a plant’s lifetime [10]. Also, Peptide hormones, control of cell division, expansion, and play crucial roles in plant growth and development [11]. Furthermore, gibberellins (Gas) strongly promote cell elongation in seedlings [12, 13]. It can also affect cell cycling in plant [14]. Meanwhile, the responses of nitric oxide (NO) are in germination, cell death [15] and regulate plant cell organelle functions (e.g. mitochondria and ATP synthesis in chloroplasts) [16].
For enhances and increases plant hormones production in the plants, many studies have proved the need to add plant hormones either directly (GA3, kinetin and cytokinins) [17, 18] or indirectly (humic substances, manures, magnetite, natural zeolites, Moringa extract and bio-fertilization) to increase or accelerate the productivity of plant hormones in the plant [19] indicated that, the presence of organic matter represented in compost which a source of hormones like substances as auxin-like activity and gibberellin-like activity. Similar results were obtained from [20]. Ref. [21] concluded that it is also possible that the production of plant hormones influences symbiotic bacteria, such as nodule N2 fixing bacteria. During the establishment of the soybean (Glycine max L.) and Bradyrhizobium japonicum N2-fixing symbiosis, the production of plant hormones can determine the bacterial population in the nodules by, for example affecting the available substrate for the use of rhizobium. The other significant and interesting view of the effects of soil bacteria on the production of plant hormones is the alteration they may reason in plant signaling pathways, resulting in the output of plant hormones from the host plant [22, 23]. Ref. [24] concluded that the magnetic treatments have the same affected for phytohormone production. Ref. [25] reported that the highest mean values of IAA, GA, and CK (12.70, 13.71, 11.06 μg/g FW), respectively were recorded with compost and zeolite mixture in comparison with control. Ref. [26] concluded that the addition of a mixture of organic fertilizers and soil amendments led to significant increment in indigenous hormones characterized in indole acetic acid (IAA), gibberellic acid (GA3), and cytokinins (CK), which led to a significant increase in morphological growth, floral characteristics and chemical composition of Oenothera biennis. In contrast [27] found that the application of HA inhibits indoleacetic acid (IAA) oxidase, thereby hindering the destruction of this plant growth hormone.
Sometimes even under favorable germination conditions (an adequate water supply, a suitable temperature and the normal composition of the atmosphere) seeds do not germinate. In this case, seeds are considered dormant. Seed dormancy is defined as an inactive phase in which the growth and development are deferred and the respiration is greatly reduced [28, 29]. Seed coat dormancy involves the mechanical restriction of the seed coat. GA releases this dormancy by increasing the embryo growth potential, and/or weakening the seed coat so the radical of the seedling can break through the seed coat. ABA affects the testa or seed coat growth characteristics, including thickness, and affects the GA-mediated embryo growth potential [5].
Hormones also can mediate endosperm dormancy: Endosperm in most seeds is composed of living tissue that can actively respond to hormones generated by the embryo. The endosperm often acts as a barrier to seed germination, playing a part in seed coat dormancy or in the germination process. Living cells respond to and also affect the ABA:GA ratio, and mediate cellular sensitivity; GA thus increases the embryo growth potential and can promote endosperm weakening. GA also affects both ABA-independent and ABA-inhibiting process within the endosperm [30]. In addition, [33] concluded that the prevented germination of some seeds of tomato [31], iris [32], and some varieties of cabbage was due to the present of inhibitors (ABA, parasorbic acid, and coumarin) which cases distributed in plants and to possess the property of inhibiting seed germination and other growth phenomena [5, 34].
Plant hormones affect seed germination and dormancy by acting on different parts of the seed such as [35] found that the inhibitors in seeds of peach were at least one of the factors controlling in germination by preventing or retarding cell division of the radical. In Lupinus angustifolius, the contents of auxins increased through the 5th day of germination and started to decrease on the 7th day. Oppositely, gibberellins contents were decreased first then increased later, so it was clear that there was inversely related between auxins and gibberellins [36]. The germination percentage and germination rate of four studied Acacias (A. saligna, A. sophorae, A. cyclopis, and A. melanoxylon) were correlated positively with endogenous promoting and negative with endogenous inhibiting substances in their cotyledons plus embryo [37].
The promotion of germination by gibberellin and cytokinins has been demonstrated in many seed species [38, 39]. Ref. [40] treated the seeds of Acacia longifolia, with GA3 at 100 and 200 ppm and found that the higher GA3 concentration (200 ppm) was more effective in increasing germination while the concentration of 500 ppm was the best in the case of Acacia catechu [41].
Ref. [42] found that fresh seed of Acacia nilotica and Acacia albida were fully germinated when soaked in a solution of GA3 at 200 ppm for 12 h. While soaking seeds of Acacia nilotica in gibberellic acid (100 or 300 ppm for 16 h) was the best [43]. Ref. [44] studied the effect of GA3 at a concentration of (50 ppm) on 16 species (four Acacia species), and found a high germination percentage for all species.
The effect of gibberellic acid and cytokinins were also recognized on the germination of other plant species seeds. Ref. [45] studied the effect of Kinetin at different concentrations on the seed germination of Acer tataricum, and found the highest germination percentage at the concentration of 500 ppm. Ref. [46] found the best germination percentage on soaking the seeds of Trifolium pratense in 50 ppm 6-benzylaminopurine (6-BAP). Ref. [47] studied the effect of Kinetin at different conc. (10, 25, 50 and 100 ppm) in the seeds of Cassia sophera, and found the highest germination percentage at 100 ppm. The treatment of freshly harvested and 1 year old seeds of soybean (Glycine max) with, 1 ppm 6-BAP increased the germination percentage from 50 to 85% in freshly harvested seeds and to 75% in the older seeds [48]. The effect of kinetin and 6-BAP on the seed germination of Vicia faba were studied, [49] found an increase in its germination percentage at the concentration of 100 ppm kinetin. While [50] found that, the highest germination percentage for faba bean (Vicia faba L.) was achieved at the concentration of 100 ppm 6-BAP. Also [37, 51] reported that the storage has an adverse effect on the hormone within the seeds of Acacia saligna, Acacia Cyclopes, Acacia nilotica and Acacia albida, which contained the lowest value of GA3, IAA and the highest content of phenols.
Plant hormones can also alleviate abiotic stress such as drought, extreme temperatures, and salinity [52, 53]. The action of these hormones in response to situations of stress can be developed through synergistic or antagonistic activities [54]. Also, [55] concluded that the plant growth regulators like ABA, JA, and ethylene are involved in the regulation of the plant response to abiotic stress. Cytokinins are also able to enhance seed germination by the alleviation of stresses such as salinity, drought, heavy metals and oxidative stress [56, 57, 58, 59]. Ref. [60] found that GA3 plays an important role in the growth and metabolism of microalgae Chlorella vulgaris exposed to heavy metal stress and its adaptation ability to a low-level polluted aquatic environment. Meanwhile, gibberellin leads to enhancement for Zea mays seedling growth and establishment under saline soil conditions by improving nutrient levels and membrane permeability [61]. Also, hormonal interactions between plant and rhizosphere bacteria can affect plant tolerance to stress. As such, the plant and bacteria can be genetically modified so that they can perform more optimally under a range of conditions, including stress [62].
The decreased cytokinin and gibberellic acid (GA3) and increased abscisic acid contents are often observed responding in plants subjected to environmental stresses [63, 64]. Exogenous application of plant growth regulators [such as cytokinin or antioxidants (ascorbic acid) [65], Moringa (Moringa oleifera) leaves extract [66, 67], humic acid (HA) [68], or seaweed extract (SE) [69] could be an alternative strategy to ameliorate, minimizing or alleviating the adverse effects of abiotic stress factors on plant growth which led to promoting plant growth and development metabolism in plants. Several studies also indicated that results on wheat [70]; and on spinach [71]. Ref. [72] reported that the foliar application of Moringa (Moringa oleifera) leaves extract MLE is proved to be the most effective PGR in reducing plant (Lagerstroemia indica L. seedlings) exposure to salinity stress.
Also, bio-fertilization has beneficial microorganisms that increasing plant hormones, which led to enhances yield, plant growth and nutrient uptake under various environmental conditions such as salinity [73, 74, 75, 76], drought and low fertility supply [77, 78, 79], especially that some endomycorrhizal fungi (Arbuscular mycorrhizal fungi) have been proven to improve drought stress; they colonize bio-trophically the root cortex and develop an extra-metrical mycelium that helps the plants to acquire mineral nutrients from the soil particularly those, which are immobile. They can under drought conditions stimulate growth-regulating substances, increase photosynthesis, improve osmotic adjustment, optimize hormonal balance and enhance water uptake [80].
Numerous studies have found also, that it can be alleviation of salt stress on peanut [81]; on pumpkin plants [82]; on Moringa peregrina plants [83] by using foliar application of nano-fertilizers. Also, [84] reported that nano Zn-Fe oxide plays a significant role importance in alleviating salt stress, oxidative damages on plant cells by activation of certain antioxidant enzymes. In addition, [85] reported that the application of nano-oxide and bio-fertilizer reduced the negative effects of salinity due to its contributed to produce hormones.
This chapter was indicated by many studies that the plant hormones, including IAA, cytokinins, ethylene, gibberellins, and brassinosteroids, can positively affect seed germination and seedling growth, for many plants as mentioned previously in the chapter, under favorable conditions. While ABA has an adverse on affect seed germination and the growth.
Also, this chapter sheds the light on the important role of soil bacteria in the production of plant hormones or as an alternative in the case of the low rate of plant hormones in the plant, which led to hence seed germination, growth, and hence crop production.
In addition, this chapter provided many studies that prove that the plant hormones very important to overcome dormancy or growth under stress condition. Also, shed the lights on the importance of the exogenous application of plant growth regulators (cytokinin or antioxidants, Moringa leaves extract, humic acid, or seaweed extract, bio- or nano fertilizers) for enhancing the productivity of plant hormones which led to increased cell growth.
Finally, it can be stated that the plant hormones are essential for cell growth, whether under normal conditions or under stress conditions.
The author declares that she does not have any conflict of interest.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118378},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10699",title:"Foams",subtitle:null,isOpenForSubmission:!0,hash:"9495e848f41431e0ffb3be12b4d80544",slug:null,bookSignature:"Dr. Marco Caniato",coverURL:"https://cdn.intechopen.com/books/images_new/10699.jpg",editedByType:null,editors:[{id:"312499",title:"Dr.",name:"Marco",surname:"Caniato",slug:"marco-caniato",fullName:"Marco Caniato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"d9448d83caa34d90fd58464268c869a0",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11000",title:"Advances in Mass Transfer",subtitle:null,isOpenForSubmission:!0,hash:"f9cdf245988fe529bcab93c3b1286ba4",slug:null,bookSignature:"Prof. Badie I. Morsi and Dr. Omar M. Basha",coverURL:"https://cdn.intechopen.com/books/images_new/11000.jpg",editedByType:null,editors:[{id:"174420",title:"Prof.",name:"Badie I.",surname:"Morsi",slug:"badie-i.-morsi",fullName:"Badie I. Morsi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Modern Sample Preparation Techniques",subtitle:null,isOpenForSubmission:!0,hash:"38fecf7570774c29c22a0cbca58ba570",slug:null,bookSignature:"Prof. Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:null,editors:[{id:"349151",title:"Prof.",name:"Massoud",surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"994",title:"Traumatology",slug:"traumatology",parent:{title:"Critical Care Medicine",slug:"critical-care-medicine"},numberOfBooks:5,numberOfAuthorsAndEditors:132,numberOfWosCitations:55,numberOfCrossrefCitations:44,numberOfDimensionsCitations:101,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"traumatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9066",title:"Wound Healing",subtitle:null,isOpenForSubmission:!1,hash:"a293ecd8c2655a402321dc30e0ffbf9a",slug:"wound-healing",bookSignature:"Muhammad Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/9066.jpg",editedByType:"Edited by",editors:[{id:"204257",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ahmad",slug:"muhammad-ahmad",fullName:"Muhammad Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",isOpenForSubmission:!1,hash:"fa7b870ad29ce1dfcf6faeafdc060309",slug:"wound-healing-current-perspectives",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6662",title:"Trauma Surgery",subtitle:null,isOpenForSubmission:!1,hash:"9721b9ac98bf237058cafd0a0303bdbc",slug:"trauma-surgery",bookSignature:"Ozgur Karcioglu and Hakan Topacoglu",coverURL:"https://cdn.intechopen.com/books/images_new/6662.jpg",editedByType:"Edited by",editors:[{id:"221195",title:"Dr.",name:"Ozgur",middleName:null,surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6069",title:"Essentials of Spinal Cord Injury Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f0a49e24ebfbb9ed7d02f7daab9b30f6",slug:"essentials-of-spinal-cord-injury-medicine",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/6069.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",middleName:null,surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5290",title:"Wound Healing",subtitle:"New insights into Ancient Challenges",isOpenForSubmission:!1,hash:"a6c479ab3fea0a9b7051d2a8478c91c3",slug:"wound-healing-new-insights-into-ancient-challenges",bookSignature:"Vlad Adrian Alexandrescu",coverURL:"https://cdn.intechopen.com/books/images_new/5290.jpg",editedByType:"Edited by",editors:[{id:"66358",title:"Ph.D.",name:"Vlad",middleName:"Adrian",surname:"Alexandrescu",slug:"vlad-alexandrescu",fullName:"Vlad Alexandrescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"50983",doi:"10.5772/63961",title:"Antimicrobial Dressings for Improving Wound Healing",slug:"antimicrobial-dressings-for-improving-wound-healing",totalDownloads:3705,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Omar Sarheed, Asif Ahmed, Douha Shouqair and Joshua Boateng",authors:[{id:"183108",title:"Dr.",name:"Joshua",middleName:null,surname:"Boateng",slug:"joshua-boateng",fullName:"Joshua Boateng"},{id:"183399",title:"Dr.",name:"Omar",middleName:null,surname:"Sarheed",slug:"omar-sarheed",fullName:"Omar Sarheed"},{id:"188082",title:"Mr.",name:"Asif",middleName:null,surname:"Ahmed",slug:"asif-ahmed",fullName:"Asif Ahmed"},{id:"188083",title:"Ms.",name:"Douha",middleName:null,surname:"Shouqair",slug:"douha-shouqair",fullName:"Douha Shouqair"}]},{id:"51825",doi:"10.5772/64611",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2740,totalCrossrefCites:8,totalDimensionsCites:14,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"63675",doi:"10.5772/intechopen.81208",title:"Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants",slug:"wound-healing-contributions-from-plant-secondary-metabolite-antioxidants",totalDownloads:685,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Victor Y.A. Barku",authors:[{id:"261027",title:"Prof.",name:"Victor Y. A.",middleName:null,surname:"Barku",slug:"victor-y.-a.-barku",fullName:"Victor Y. A. Barku"}]}],mostDownloadedChaptersLast30Days:[{id:"60520",title:"Maxillofacial Fractures: From Diagnosis to Treatment",slug:"maxillofacial-fractures-from-diagnosis-to-treatment",totalDownloads:1791,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Mohammad Esmaeelinejad",authors:[{id:"172188",title:"Dr.",name:"Mohammad",middleName:null,surname:"Esmaeelinejad",slug:"mohammad-esmaeelinejad",fullName:"Mohammad Esmaeelinejad"}]},{id:"51825",title:"Roles of Matrix Metalloproteinases in Cutaneous Wound Healing",slug:"roles-of-matrix-metalloproteinases-in-cutaneous-wound-healing",totalDownloads:2743,totalCrossrefCites:8,totalDimensionsCites:15,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Trung T. Nguyen, Shahriar Mobashery and Mayland Chang",authors:[{id:"183405",title:"Prof.",name:"Mayland",middleName:null,surname:"Chang",slug:"mayland-chang",fullName:"Mayland Chang"},{id:"191152",title:"Mr.",name:"Trung",middleName:null,surname:"Nguyen",slug:"trung-nguyen",fullName:"Trung Nguyen"},{id:"191153",title:"Prof.",name:"Shahriar",middleName:null,surname:"Mobashery",slug:"shahriar-mobashery",fullName:"Shahriar Mobashery"}]},{id:"51223",title:"Medicinal Plants and Natural Products with Demonstrated Wound Healing Properties",slug:"medicinal-plants-and-natural-products-with-demonstrated-wound-healing-properties",totalDownloads:2807,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Christian Agyare, Emelia Oppong Bekoe, Yaw Duah Boakye,\nSusanna Oteng Dapaah, Theresa Appiah and Samuel Oppong\nBekoe",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"186987",title:"Dr.",name:"Yaw Duah",middleName:null,surname:"Boakye",slug:"yaw-duah-boakye",fullName:"Yaw Duah Boakye"},{id:"186988",title:"Ms.",name:"Susanna Oteng",middleName:null,surname:"Dapaah",slug:"susanna-oteng-dapaah",fullName:"Susanna Oteng Dapaah"},{id:"186989",title:"MSc.",name:"Theresa",middleName:null,surname:"Appiah",slug:"theresa-appiah",fullName:"Theresa Appiah"},{id:"186990",title:"Dr.",name:"Samuel Oppong",middleName:null,surname:"Bekoe",slug:"samuel-oppong-bekoe",fullName:"Samuel Oppong Bekoe"},{id:"186992",title:"Dr.",name:"Emelia Oppong",middleName:null,surname:"Bekoe",slug:"emelia-oppong-bekoe",fullName:"Emelia Oppong Bekoe"}]},{id:"63086",title:"Medicinal Plants in Wound Healing",slug:"medicinal-plants-in-wound-healing",totalDownloads:1701,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Mohammad Reza Farahpour",authors:[{id:"253340",title:"Prof.",name:"Mohammadreza",middleName:null,surname:"Farahpour",slug:"mohammadreza-farahpour",fullName:"Mohammadreza Farahpour"}]},{id:"62998",title:"Biomarkers of Wound Healing",slug:"biomarkers-of-wound-healing",totalDownloads:890,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Christian Agyare, Newman Osafo and Yaw Duah Boakye",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"196452",title:"Dr.",name:"Newman",middleName:null,surname:"Osafo",slug:"newman-osafo",fullName:"Newman Osafo"},{id:"252789",title:"Dr.",name:"Yaw Duah",middleName:null,surname:"Boakye",slug:"yaw-duah-boakye",fullName:"Yaw Duah Boakye"}]},{id:"63082",title:"Abdominal Trauma",slug:"abdominal-trauma",totalDownloads:631,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trauma-surgery",title:"Trauma Surgery",fullTitle:"Trauma Surgery"},signatures:"Göksu Afacan",authors:[{id:"236854",title:"M.D.",name:"Göksu",middleName:null,surname:"Afacan",slug:"goksu-afacan",fullName:"Göksu Afacan"}]},{id:"63308",title:"Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds",slug:"autologous-platelet-rich-plasma-and-mesenchymal-stem-cells-for-the-treatment-of-chronic-wounds",totalDownloads:1153,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Peter A. Everts",authors:[{id:"256306",title:"Ph.D.",name:"Peter A.",middleName:null,surname:"Everts",slug:"peter-a.-everts",fullName:"Peter A. Everts"}]},{id:"66286",title:"From Tissue Repair to Tissue Regeneration",slug:"from-tissue-repair-to-tissue-regeneration",totalDownloads:1052,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"wound-healing-current-perspectives",title:"Wound Healing",fullTitle:"Wound Healing - Current Perspectives"},signatures:"Aragona Salvatore Emanuele, Mereghetti Giada, Ferrari Alessio and\nGiorgio Ciprandi",authors:[{id:"247667",title:"Prof.",name:"Emanuele Salvatore",middleName:null,surname:"Aragona",slug:"emanuele-salvatore-aragona",fullName:"Emanuele Salvatore Aragona"}]},{id:"71904",title:"Modulation of Inflammatory Dynamics by Insulin to Promote Wound Recovery of Diabetic Ulcers",slug:"modulation-of-inflammatory-dynamics-by-insulin-to-promote-wound-recovery-of-diabetic-ulcers",totalDownloads:274,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing",title:"Wound Healing",fullTitle:"Wound Healing"},signatures:"Pawandeep Kaur and Diptiman Choudhury",authors:null},{id:"51068",title:"A Potential Mechanism for Diabetic Wound Healing: Cutaneous Environmental Disorders",slug:"a-potential-mechanism-for-diabetic-wound-healing-cutaneous-environmental-disorders",totalDownloads:1432,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wound-healing-new-insights-into-ancient-challenges",title:"Wound Healing",fullTitle:"Wound Healing - New insights into Ancient Challenges"},signatures:"Junna Ye, Ting Xie, Yiwen Niu, Liang Qiao, Ming Tian, Chun Qing\nand Shuliang Lu",authors:[{id:"182332",title:"Dr.",name:"Junna",middleName:null,surname:"Ye",slug:"junna-ye",fullName:"Junna Ye"}]}],onlineFirstChaptersFilter:{topicSlug:"traumatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/276695/noor-baity-saidi",hash:"",query:{},params:{id:"276695",slug:"noor-baity-saidi"},fullPath:"/profiles/276695/noor-baity-saidi",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()