The human walking pattern can be affected by different factors such as accidents, transplants, or diseases, like Parkinson’s disease, which affects motor and mental functions. In motor terms, this disease can generate alterations such as tremors, festination, rigidity, unbalance, slowness, and freezing of gait. Additionally, it is estimated that for the year 2040, the number of people with Parkinson’s in the world will be between 12.9 and 14.2 million people. These alarming figures make Parkinson’s disease an important focus of attention. In this chapter, we present contributions that suggest wavelet techniques as a useful tool to perform a gait and arm swing analysis; this represents an important approximation that can contribute to describe and differentiate people with Parkinson’s disease in early stages of the disease.
Part of the book: Wavelet Transform and Complexity
In this chapter, we describe the aging process and, more specifically, the pathological aging, associated with neurodegenerative diseases and its relation with gait. Then, we explain the importance of using quantitative gait analysis techniques using wearables and other technologies to diagnose different conditions that can be complex to discriminate using only the physician naked-eye diagnosis. We analyze different approaches used for gait analysis using wearables and affordable devices like inertial units (IMU), accelerometers, and depth cameras like Microsoft Kinect or Intel’s RealSense, which have been available at least in an academic context but will be available for daily use in the near future.
Part of the book: Smart Healthcare