The use of elastic constants systematics to describe fundamental properties of engineering materials has made materials science education and its related subjects increasingly important not only for manufacturing engineers but also for mankind at large. In this chapter, we present actual scaling of phase transition-driven considerations, such as martensitic transformation and transformable shape memory formation via elastic constant systematics. The scaling in terms of the simple and polycrystals mechanical stability criteria based on the elastic moduli and an acoustic anisotropy is in good agreement with novel experimental data from the literatures, and further, a long-standing concern in predicting polycrystalline elastic constants was considered beyond the commonly encountered criteria.
Part of the book: Elasticity of Materials
Self-healing materials (SHM’s) is an emerging class of smart materials, which are capable of autonomous or spontaneous repair of their damage under external stimuli, such as heat, light, and solvent, to the original or near original functionalities much like the biological organisms. The emergence of self-healing in metallic materials presents an exciting paradigm for an ideal combination of metallic and biological properties. The driving force behind this effort is to decrease the consequences of accidents, reduction of cost and extending the service life of metallic components. While previous reviews have focused on self-healing in polymers, composite, concrete and cementous materials, and ceramic, discussions about self-healing in metallic materials remains scarce and the survey of literatures suggests Ti-based self-healing materials known to be biocompatible in human body is rare. The present chapter examines the art of self-healing in titanium-based alloys with the scope to provide an overview of recent advancements and to highlight current problems and perspectives with respect to potential application.
Part of the book: Advanced Functional Materials
Characterization is an indispensable tool for understanding the structure–property-processing relationship in all material classes. However, challenges in self-healing materials characterization arise from the preparation routes, material types, damage mechanism and applications. Here, the discourse surveys the exploits, advances and challenges encountered within various characterization methods that have been exploited to reveal the damage-restoring processes in some material classes, namely metals, polymers, ceramics, concretes and coatings. Since there is no unified characterization procedure for the different classes of materials displaying self-repairing capabilities, the outcome of this discourse contributes to the advancement of knowledge about understanding self-healing testing procedures. An overview of methods, challenges and prospects toward self-healing property standardization at different length scales has been discussed.
Part of the book: Advanced Functional Materials