Viruses are infectious particles that exist in a huge variety of forms and infect practically all living systems: animals, plants, insects and bacteria. Viruses that infect and use bacterial resources are classified as bacteriophages (or phages) and represent the most abundant life form on Earth. A phage can be described as a specific type of nano-machine that is able to recognise its environment, find a host cell, start infection, self-assemble and safeguard its genome until the next cycle of replication is initiated. Remarkable results have been obtained by combining cryo-EM, X-ray analysis and bioinformatics in structural studies of these nano-machines. In this review we will describe results of structural studies of phages that uncover their organisation in different conformations, thus facilitating our understanding of the functional mechanisms in supramolecular assemblies and helping us understand the usage of phages in medical treatments. Currently, antibiotic resistance is an enormous challenge that we face. The tailed phages could be used in place of antibiotics due to their high specificity to host cells, but more knowledge of their organisation and function is required.
Part of the book: Bacteriophages