Using the principles of nonequilibrium thermodynamics, a technique has been developed for calculating diffusion flows during phase transformations in iron-carbon alloys. Expressions for the calculation of cross coefficients, driving forces, and flows in Onsager equations for the model thermodynamic system are given; examples of the use of the developed technique are given for the processes of graphitization and the formation of carbides in chromium steel during tempering. The nonequilibrium thermodynamics analysis of the eutectoid transformation is executed into carbon steel. Onsager’s equations of motion are built for the model thermodynamics system describing eutectoid transformation. The basic kinetic parameters of process are growth rate of perlite and between inter-plates distance for the stationary process of eutectoid transformation. We founded dependencies of basic kinetic parameters of process from the size of supercooling. A nonequilibrium thermodynamic model of the austenite nondiffusion transformation in iron and alloys based on it is developed, taking into account internal stresses in the system. Onsager motion equations are found for a model thermodynamic system describing a nondiffusion transformation and kinetic equations for changing deformations and growth rates of the α-phase. A scheme of austenitic nondiffusion transformations is constructed, including normal and martensitic transformations, as limiting cases.
Part of the book: Non-Equilibrium Particle Dynamics