The soil parameters of foundation.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"5222",leadTitle:null,fullTitle:"Cannabinoids in Health and Disease",title:"Cannabinoids in Health and Disease",subtitle:null,reviewType:"peer-reviewed",abstract:"This book provides a comprehensive overview of current knowledge of cannabinoid\nactivity in human physiology and points out the importance of endocannabinoid system\nfor the maintenance of human health and treatment of diseases. Each chapter\nhas been organized with the aim to cover basic concepts in the modulation of endocannabinoid system in both physiological and pathological conditions, thanks to\nthe integration of data from experimental animal models and clinical observations.\nA special focus has been put on the medical use of cannabinoids and on the targeting\nof endocannabinoid system as new therapeutic strategy for the prevention and\ntreatment of human diseases. Taken together, this book targets a wide audience of\nbasic and clinical scientists, teachers and students interested in gaining a better understanding in the field of cannabinoids.",isbn:"978-953-51-2430-6",printIsbn:"978-953-51-2429-0",pdfIsbn:"978-953-51-4198-3",doi:"10.5772/61595",price:119,priceEur:129,priceUsd:155,slug:"cannabinoids-in-health-and-disease",numberOfPages:258,isOpenForSubmission:!1,isInWos:1,hash:"d684a703afd17dc97d18480a982e5316",bookSignature:"Rosaria Meccariello and Rosanna Chianese",publishedDate:"June 15th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5222.jpg",numberOfDownloads:12920,numberOfWosCitations:19,numberOfCrossrefCitations:14,numberOfDimensionsCitations:34,hasAltmetrics:1,numberOfTotalCitations:67,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 28th 2015",dateEndSecondStepPublish:"October 19th 2015",dateEndThirdStepPublish:"January 23rd 2016",dateEndFourthStepPublish:"April 22nd 2016",dateEndFifthStepPublish:"July 6th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8,9",editedByType:"Edited by",kuFlag:!1,editors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello",profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Dr. Rosaria Meccariello obtained a degree in Biological Sciences from the University of Naples Federico II, Italy, and a PhD in Comparative Endocrinology from\nthe University of Padova, Italy. Currently, she is Associate Professor of Biology at\nthe Department of Movement and Wellness Sciences at the University of Naples\n“Parthenope,” Italy. She has published more than 130 papers in peer-reviewed international journals, books, proceedings and abstract books. She has experience as\na reviewer for international journals and has served as an editor for scientific books,\nspecial issues and e-books. Dr. Meccariello is an expert in biology of reproduction,\nspermatogenesis, the hypothalamus-pituitary-gonad axis, central and local activity\nof GnRH, endocannabinoid and kisspeptin systems, and epigenetics.",institutionString:"University of Naples Parthenope",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"147674",title:"Dr.",name:"Rosanna",middleName:null,surname:"Chianese",slug:"rosanna-chianese",fullName:"Rosanna Chianese",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. Rosanna Chianese received her degree in biology from the University of Naples Federico II, Italy, in 2004. In 2006, she carried out a training at the University of Washington, Seattle, USA, during her PhD studies in comparative endocrinology (University of Padova, Italy). For the biennium 2009/2011, she obtained a research fellowship for the project “Mesothelioma and biomarkers” at the Second University of Naples (SUN), Italy. Currently, she is an assistant professor at the Department of Experimental Medicine, SUN. She has experience as reviewer for international journals and since 2005, she has published 25 articles in international journals, 1 book chapter for InTech and 22 abstracts for national and international conferences. Dr. Chianese also teaches face-to-face cellular biology course at SUN.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"992",title:"Pharmacology",slug:"complementary-medicine-pharmacology"}],chapters:[{id:"50857",title:"The Endocannabinoid System in Human Physiology",doi:"10.5772/63818",slug:"the-endocannabinoid-system-in-human-physiology",totalDownloads:1362,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Rosanna Chianese and Rosaria Meccariello",downloadPdfUrl:"/chapter/pdf-download/50857",previewPdfUrl:"/chapter/pdf-preview/50857",authors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],corrections:null},{id:"50674",title:"Endocannabinoid Signaling in Neural Circuits of the Olfactory and Limbic System",doi:"10.5772/63214",slug:"endocannabinoid-signaling-in-neural-circuits-of-the-olfactory-and-limbic-system",totalDownloads:1055,totalCrossrefCites:0,totalDimensionsCites:4,signatures:"Thomas Heinbockel, Ze-Jun Wang, Edward A. Brown and Paul T.\nAustin",downloadPdfUrl:"/chapter/pdf-download/50674",previewPdfUrl:"/chapter/pdf-preview/50674",authors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"},{id:"185616",title:"Dr.",name:"Ze-Jun",surname:"Wang",slug:"ze-jun-wang",fullName:"Ze-Jun Wang"},{id:"185617",title:"Mr.",name:"Edward",surname:"Brown",slug:"edward-brown",fullName:"Edward Brown"},{id:"185618",title:"Mr.",name:"Paul",surname:"Austin",slug:"paul-austin",fullName:"Paul Austin"}],corrections:null},{id:"50651",title:"The Potential Therapeutic Role of the Cannabinoid System in Neurological Disorders of the Basal Ganglia: An Overview",doi:"10.5772/63375",slug:"the-potential-therapeutic-role-of-the-cannabinoid-system-in-neurological-disorders-of-the-basal-gang",totalDownloads:1033,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gabriela Aguilera and Abel Santamaría",downloadPdfUrl:"/chapter/pdf-download/50651",previewPdfUrl:"/chapter/pdf-preview/50651",authors:[{id:"178440",title:"Ph.D.",name:"Abel",surname:"Santamaria",slug:"abel-santamaria",fullName:"Abel Santamaria"},{id:"184809",title:"MSc.",name:"Gabriela",surname:"Aguilera",slug:"gabriela-aguilera",fullName:"Gabriela Aguilera"}],corrections:null},{id:"50166",title:"Cannabinoids and Motor Control of the Basal Ganglia: Therapeutic Potential in Movement Disorders",doi:"10.5772/62438",slug:"cannabinoids-and-motor-control-of-the-basal-ganglia-therapeutic-potential-in-movement-disorders",totalDownloads:1021,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Teresa Morera-Herreras, Cristina Miguelez, Asier Aristieta, María Torrecilla, José Ángel Ruiz-Ortega and Luisa Ugedo",downloadPdfUrl:"/chapter/pdf-download/50166",previewPdfUrl:"/chapter/pdf-preview/50166",authors:[{id:"178735",title:"Dr.",name:"Teresa",surname:"Morera-Herreras",slug:"teresa-morera-herreras",fullName:"Teresa Morera-Herreras"},{id:"179364",title:"Dr.",name:"Maria",surname:"Torrecilla",slug:"maria-torrecilla",fullName:"Maria Torrecilla"},{id:"179365",title:"Dr.",name:"Cristina",surname:"Miguelez",slug:"cristina-miguelez",fullName:"Cristina Miguelez"},{id:"179366",title:"Dr.",name:"Asier",surname:"Aristieta",slug:"asier-aristieta",fullName:"Asier Aristieta"},{id:"179367",title:"Dr.",name:"Jose Angel",surname:"Ruiz-Ortega",slug:"jose-angel-ruiz-ortega",fullName:"Jose Angel Ruiz-Ortega"},{id:"179368",title:"Prof.",name:"Luisa",surname:"Ugedo",slug:"luisa-ugedo",fullName:"Luisa Ugedo"}],corrections:null},{id:"50856",title:"Therapeutic Potential of Nonpsychoactive Cannabinoids by Targeting at Glycine Receptors",doi:"10.5772/63360",slug:"therapeutic-potential-of-nonpsychoactive-cannabinoids-by-targeting-at-glycine-receptors",totalDownloads:1196,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Li Zhang",downloadPdfUrl:"/chapter/pdf-download/50856",previewPdfUrl:"/chapter/pdf-preview/50856",authors:[{id:"179194",title:"Dr.",name:"Li",surname:"Zhang",slug:"li-zhang",fullName:"Li Zhang"}],corrections:null},{id:"50397",title:"Dietary Omega-6/Omega-3 and Endocannabinoids: Implications for Brain Health and Diseases",doi:"10.5772/62498",slug:"dietary-omega-6-omega-3-and-endocannabinoids-implications-for-brain-health-and-diseases",totalDownloads:1997,totalCrossrefCites:5,totalDimensionsCites:10,signatures:"Clémentine Bosch-Bouju and Sophie Layé",downloadPdfUrl:"/chapter/pdf-download/50397",previewPdfUrl:"/chapter/pdf-preview/50397",authors:[{id:"178351",title:"Dr.",name:"Sophie",surname:"Layé",slug:"sophie-laye",fullName:"Sophie Layé"}],corrections:null},{id:"50549",title:"The Endocannabinoid-Like Derivative Oleoylethanolamide at the Gut–Brain Interface: A “Lipid Way” to Control Energy Intake and Body Weight",doi:"10.5772/63147",slug:"the-endocannabinoid-like-derivative-oleoylethanolamide-at-the-gut-brain-interface-a-lipid-way-to-con",totalDownloads:1325,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Maria Beatrice Passani and Roberto Coccurello",downloadPdfUrl:"/chapter/pdf-download/50549",previewPdfUrl:"/chapter/pdf-preview/50549",authors:[{id:"178510",title:"Ph.D.",name:"Roberto",surname:"Coccurello",slug:"roberto-coccurello",fullName:"Roberto Coccurello"}],corrections:null},{id:"50317",title:"Cannabinoid CB1/CB2 Receptors in the Heart: Expression, Regulation, and Function",doi:"10.5772/62822",slug:"cannabinoid-cb1-cb2-receptors-in-the-heart-expression-regulation-and-function",totalDownloads:1507,totalCrossrefCites:5,totalDimensionsCites:10,signatures:"Elena Kaschina",downloadPdfUrl:"/chapter/pdf-download/50317",previewPdfUrl:"/chapter/pdf-preview/50317",authors:[{id:"32266",title:"Dr.",name:"Elena",surname:"Kaschina",slug:"elena-kaschina",fullName:"Elena Kaschina"}],corrections:null},{id:"50351",title:"The Role for the Endocannabinoid System in Cardioprotection and Myocardial Adaptation",doi:"10.5772/62485",slug:"the-role-for-the-endocannabinoid-system-in-cardioprotection-and-myocardial-adaptation",totalDownloads:1034,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Oliver Dewald and Georg D. Duerr",downloadPdfUrl:"/chapter/pdf-download/50351",previewPdfUrl:"/chapter/pdf-preview/50351",authors:[{id:"178354",title:"Dr.",name:"Oliver",surname:"Dewald",slug:"oliver-dewald",fullName:"Oliver Dewald"},{id:"185056",title:"Dr.",name:"Georg",surname:"Duerr",slug:"georg-duerr",fullName:"Georg Duerr"}],corrections:null},{id:"50593",title:"Cannabinoids: Drug or Medication?",doi:"10.5772/63172",slug:"cannabinoids-drug-or-medication-",totalDownloads:1390,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Léa Giron and Katia Befort",downloadPdfUrl:"/chapter/pdf-download/50593",previewPdfUrl:"/chapter/pdf-preview/50593",authors:[{id:"179154",title:"Dr.",name:"Katia",surname:"Befort",slug:"katia-befort",fullName:"Katia Befort"},{id:"179388",title:"MSc.",name:"Léa",surname:"Giron",slug:"lea-giron",fullName:"Léa Giron"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7995",title:"Epigenetics",subtitle:null,isOpenForSubmission:!1,hash:"33c1f5868ce0c29fbde6eafdc50af702",slug:"epigenetics",bookSignature:"Rosaria Meccariello",coverURL:"https://cdn.intechopen.com/books/images_new/7995.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6079",title:"Spermatozoa",subtitle:"Facts and Perspectives",isOpenForSubmission:!1,hash:"2d4488814a6ea68efcd3544209c9e4d2",slug:"spermatozoa-facts-and-perspectives",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/6079.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4625",title:"Complementary Therapies for the Body, Mind and Soul",subtitle:null,isOpenForSubmission:!1,hash:"48cd88cd7a6ffb4ade0088448e5ac56b",slug:"complementary-therapies-for-the-body-mind-and-soul",bookSignature:"Marcelo Saad",coverURL:"https://cdn.intechopen.com/books/images_new/4625.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"57158",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8543",leadTitle:null,title:"Studies on Garlic",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tGarlic (Allium sativum L.), native to Central Asia, is a bulbous plant which has been cultivated for at least 5,000 years. Garlic is mainly used as a spice and flavoring agent for foods, but has also been cultivated for its medicinal properties and used to fight against many kinds of human, animal, and plant diseases. Many studies have been carried out to discover the versatility of this miraculous plant. This book will present the latest research on the natural history of garlic, the history of garlic in cultivation, its therapeutic benefits, modern cultivation and production practices, germplasm and varieties, preservation and storage, and breeding.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"30460a1435fba35946ac6195bbe7e1fe",bookSignature:"Dr. Haiping Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8543.jpg",keywords:"Garlic, History, Cultivation,Wild garlic, Nutrition, Therapeutic benefits , Germplasm collection, evaluation, utilization, Preservation, Storage, Breeding",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2018",dateEndSecondStepPublish:"November 19th 2018",dateEndThirdStepPublish:"January 18th 2019",dateEndFourthStepPublish:"April 8th 2019",dateEndFifthStepPublish:"June 7th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"280406",title:"Dr.",name:"Haiping",middleName:null,surname:"Wang",slug:"haiping-wang",fullName:"Haiping Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/280406/images/system/280406.jpeg",biography:"Haiping Wang was born in Chifeng, Chian in 1975. He holds BSc in Plant protection (1998), MSc in Plant breeding (2001) and PhD in Vegetable science (2001) at Graduate School of Chinese Academy of Agricultural Sciences. Since 2001 he is a full time Research Scientist and Association Professor of Horticulture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences. His research interest include: research on vegetable genetic resources in order to collect the germplasm for preserving the diversity of Midterm Gene-Bank of Vegetables Genetic Resources in China; research on garlic and ginger genetics and breeding conducted to improve the crop for growers and consumers. Key areas of interest include garlic, ginger, radish and cucumber genetics and development of genomic tools, genetic improvement of garlic disease resistance, garlic diversity and origins, and of human nutritional quality and flavor of both garlic and ginger. Outreach activities include interaction with the garlic and ginger production and with consumers.",institutionString:"Chinese Academy of Agricultural Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Chinese Academy of Agricultural Sciences",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"371",title:"Phytochemistry",slug:"agricultural-and-biological-sciences-plant-biology-phytochemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9353",title:"Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials",subtitle:null,isOpenForSubmission:!1,hash:"b0f597104b548a6b922696409ab891fa",slug:"ginger-cultivation-and-its-antimicrobial-and-pharmacological-potentials",bookSignature:"Haiping Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9353.jpg",editedByType:"Edited by",editors:[{id:"280406",title:"Dr.",name:"Haiping",surname:"Wang",slug:"haiping-wang",fullName:"Haiping Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3244",title:"Soybean",subtitle:"Bio-Active Compounds",isOpenForSubmission:!1,hash:"b21aa6107fce439bd06d53fbe0bc3c9e",slug:"soybean-bio-active-compounds",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3244.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7688",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,isOpenForSubmission:!1,hash:"16f7407afbf69173f4fa419b4338a6c8",slug:"plant-physiological-aspects-of-phenolic-compounds",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7018",title:"Progress in Carotenoid Research",subtitle:null,isOpenForSubmission:!1,hash:"14ba5fb24fd6a28556e5b496fc87e9c8",slug:"progress-in-carotenoid-research",bookSignature:"Leila Queiroz Zepka, Eduardo Jacob-Lopes and Veridiana Vera De Rosso",coverURL:"https://cdn.intechopen.com/books/images_new/7018.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6530",title:"Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!1,hash:"104f235908f326361a3ab16891949b70",slug:"terpenes-and-terpenoids",bookSignature:"Shagufta Perveen and Areej Al-Taweel",coverURL:"https://cdn.intechopen.com/books/images_new/6530.jpg",editedByType:"Edited by",editors:[{id:"192992",title:"Prof.",name:"Shagufta",surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9482",title:"Essential Oils",subtitle:"Bioactive Compounds, New Perspectives and Applications",isOpenForSubmission:!1,hash:"16d29ce9f4f9ea78b5d3789c8fd79b0c",slug:"essential-oils-bioactive-compounds-new-perspectives-and-applications",bookSignature:"Mozaniel Santana de Oliveira, Wanessa Almeida da Costa and Sebastião Gomes Silva",coverURL:"https://cdn.intechopen.com/books/images_new/9482.jpg",editedByType:"Edited by",editors:[{id:"195290",title:"Dr.",name:"Mozaniel",surname:"Santana de Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana de Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",isOpenForSubmission:!1,hash:"6c33178a5c7d2b276d2c6af4255def64",slug:"flavonoids-a-coloring-model-for-cheering-up-life",bookSignature:"Farid A. Badria and Anthony Ananga",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8077",title:"Phytochemicals in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8db73d87975ed16ea4758f1aecb5bf27",slug:"phytochemicals-in-human-health",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8753",title:"Tannins",subtitle:"Structural Properties, Biological Properties and Current Knowledge",isOpenForSubmission:!1,hash:"d18f8d68a470cabaa124ad01ea455859",slug:"tannins-structural-properties-biological-properties-and-current-knowledge",bookSignature:"Alfredo Aires",coverURL:"https://cdn.intechopen.com/books/images_new/8753.jpg",editedByType:"Edited by",editors:[{id:"175895",title:"Dr.",name:"Alfredo",surname:"Aires",slug:"alfredo-aires",fullName:"Alfredo Aires"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6794",title:"Phytochemicals",subtitle:"Source of Antioxidants and Role in Disease Prevention",isOpenForSubmission:!1,hash:"de750b7a7b62ae27896c73a630c39cb3",slug:"phytochemicals-source-of-antioxidants-and-role-in-disease-prevention",bookSignature:"Toshiki Asao and Md Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/6794.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53451",title:"The Stability Analysis of Foundation Pit Under Seepage State Based on Plaxis Software",doi:"10.5772/66806",slug:"the-stability-analysis-of-foundation-pit-under-seepage-state-based-on-plaxis-software",body:'\nFor excavation, especially the excavation in high water table areas, there are head differences inside and outside the pit, besides, under that case, groundwater seepage will occur at the pit head difference. Pore pressure inside and outside the hole and the change of the effective stress caused by groundwater seepage are serious threats to the stability of the excavation engineering (Sheng, 2008). Research shows that 60% of pit accidents are directly or indirectly related to groundwater (Qiang et al., 2007). Thus, the analysis of excavation stability must be attached with great importance to the groundwater and groundwater seepage.
\nSeepage problems of excavation are mainly related to the role of groundwater flow in the rock excavation of soil pores or cracks and other media. Domestic researchers have done a lot of research on the impact of water and explained different aspects of seepage stability on the excavation and other related computing problems, and they have achieved certain project benefits (Zhuanzheng et al., 2012; Cheng et al., 2009; Chang et al., 2002; Huangchun and Xiaonan, 2001);. Seen from the engineering point of view, it has greater applicability when handling finite element seepage problems. However, different finite element software and soil constitutive model would result in different calculated results. Based on this point, in order to explore the impact of groundwater seepage on pit excavation engineering further, the application of geotechnical engineering software Plaxis specific engineering examples and comparative analysis should both consider with seepage and without it, and apply strength reduction method to calculate the stability factor for these two different states.
\nStrength reduction was first proposed by J. M. Duncan; he pointed out that the safety factor can be defined as the extent of soil shear strength reduction when the slope has just reached the critical failure state (Quan et al., 2008). By gradually reducing the shear strength index, the c value is divided by a corresponding reduction coefficient at the same time, and a new set of strength index is obtained; calculate this way for several times, until the slope reaches a critical failure state, and FST\n is used at this time, which is the safety factor of the slope (Quan et al., 2008):
\nIn the formula, the original c and φ are cohesion and friction angle of slope. The reduced values are labelled c\' and φ\'. They are used when the slope reaches a critical damage at the level of Poe safety factor. It can be seen from the basic principles of strength reduction that the safety factor is obtained by the method clearly, and the method is simple enough to be applied into practical engineering.
\nThe determination of instability criterion has also been a focus of discussion on the overall stability analysis of foundation. There are five parts proposed about the slope failure criterion currently (Quan et al., 2008): the convergence criterion; plastic zone generalized shear strain criterion or generalized plastic strain criterion; criterion dynamics criterion; displacement or displacement criterion; and mutation rate criterion.
\nEach criterion has its own scope of application here the fifth criterion is chosen as the criterion of slope failure, namely, the displacement of the feature point mutations can occur suddenly or displacement will increase quickly when the slope is close to its destruction. Because the displacement of the mutation will mean the beginning of part instability, displacement mutation selection criterion or displacement mutation rate criterion has the physical advantages, and the only problem lies in the selection of feature point. Theoretically speaking, only points within slip surface can serve as the feature points in terms of selecting feature points, starting from the inside retaining wall engineering dot located near the surface of the soil excavation is more suited to the convergence point discriminating judgment.
\nPlaxis geotechnical engineering finite element analysis software is a software that is used to solve the problems of geotechnical engineering, such as deformation, stability, as well as groundwater seepage, and it has already become the world-renowned geotechnical engineering finite element analysis software. Compared with other similar types of geotechnical engineering software, Plaxis software has certain advantages on soil stability calculation or seepage calculation (Wei et al , 2011).
\nIn the Plaxis software, groundwater percolation theory is mainly based on percolation theory of finite elements. Flow in porous media can be described by Darcy’s law. Considering the vertical flow within the x–y plane:
\nIn the formula, q is treated as the flow rate ratio, which is calculated by the permeability and groundwater head gradient obtained. Head is defined as:
\nIn the formula, y is in a vertical position and represents the pore water pressure (negative pressure) and severe water. For steady-state flow, the continuous application conditions are:
\nFormula (4) represents the total amount of water flowing into the unit body total water per unit time and is equal to the outflow. After the simulation of the entire discrete objects, corresponding groundwater head in any place within the cell can be used to represent the node cell values:
\nIn the formula, N is the shape function, and ξ and η are the local coordinate units. In accordance with Eq. (2) that the flow rate is based on the gradient of the groundwater head, the gradient matrix can be determined. It is the spatial derivative of interpolating function. To describe saturated soil (less saturation line) and nonsaturated soil (phreatic line), reduction function is introduced in the Darcy’s theorem:
\nThe value of reduction function below the saturation line is 1 (positive pore pressure), and the value above the phreatic line is less than 1 (negative pore pressure). In the transition zone above the phreatic line, the function value is reduced to 10-4. In the transition zone, function logarithmic is in linear relationship:
\nIn the formula, h represents the head pressure and hk\n represents the head pressure where the reduction function reduces to the head pressure of 10-4. In Plaxis, the default is 0.7 m (with the selected unit of length has nothing to do). In the numerical analysis, the ratio of the flow is written as:
\namong them:
\nFlow from the node ratio can be obtained by integrating the node traffic:
\nIn the formula, BT\n is the transposed matrix. The following equation is applied in the unit level:
\nOn the global level, all units of contributions are superimposed, and boundary conditions are applied (groundwater flow and head loss), which is formed in n unknown quantities of n equations:
\nIn the formula, K is a global traffic matrix and Q includes boundary conditions specified as flow losses. When the saturation line is unknown (unconfined water issues), the pickup (Picard) iterative method is used to solve the balance of the system. At this point the problem can be solved by the iterative process which can be written as:
\nIn the formula, j is the iteration number, which is an unbalanced vector. In each iteration of the groundwater heads, nodes of unbalanced flow should be computed, and effective head should be added. New distribution of the groundwater head should be computed again according to formula (8) recalculation of the traffic, and integrated into the node traffic. This process continues to standard imbalance vector, namely, the error node traffic is smaller than the allowable error.
\nConstitutive model of soil is the premise of stability calculation. At present, constitutive model of soil can be roughly divided into three categories: Elastic class model (elastic model, Duncan-Chang (DC) model), elastic-ideal plastic class model (Mohr-Coulomb (MC) model, Drucker-Prager (DP) model), and strain hardening elastoplastic model class (Modified Cambridge (MCC) model, Plaxis hardening soil (HS) model). MC model is the most widely used, but MCC model and the HS model have greater applicability in the simulation of the nature of the soil (Zhonghua and Weidong, 2010; Feng and Po, 2011).
\nHS model is put forward by Schanz (Duncan, 1996), which is an isotropic hardening elastoplastic model. HS model can consider both the shear and compression hardening, and the use of Mohr-Coulomb failure criterion. The basic idea is to assume partial HS model and vertical drained triaxial stress test should remain in hyperbolic relationship. For HS elastoplastic model to express this relationship, HS model considers soil dilatancy and neutral loading. Ideal elastoplastic model is different, and HS model in stress space yield surface is not fixed and it varies with plastic strain and expansion. HS models can adapt to describe a variety of damage and deformation behavior of soil types and is suitable for various geotechnical engineering applications, such as embankment filling, foundation bearing capacity, slope stability analysis and excavation, and so on. The following numerical simulation of the following will adopt HS model.
\nSpecific examples of excavation adopt the foundation of Sheng (2008). Excavation width is 20 m, depth 10 m, with two 15 m deep and 0.35 m thick concrete diaphragm walls and two rows of anchors as shoring structure, where the first row of anchor length is 14.5 m with 33.7° inclination, and the second row bolt length is 10 m, with an angle of 45°. Considering the surrounding load factors, a load of 10 and 2.5 kN/m2 is added around the pit. Related soils are filling (0–3 m), sand (3–15 m), and sand and mud (>15 m), and the underground water level in the initial state lies in 3 m below the surface.
\nCombing with the case background, a geometric mode with 80 m width and 20 m height is established by the Plaxis software, and the generated geometric model and network are shown in \nFigure 1\n and \nFigure 2\n. Parameters related to soil properties and structures are shown in \nTable 1\n and \nTable 2\n, by taking the default value of the software, which is no longer listed in \nTable 1\n. The excavation pit is divided into three stages, namely, the first excavation of the subsurface 3 m, then reexcavation of 4 m, and the last remaining excavation 3 m. Plaxis is divided into six steps of excavation.
\nThe geometric model of foundation.
The grid division of foundation.
Parameter | \nName | \nFilling | \nSand | \nSand and mud | \n
---|---|---|---|---|
Severe natural (kN/m3) | \n\nγ\nunsat\n | \n16.00 | \n17.00 | \n17.00 | \n
Severe saturation (kN/m3) | \n\nγ\nsat\n | \n20.00 | \n20.00 | \n19.00 | \n
Horizontal permeation coefficient (m/day) | \n\nk\nx\n | \n1.000 | \n0.500 | \n0.100 | \n
Vertical permeability coefficient (m/day) | \n\nk\ny\n | \n1.000 | \n0.500 | \n0.100 | \n
Test secant stiffness of triaxial test (kN/m2) | \n\nEref\n\n50\n | \n22,000 | \n40,000 | \n20,000 | \n
The main tangent stiffness in the loading consolidation apparatus (kN/m2) | \n\nEref\noed\n\n | \n22,000 | \n40,000 | \n20,000 | \n
Unloading/reloading stiffness (kN/m2) | \n\nEref\nur\n\n | \n66,000 | \n40,000 | \n20,000 | \n
Power exponential function | \n\nm\n | \n0.50 | \n0.50 | \n0.60 | \n
Group cohesiveness (kN/m2) | \n\nc\n | \n1.00 | \n1.00 | \n8.00 | \n
Friction angle (angle) | \n\nφ\n | \n30.00 | \n34.00 | \n29.00 | \n
Dilation angle (degree) | \n\nψ\n | \n0.00 | \n4.00 | \n0.00 | \n
Interface reduction factor | \n\nR\ninter\n | \n0.65 | \n0.70 | \n1.00 | \n
The soil parameters of foundation.
\n | Parameter | \nName | \nNumerical value | \n
---|---|---|---|
Diaphragm wall panel trench | \nAxial rigidity (kN) | \nEA | \n1.2 × 107\n | \n
\n | bending rigidity (kN. m) | \nEI | \n1.2 × 103\n | \n
\n | Equivalent thickness (m) | \n\nd\n | \n0.346 | \n
\n | Severe (kN/m3) | \n\nw\n | \n8.3 | \n
\n | Poisson ratio | \n\nv\n | \n0.15 | \n
Bolting | \nAxial stiffness (kN) | \nEA | \n2 × 105\n | \n
\n | horizontal spacing (m) | \nLS | \n2.5 | \n
Grout | \nAxial rigidity (kN) | \nEA | \n2 × 105\n | \n
Structural parameters.
The simulation is divided into two cases: one is that considers the seepage, and the other is that does not consider the seepage and displacement. They are shown in \nFigure 3\n.
\nYaxi Expressway.At the end of excavation displacement contours. (a) No seepage displacement and (b) the seepage and displacement nephogram.
From the numerical simulation computed by finite element, it can be seen that when the seepage is not considered, the maximum displacement is 22 mm, which occurs in pit bottom. When considering seepage, the maximum displacement is 47 mm, which occurs in the soil layer with a load of 10 kN/m2. By comparing the differences between the two, it can be seen that in most regions of the pit, soil displacement is greater than the case that the seepage is considered, it is not displaced when considering the seepage. So when seepage is not considered, foundation displacement calculation is a little dangerous.
\nWhen considering seepage (\nFigure 4\n), it can be seen that the boundary seepage pit is slightly arc-shaped, grout, and anchor near the foot of the slope location seepage velocity, and the maximum value will reach 387.73 × 10−3 m/day. By contrast, considering the seepage and displacement map and when not considering seepage, seepage velocity larger field position, displacement difference reaches 20 mm, which is slightly large, indicating the presence of seepage field, in terms of the pit, it will increase the displacement of its territories. If the flow is not considered, it is unreasonable to valuate soil excavation pit stabilization with the calculated displacement.
\nSeepage field with seepage.
When comparing the difference between displacement, it can be seen that there exists great difference between these two cases that with and without considering the seepage flow. Differences between the soil stress can be analyzed through \nFigure 5\n and \nFigure 6\n. \nFigure 5\n shows the effective stress diagram in which flow is not considered, because in the case without considering the water, effective stress and total stress is always equal, and the total stress diagram is no longer listed specially. \nFigure 6\n shows effective stress diagram and the total stress that considers seepage. It can be seen from \nFigure 5\n, the maximum effective stress occurs near the body part of bolting and grouting, the maximum effective stress is −363.91 kN/m2. From \nFigure 6\n, it can be seen when considering the seepage, there are similarities between pit effective stress exhibited seepage pit and without considering the effective stress distribution. And all, the maximum occurs in the vicinity of bolting and grouting body soil. There are also great differences. When considering the seepage, the maximum effective stress reaches −407.11 kN/m2. In terms of the entire distribution, when considering the seepage pit, the distribution of effective stress is not as intensive as shown in \nFigure 5\n, which is so concentrated in the vicinity of the distribution of grout; therefore, when considering effective stress of seepage pit, most of the soil area is larger than that does not consider effective stress of seepage time. By analyzing the total stress diagram when considering the seepage, it can be seen that the total maximum stress occurs when there is seepage near the foot of the slope anchor grouting and excavation position, which has certain pertinence with the maximum speed occurring at the seepage field. By analyzing \nFigure 4\n together with \nFigure 6\n, it can be found that the increase of the total stress mainly manifests in the area where there is seepage, and the greater speed the seepage becomes, the more obvious the seepage increases.
\nThe absence of effective stress of seepage pit.
The stress of foundation with seepage pit. (a) The effective stress seepage of foundation pit and (b) the total stress seepage of foundation pit.
By comparing and considering the two cases, it can be found that when seepage is not taken into account, both the soil displacement and stress are small, so in this case, the calculated conditions will reduce the accuracy of numerical simulation.
\nTo further study the impact of seepage pit stability in the original calculation step by considering the seepage and without considering, add a new step 7, reset displacement to zero, and conduct strength reduction operation. Select mutations displacement for instability criterion, select point A as the displacement point, as shown in \nFigure 7\n. Point A has a distance of 28 m to the left edge, and 7 m to the upper boundary. The displacement corresponding to A under different reduction coefficient is shown in \nFigure 8\n.
\nThe position of displacement point A.
The corresponding values for the various displacement reduction factor.
By analyzing \nFigure 8\n, it can be seen that for the case when there is no seepage, point mutation displacement of A occurs between 1.6 and 1.7 reduction factor, and by combining the specific data, the stability factor of 1.67 is determined. For seepage cases, it can be seen that point A displacement occurs between 1.2 and 1.3 mutation, and the steady flow coefficient was 1.28 by combining with the specific data. By comparing these two cases, we find that the gap between large and stable coefficient is a little great, in which when seepage is not considered, the stability coefficient is 30% larger than the contrary case with more errors. The strength reduction operation further indicates that the results without considering seepage are rather dangerous. And the stability of the excavation cannot be assessed reasonably.
\nIn this chapter, the process of numerical simulation program is excavated by applying Plaxis and combining the example. It analyzed the stability under seepage pit. The conclusions are as follows:
\nBy finite element numerical simulation, it can be seen that in most regions of the pit, soil displacement with considering seepage is larger than when not considered. And in greater flow velocity field position, displacement values are greater, too.
The differences between the soil stresses can be analyzed through \nFigure 5\n and \nFigure 6\n. In effective stress when considering the seepage, there is distribution similarity in pit effective stress. With the contrary case, it has also shown great differences. When considering the seepage, most of the effective stress soil excavation area is greater than the effective stress without considering the seepage. By analyzing the total stress diagram, it can be seen that when considering the seepage, the total stress distribution has a certain relevance with flow field velocity distribution. And the increase of the total stress mainly manifests in the area with seepage, and the greater speed of the seepage is, the more obvious the increase is.
Comparing these two cases through strength reduction method, it can be seen that the stability factor is larger, when seepage is not considered, and the stability coefficient is 30% larger than the contrary case with more errors.
Through the overall analysis, calculated seepage is unreasonable without considering the case of seepage, which will reduce the practical significance of engineering. The impact of seepage should be taken into account when analyzing foundation stability.
The term “cosmetic” has its origin from the Greek term “kosme’tikos,” a noun to denote the art of beautifying the body [1]. Since ancient times, humans have searched for materials and developed many products to mainly enhance female beauty. Over the centuries, cosmetics have been developed and influenced by different ethnic traditions, from the times of the Pharaohs to the modern times [2]. Since then, physical appearance has been an inseparable part of daily human existence, improving their self-image and self-esteem. However, the esthetic concept of beauty has changed overtime, and beauty standards have been modified according to many factors such as social, ethnic, and religious belief influences [2]. Personal hygiene has been also part of human life since the ancient times. Traditionally related to hygiene habits during religious activities, the preparation of food, or the prevention of diseases, hygiene practices have also greatly changed through the cultures and eras, from bathing facilities in the Roman period to modern synthetic products such as body lotions or hair tonics [3].
\nIn the last years, the variety of cosmetics and personal care products (PCPs) have greatly increased (Table 1), in parallel to their manufacturing and consumption volumes in developed and developing countries. For example, the consumption of cosmetics and perfumery in Spain has consecutively increased in the last years, reaching a total of 1280 million units sold of these products and 770 million units exported during 2018. To date, the USA is the leader in the consumption of cosmetics and perfumery, with an amount of 78.6 billion euros, followed by China (52 billion euros), Japan (32 billion euros), and Brazil (28 billion euros) [4]. Despite the current beauty standards are not similar along cultures and ethnicities, it is acknowledged that women have a greater use of cosmetics and personal care products (PCPs) when compared with men [5], and therefore, potential adverse effect may affect predominantly to this population.
\nMost used cosmetics and personal care products.
\nTable 1 summarizes the main types of cosmetics and PCPs commonly used worldwide.
\nThe World Health Organization defines an endocrine disrupting chemical (EDC) as an exogenous substance or mixture of substances that alter one or more functions of the endocrine system and consequently cause adverse effects on the health of an intact organism or its progeny [6].
\nThe main characteristics of exposure to EDCs are as follows [7, 8, 9, 10]:
There is no safe dose of EDCs. They act at low concentrations and in combination with endogenous hormones, making it difficult to establish a threshold level of no effect.
Exposure to EDCs during periods of special vulnerability of the individual’s development—pregnancy, lactation, puberty—causes damage with adverse effects throughout their lives and descendants.
The curves that relate the exposure doses to EDCs with the adverse effect are not linear. The response does not always increase in the same proportion as the exposure dose.
In general terms, individuals are not exposed to a single type of EDC but to a mixture of EDCs. Therefore, the effects are difficult to predict given the possible synergistic, additive, or antagonistic actions between chemical residues (the cocktail effect).
As a result of exposure to EDCs in a certain individual, consequences can be observed in subsequent generations, due to either genomic involvement or epigenetic mechanisms. There is great difficulty in establishing a causal association because the effects observed after exposure can occur after long latency periods.
EDCs are distributed in the environment due to their widespread use. Depending on their resistance to physical, chemical, and biological degradation as well as their degree of liposolubility, EDCs can be divided into “persistent EDCs” and “non-persistent EDCs.” In the case of persistent EDCs, low biodegradability, volatility, bioaccumulation in the trophic chain, and biomagnification are its most outstanding characteristics [11]. Furthermore, they can be transmitted to the offspring through the mother during pregnancy and lactation [12]. Since the 1970s, most countries have banned or severely restricted the production, handling, and disposal of the majority of them due to consistent evidence of their adverse effects at doses traditionally considered safe [13, 14]. Despite this, global population is suspected to be primarily exposed to these pollutants through diet, given the bioaccumulation pattern of these chemicals in the food chain [14].
\nOn the other hand, non-persistent EDCs are less liposoluble, and therefore, they are prone to be metabolized and excreted rapidly [15, 16]. In addition to a variety of pesticides such as glyphosate or permethrins, this group includes bisphenol-A (BPA) and its analogues, parabens (PBs) [methyl- (MeP), ethyl- (EtP), propyl- (PrP), and butyl-paraben (BuP)], phthalates, and benzophenones (BPs). Currently, there is diverse evidence showing the presence of numerous EDC families (mainly phthalates, bisphenols, parabens, and benzophenones) in cosmetic products and PCPs [17, 18, 19, 20]. However, contrary to most persistent EDCs, international regulation of their production, handling, and disposal is limited to a reduction in the concentrations of some specific compounds for those cosmetics in the EU market (EU 1004/2014). Table 2 summarized the trade name, CAS number, and hormonal activity attributed to some of the most frequently used EDCs in cosmetics and PCPs.
\nMost common endocrine disrupting chemicals in cosmetics and personal care products.
Trade name, CAS number and demonstrated hormonal activities.
Phthalates are used as a plasticizer in cosmetics and PCPs. The study carried out by Gao and Kannan [17] recently revealed that phthalates were found in >90% of the 77 feminine hygiene products analyzed. Mainly, they were found in all the tested pads, panty liners, tampons, and wipes. Furthermore, phthalates were also found in bactericidal creams and solutions, deodorant sprays, and powders. In another study, Guo and Kannan [18] showed that phthalates were also present in leave-on products, such as skin lotions, hair care products, perfumes, skin toners, deodorants, and creams. In this regard, detectable levels of phthalates were found in face creams, eyeliner creams, hand creams, sunscreens, lipsticks, and nail polish. These EDCs were also detected in products for dental hygiene and rinse-off products (including body wash, shampoos, hair conditioners, face cleaners, and shaving gels).
\nIn the case of the PB family, its main use in cosmetic products and PCPs is due to their antimicrobial properties [21]. It has been shown that the use of mixtures of paraben congeners allows the increase of their preservative capacity with the use of lower levels of each compounds [19]. Average daily application rates per women for face creams, hand or body lotions, facial cleansers, shampoos, and bath gel were 2.1, 8.7, 4.1, 12.8, and 14.5 g, respectively [22]. Yazar and Johnsson [20] carried out a study where they verified the composition of a series of 204 cosmetic products, which included shampoos, hair conditioners, liquid soap, wipes from different brands, and stores. The results showed that at least 44% of the analyzed cosmetics contained at least one PB congener. The PB that was found in the highest proportion was MeP (41% of the products), followed by PrP (25%). In the study carried out by Gao and Kannan [17], it was found that all feminine hygiene products contained at least one PB, and both MeP and EtP were found in >80% of these compounds, mainly in wipes, creams, bactericide solutions, deodorant sprays, and powders. Moreover, it has been reported that PBs were detected in 40% of the dental hygiene products analyzed and 60% in other types of daily hygiene products. MeP and PrP were the most detected compounds (40% of the analyzed samples), followed by BuP (∼20%). The highest concentrations of MeP, EtP, PrP, and BuP ranged between 1040 and 8200 μg/g, which represent approximately 0.1–0.8% per product by weight [18]. Another study carried out in China [19] found PBs in all the categories of PCPs analyzed. Almost all creams, lotions, and face cleaners contained MeP and PrP, with concentrations of MeP slightly higher than PrP (2830 and 1560 μg/g, respectively). Their presence was greater in creams and lotions than in shampoos and body soaps.
\nBPs are used as ultraviolet (UV) filters. As shown in the study carried out by Rastogi [23], 75 sunscreen products from Europe and the USA tested contained levels of up to three UV filters. A recent study [24] verified the presence of BP-1 and BP-3 in 19.1% of their analyzed products (283 samples analyzed), especially in makeup products, which represented 45.2% of the products with the presence of BPs.
\nIn addition to these three families, the chemical composition of cosmetics and PCPs also contains many other compounds, although with a lower percentage of the presence in these products. Among them, bisphenols, camphenes, dimethicones, and oxycinnamates can be found. Within these minority families, bisphenols are the one that are usually found in the greatest presence in cosmetic products. The main use of BPA is the manufacture of epoxy resins, obtaining polycarbonate plastics, which have great mechanical and thermal stability, as well as very good transparency [25], while the main use of the families of camphenes, dimethicones, and oxycinnamates is that they are used as preservatives in the manufacture of PCPs [26, 27]. Nevertheless, the concentrations of these substances in cosmetics and PCPs have been poorly addressed.
\nContrary to persistent EDCs that mainly reach body internal compartments through diet, the main route of human exposure to non-persistent EDCs released from cosmetics and PCPs is mainly the dermal route [28]. Therefore, these EDCs avoid the first-pass metabolism, enhancing the bioavailability and therefore the biological effect of the parent compounds [15]. In this regard, several studies have related to the use of cosmetics and PCPs and internal levels of PB and BPs. For example, it has been recently found that levels of some PB and BPs in menstrual blood are related to the use of cosmetics [29]. Moreover, urinary concentrations of PBs were related to the use of hair products, deodorants, face, and hand creams [30]. Similarly, Larsson et al. [31] found higher levels of PBs and phthalates among those women with higher use of hygiene products.
\nEDCs act at very different levels of complexity, interfering a variety of hormone-signaling pathways. For instance, they can modify the circulating levels of hormones by acting on their synthesis, metabolism, or degradation. They can also reduce, increase, or interfere with the specific receptors for hormonal action and therefore affect the ability to respond to natural hormones [32]. In the particular case of EDCs that interfere in steroid hormone-related signaling pathways, the observed effects seem to be linked to the activation/blocking of nuclear receptors, which are the most common modes of action responsible for dose curves with nonmonotonic response in experimental studies [33]. In fact, many EDCs released from cosmetics and PCPs have been evidenced to exert estrogenic and antiandrogenic activities in both in vivo and in vitro studies [34, 35, 36, 37, 38, 39, 40] (see Table 2).
\nAn increasing number of studies have also linked exposure to EDCs with epigenetic changes in humans [41, 42]. An unexposed individual may show epigenetic changes due to (1) altered ovum or sperm after EDC exposure or (2) in utero exposure to EDCs. In this regard, it has been evidenced that fetal exposure to environmental pollutants with endocrine disrupting properties such as mirex, chlordane, or p,p´-DDE can cause epigenetic changes with transgenerational effects [43, 44]. This is also the case of bisphenol-A (BPA), and PBs, with epigenetic changes after prenatal and adolescence exposures to these chemicals [45, 46].
\nFurthermore, inflammation and oxidative stress have also been recently postulated as possible mechanisms of action of EDCs [47, 48, 49, 50]. In this regard, oxidative stress, that is, the imbalance between the production of free radicals and the antioxidant capacity, has been shown to be enhanced after exposure to a variety of EDCs, including PBs and BPs [47, 49, 50]. For instance, human exposure to PB and BP has been linked to higher levels of lipid peroxidation [50, 51]. Moreover, local disruption of the antioxidant capacity has also been reported [47]. Although the underlying mechanisms are still poorly understood, it has been suggested that, at least in part, EDCs might induce oxidative stress via estrogen receptor-α signaling pathways [52]. Moreover, EDC exposure has also been evidenced to trigger an inflammatory microenvironment [50, 53]. With an intimate relationship, both oxidative and inflammatory responses have also been suggested as crucial mechanisms beyond a variety of chronic diseases, as well as some gynecological conditions such as endometriosis [54, 55].
\nThe consequences of exposure to EDCs seem to be different depending on age and gender (Table 3). In the case of men, EDC exposure is suspected to cause alterations in the development of the genitourinary system including cryptorchidism, testicular cancer, and infertility [56, 57]. Among women, the increase in hormone-dependent cancers (either breast or ovarian) [56] as well as uterine fibroids and endometriosis might also be related to inadvertent exposure to EDCs. Moreover, chronic conditions such as metabolic syndrome and its components (obesity, insulin resistance, hypertension, or dyslipidemia), neurobehavioral development disorders, and poor thyroid function are also on the list of possible effects of EDC exposure. In particular, in utero exposure to EDCs is believed to have consequences of such magnitude that they would hardly be suspected in studies of adult individuals. For example, in utero exposure to some EDCs has been linked to increased risk for breast cancer or endometriosis [58, 59]. This association gives maternal exposure some very particular peculiarities and places women of childbearing age in the limelight of most studies on endocrine disruption.
\nOver the years and in parallel with the change in people’s habits and lifestyle, numerous evidence has revealed that cosmetics could cause a variety of disease conditions in humans. For instance, women are suspected to have a greater risk for some chronic conditions such as obesity and metabolic syndrome than men [60], and in addition to physiological differences between genders, the greater female consumption of cosmetics and PCPs might also underlie this enhanced risk. Moreover, the consumption of cosmetics and PCPs might also be beyond the development of female-specific diseases such as breast or ovarian cancer. In this regard, Darbre [61] first alarmed scientific community about the potential effect of PCPs in breast cancer, suggesting that underarm cosmetic use might increase breast cancer. In fact, they detected a variety of EDCs including PBs in breast tumors, with higher concentrations in those samples from the axilla region, suggesting that their concentrations might be related to the application of deodorant products, body lotions, sprays, moisturizers, and sunscreen products in areas close to the human breast. However, current evidence on the relationship between cosmetic/PCP use and risk of cancer is not very conclusive. In this regard, in a case-control study comprised by 209 cases of breast cancer and 209 healthy controls, Linhart and Talasz [62] reported that the greater use of underarm cosmetic products was associated with increased risk of breast cancer. Contrary, a cohort study did not found any association between use of skincare products and risk of cancer of the breast and endometrium [63]. Another study carried out by McGrath [64] reported that those women with a higher use of antiperspirant products were diagnosed with breast cancer at an earlier age. Furthermore, it has been observed that long-term exposure to body care creams containing ethinyl estradiol may increase the risk of abnormal genital bleeding and breast cancer [65]. Interestingly, a case-report study found that synthetic hormones found in lotions used by the mother were present in very high concentrations in the hair of the girl [66].
\nHowever, the variety of products and differences in dosage, patterns of use, and individual susceptibility to specific product formulations pose great difficulties to detect a potential effect of cosmetic and PCP habits on human adverse effects [36, 61, 67, 68, 69]. Thus, the use of internal burden of EDCs seems to better reflect the magnitude of cosmetic and PCP use, independently of the type of product used or the dose applied. In this regard, urinary levels of PBs have been related to greater risk for breast cancer [70]. Some studies have also addressed the potential association between exposure to PCP-released EDCs and the origin and development of other female diseases. In this regard, the presence of trace levels of PBs was found in endometrial tissue samples suspected of being related to an increased risk of endometrial carcinoma [71]. Levels of PrP were also related to diminished ovarian reserve in a prospective cohort study of the US women seeking fertility treatment [72]. Regarding the development of sex characteristics during puberty, a recent study observed associations between levels of PBs and earlier development of the breasts and the pubic hair in girls. Moreover, earlier menarche was also related to higher levels of PBs [73].
\nRegarding BPs, in vitro studies have shown that exposure to BPs in rats and mice has been related to feminized sexual behavior and increased uterine weight [39, 74]. Two in vivo studies have also demonstrated the disturbance caused by BP in ovarian tissue [75, 76]. Santamaría and Abud [75] found that exposure to BP-1 and BP-3 disrupted early events in ovarian cells, such as germ cell development and disruption of crucial gene expression related to follicular assembly. Similarly, Shin and Go [76] reported the induction of BP-dependent metastasis in an in vivo model for ovarian cancer. Moreover, an epidemiological study has reported that urinary BP levels might be associated with blood pressure during pregnancy [77]. Similarly, higher BP levels were related to thyroid hormones and growth factors in pregnant women, as well as to reduced fetal growth [74].
\nOther hormonally active chemicals widely used in cosmetics are phthalates. Exposure to various congeners has been associated with the appearance of various female diseases. Exposure to di-(2-ethylhexyl) phthalate has been linked to an increased risk of preterm delivery [78, 79, 80] and intrauterine growth restriction [81]. Furthermore, it has also been associated with reduced total oocyte yield and a reduced probability of achieving pregnancy and live birth [82]. Other phthalate congeners, such as monoethyl phthalate and dibutyl phthalate, have also been linked to decreased fertility in women [79, 83].
\nSeveral investigations have also suggested the potential association between BPA exposure and adverse outcomes in women. For instance, it has been shown that elevated serum or urine BPA levels are associated with anovulation [84], lower antral follicle counts [85, 86], preterm birth [87], and infertility [88]. Moreover, increasing urinary BPA levels were associated with delayed menarche in adolescent girls [89, 90]. Furthermore, higher BPA levels have been associated with an increased risk of developing polycystic ovary syndrome [84, 91, 92, 93], ovarian failure [94], infertility [95], and fibroids [96, 97]. Triclosan, widely present in soaps, detergents, and toothpaste, has also been related to decreased fertility [98], although the currently available evidence is scarce.
\nAs mentioned above, detectable levels of PBs and BPs have been detected in endometrial tissue and menstrual blood [29, 71]. Trace levels of intact PBs were predominantly detected in endometrial carcinoma tissues (23%) in contrast to normal endometrium samples (2%), and thus, authors suggested that they might be related to an increased risk of endometrial carcinoma [71]. On the other hand, several PBs and BPs have been detected in menstrual blood samples, a biological sample in intimate contact with the endometrium [29]. Moreover, these menstrual blood concentrations of PBs and BPs were related to the magnitude of use of creams and cosmetics, evidencing that these EDCs from cosmetics and PCPs are capable of reaching a wide variety of biological matrices and thus might orchestrate, or at least contribute, to the development and progression of multiple gynecological diseases such as endometrial cancer and endometriosis.
\nConcerning endometriosis, the origin of endometriosis still remains unclear. To date, although various theories have been postulated to give a possible explanation for the origin of endometriosis [99, 100, 101, 102, 103, 104, 105], none of them consistently explains the onset and progression of the disease in deeper stages. Currently, it is known that it is a multifactorial disease in which genetic, epigenetic, immunological, hormonal, and environmental factors are involved [106]. Due to the suspected increase in the number of cases in the last decades [107], it is suspected that, in addition to the increased awareness among doctors and patients, environmental risk factors are suspected to also contribute to the onset and progression of this disease. This environmental hypothesis of the origin of the disease is also reinforced due to the estrogen-dependent nature of this pathology [53, 108].
\nDespite the growing public concern about human risks derived from the use of PCPs and cosmetics, there is little evidence on their influence on endometriosis (Table 4). To our knowledge, only one study has investigated the relationship between EDCs released from sunscreens and endometriosis. Concentrations of 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, and 4-hydroxi-benzophenone were analyzed in urine samples collected from 600 women. The results obtained suggest that exposure to elevated levels of 2,4-dihydroxybenzophenone (BP-3) may be associated with a higher probability of a diagnosis of endometriosis [109]. As authors mentioned, these findings denoted an approximate 65% increase in the odds of an endometriosis diagnosis in women with the highest BP-3 concentration compared to women with lower concentrations.
\n\nSome adverse effects of EDCs in humans.
Studies exploring associations between exposure to cosmetics- and PCPs-released EDCs and endometriosis.
Regarding BPA exposure, a recent meta-analysis revealed limited and contradictory epidemiological evidence regarding the contribution of BPA in the risk for endometriosis [110]. Thus, despite few studies have reported an absence of association between urinary levels of BPA and disease [111, 112], others reported increased risk for endometriosis [53, 113, 114, 115]. Even more, it has been recently suggested that levels of oxidative stress might act as a mediation effect on the association between exposure to bisphenols and endometriosis risk [53]. Furthermore, exposure to BPA has not only been related to the onset of endometriosis, but it might be also involved in the progression of the disease [112, 114]. Moreover, these findings are supported by different experimental studies. In this sense, recent in vivo studies have evidenced in mouse models that exposure to bisphenols in adulthood was related to an increase in the growth of endometrial lesions and the number of atretic oocytes, the interruption of the ovarian steroidogenic pathway, an increase in periglandular fibrosis, and the upregulation of matrix remodeling enzymes [108, 116]. Another in vivo study revealed that prenatal exposure to BPA and other bisphenols caused a phenotype similar to endometriosis [117]. These experimental studies suggest that exposure to BPA could be related to the development and progression of endometriosis.
\nOther EDCs found in cosmetics and PCPs are phthalates. Several studies have explored the existing associations between exposure to these chemicals and endometriosis, showing conflicting results. One of the very first investigations reported higher concentrations of phthalates in women with a confirmed diagnosis of endometriosis [118]. Similarly, two studies evidenced an increased risk of endometriosis in women with higher levels of mono (2-ethylhexyl) phthalate [111, 119]. Conversely, few studies did not found any association between levels of urinary levels of any phthalate congener and enhanced risk for endometriosis [112, 120, 121, 122].
\nCurrently, there are no studies that have explored the possible contribution of other EDCs released from cosmetics and PCPs (such as parabens, oxycinnamates, camphenes, and dimethicones) and the risk of endometriosis. Moreover, the combined effect of EDCs released from these products on endometriosis has not been addressed yet.
\nTo date, there is still very limited evidence on the potential role of EDCs released from cosmetics and PCPs on the origin and development of endometriosis. In general terms, in vitro, in vivo, and epidemiological evidence is consistent with the endocrine-disrupting hypothesis set out in this chapter, indicating that EDCs might be in the causal pathway that leads to endometriosis. Nevertheless, in all published studies, the particular effect of specific EDCs was measured, without taking into account the possible synergistic or antagonistic effect that these chemicals can exert when they are present in a mixture. Thus, because its diagnosis is difficult and its treatment is mainly symptomatic, it is vitally necessary to establish preventive measures to avoid as far as possible the origin of this disease. Therefore, it is necessary to carry out well-conducted studies, with appropriate sample size and in which the “gold-standard” diagnosis serves to distinguish between cases and controls. Moreover, the combined effect of multiple EDCs on endometriosis should be addressed. These studies are needed to fully elucidate the potential disrupting properties of these PCP-released EDCs in the gynecological tissues. In this way, preventive measures could be established, the chemical composition of PCPs could be modified by other substances that are not endocrine disruptors, or the use of these cosmetics could be reduced as far as possible.
\nThis work was supported by a grant from the Spanish Ministry of Health-FEDER (FIS PI17/01743) and the Research Chair “Antonio Chamorro/Alejandro Otero.” It was also partly supported by the European Union Commission (the European Human Biomonitoring Initiative H2020-EJP-HBM4EU) and the Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP). The authors are also grateful to the Carlos III Institute of Health (ISCIII) for the predoctoral research contracts (IFI18/00052 and FI17/00316) granted to F.M. Peinado and L.M. Iribarne-Durán, respectively, and the José María Segovia de Arana contract granted to N. Olea (INT18/00060).
\nThe authors declare no conflict of interest.
IntechOpen offers several publishing options to researchers and research groups looking for a professional partner with a wide, international reach. Our publishing options cover the breadth of scientific publications and ensure an appropriate outlet for your research.
",metaTitle:"Why publish with IntechOpen?",metaDescription:"IntechOpen offers publishing options to researchers and research groups looking for a professional partner with a wide, international reach. Our publishing options cover the breadth of scientific publications and ensure an appropriate outlet for your research.",metaKeywords:null,canonicalURL:"/page/why-publish-with-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"