The reprogrammed metabolism of cancer cells reflects itself in an alteration of metabolite concentrations, which in turn can be used to define a specific metabolic phenotype or fingerprint for cancer. In this contribution, a metabolism-based discrimination between lung cancer patients and healthy controls, derived from an analysis of human blood plasma by proton nuclear magnetic resonance (1H-NMR) spectroscopy, is described. This technique is becoming widely used in the field of metabolomics because of its ability to provide a highly informative spectrum, representing the relative metabolite concentrations. Cancer types are characterized by decreased or increased levels of specific plasma metabolites, such as glucose or lactate, compared to controls. Data analysis by multivariate statistics provides a classification model with high levels of sensitivity and specificity. Nuclear magnetic resonance (NMR) metabolomics might not only contribute to the diagnosis of lung cancer but also shows potential for treatment follow-up as well as for paving the way to a better understanding of disease-related diverting biochemical pathways.
Part of the book: Lung Cancer