As antennas are indispensable elements in wireless systems, it is necessary to provide UWB antennas suitable for UWB systems. The most proposed UWB antennas have omnidirectional radiation, which provides the wide coverage area that is highly demanded by many conventional UWB applications. However, directional radiation is more beneficial for other UWB applications and it may even be beneficial for the conventional UWB omnidirectional applications in some environments that contain many sources of interference and distorting objects, where the omnidirectional radiation leads to high interference and loss of power in undesirable directions. Consequently, an immense research has addressed the issue of realizing UWB planar antennas with unidirectional radiation characteristics. Basically, the main technique used to create unidirectional radiation patterns is employing cavity-baking reflectors to redirect the back radiation, hence increasing the gain of the radiators. In addition, these reflectors can decouple the mounted radiator from the surroundings that can damage its characteristics. Therefore, we suggest the employment of UWB reflectors to achieve UWB planar antennas with directional radiation. Our research for designing optimal UWB reflectors has led to the investigation in the field of frequency selective surfaces (FSSs), which are valuable structures and can be of great interest to a wide range of applications especially UWB applications. Subsequently, the main aim of this chapter is to give a review of the fundamental uses of FSSs in antenna engineering and the basic physical concepts that have been employed to serve the purpose of enhancing antennas’ performances using FSSs with a variety of features and characteristics. Furthermore, it is geared toward the presentation of our proposed UWB FSS-based antennas. First, we use basic FSSs such as the capacitive and its complementary inductive FSSs to design UWB reflectors that can serve improving and stabilizing the gain of UWB antennas. Thereafter, a proposed UWB single-layer FSS is used to serve the same purpose. Then, the FSS is integrated and designed together with UWB radiator, which resulted in lower profile along with good performance.
Part of the book: UWB Technology and its Applications