Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for the detection of local brain activity using changes in the local levels of oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb). Simultaneous measurement of the levels of oxyHb and deoxyHb is an advantage of fNIRS over other modalities. This review provides a historical description of the physiological problems involved in the accurate identification of local brain activity using fNIRS. The need for improved spatial and temporal identification of local brain activity is described in terms of the physiological challenges of task selection and placement of probes. In addition, this review discusses challenges with data analysis based on a single index, advantages of the simultaneous analysis of multiple indicators, and recently established composite indicators. The vector-based approach provides quantitative imaging of the phase and intensity contrast for oxygen exchange responses in a time series and may detect initial dips related to neuronal activity in the skull. The vector plane model consists of orthogonal vectors of oxyHb and deoxyHb. Initial dips are hemodynamic reactions of oxyHb and deoxyHb induced by increased oxygen consumption in the early tasks of approximately 2–3 seconds. The new analytical concept of fNIRS, able to effectively detect initial dips, may extend further the clinical and social applications of fNIRS.
Part of the book: Neuroimaging