\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71586",title:"Wireless Sensor Networks (WSNs): Security and Privacy Issues and Solutions",doi:"10.5772/intechopen.84989",slug:"wireless-sensor-networks-wsns-security-and-privacy-issues-and-solutions",body:'\nWireless sensor network (WSN), as shown in Figure 1, is a wireless interconnected network which consists of independently setup devices that monitor the conditions of its environment using sensors. WSNs are employed in a wide range of applications such as security surveillance, environmental monitoring, target tracking, military defense, intrusion detection, etc. Security in wireless sensor network is at a growing stage mainly not because of nonavailability of efficient security schemes, but most of the existing schemes are not suitable due to the peculiarity of WSNs. That is, WSNs’ nodes have low computational capacity and energy constraint. In WSNs, sensor nodes have the ability to communicate with one another, but their primary task is to sense, gather, and compute data. These data are forwarded, via multiple hops, to a sink which may use it or relay it to other networks. To achieve an effective communication, WSNs need efficient routing protocols [2, 3, 4, 5, 6]. They facilitate communication in WSNs by discovering the appropriate routes for transmitting data and maintain the routes for subsequent transmissions. As a result of heterogeneity of WSNs’ nodes, different protocols had been developed for different WSNs depending on the nature of the nodes and application. For instance, there are dedicated protocols for MWSNs and dedicated protocols for SWSNs.
\nA typical wireless sensor networks (WSN) [1].
There are two modes of transmission in WSN; single hop involves the source node sending its data packets to the destination within a hop. Meanwhile, WSNs’ sensor nodes may rely on one another in order to relay packets to remote destinations. This mode of transmission is called multi-hop. Multi-hop is a routing phenomenon that involves the transfer of data between source and destination nodes with the cooperation of intermediary nodes. It enhances the performance of WSNs by allowing energy-depleted node to transfer data through its neighboring nodes along the routing path to the destination node. There are several security and privacy issues associated with multi-hop routing. Some of these issues like snooping, sinkhole, tampering Sybil, clone, wormhole, spoofing, etc. affect the integrity, availability, and data confidentiality of the WSNs.
\nSeveral security solutions had been proposed for WSNs; however, resource constraint of sensors makes some of these security solutions unfit for WSNs. This, therefore, makes their adoption in WSNs impossible. This is as a result of instability of the topology of most WSNs. Some of the WSNs, unlike some other networks, consist of mobile nodes that intermittently change the topology of the networks, therefore making it impossible for such mobile network to use existing protocol developed for static nodes. Also, large volume of data is transferred on the WSNs; this increases the traffic on the wireless communication infrastructure of WSN. All these show that security and privacy solutions of WSN must not only be lightweight in terms of the computational, communication, and energy overheads but also support aggregation and multi-hop in order to reduce the traffics and extend the life span of the networks. Meanwhile, most of the existing security solutions do not have these performance requirements [1, 7, 8, 9, 10].
\nRouting protocols can be classified into:
Data-centric routing protocol
Hierarchical routing protocol
Multipath-based routing protocol
Location-based routing protocol
QoS-based routing protocol
Mobility-based routing protocol
Data-centric routing protocol combines data arriving from various sensor nodes at a specific route. This eliminates redundancies and minimizes the total amount of data transmission before forwarding it to the base station. Directed diffusion, rumor routing, and sensor protocol for information via negotiation (SPIN) protocol are examples of data-centric routing protocol [11, 12].
\nSPIN is a negotiation-based data-centric protocol for WSNs. Each node uses metadata to name its data, and negotiation is performed by a sensor node using its metadata. Hence, each node is able to negotiate whether to deliver data or not, in order to eliminate redundant data transmission throughout the network. After the negotiation, the sender transmits its data as shown in Figure 2; node A starts by broadcasting its hop request to its neighboring node B. Once the request is accepted, node A sends its data to B who then repeats this procedure. This is to find its neighboring node and hops the data to the neighboring node until the data reaches the destination. SPIN protocol saves energy due to the fact that each node only performs single hop. SPIN’s hop request and acceptance packets prevent flooding attack on WSNs. Although SPIN protocol is good for lossless networks, it can also be used for lossy or mobile networks.
\nSPIN protocol.
Hierarchical routing protocol classifies network nodes into hierarchical clusters. For each of the clusters, the protocol selects a node with high residual energy as the cluster head. The sensed data of each node in the cluster are transferred through the cluster heads of the clusters in the network [11]. The cluster node aggregates the sensed data of all the nodes in the cluster before sending it to the sink. Hierarchical routing protocol reduces the energy consumption through multi-hop transmission mode [13]. Also, data aggregation performed by the cluster head reduces traffic on the network. Low-energy adaptive clustering hierarchy (LEACH), threshold-sensitive energy-efficient sensor network protocol (TEEN) and adaptive threshold-sensitive energy-efficient sensor network protocol (APTEEN), and secure hierarchical energy-efficient routing (SHEER) are examples of hierarchical routing protocol. TEEN gives a very good performance since it reduces the number of transmissions [14]. Patil et al. presented SHEER in [15]. It uses adaptive probabilistic transmission mechanism for determining the optimal route in WSN. SHEER also adopts hierarchical key establishment scheme (HIKES) for key distribution, authentication, and confidentiality. SHEER involves four phases as described below:
\n\n
The base station (BS), computes key \n
BS broadcasts the initiation call as \n
On receiving the initiation message, the sensor node extracts and decrypts \n
During the neighbor discovery phase, the sensor nodes establish their hopping link with their neighboring node. Each node switches from listening mode to transmission mode. In listening mode, node sends a HELLO message containing its identity, a nonce, and an encrypted header with the sensor key until it gets a reply from its neighboring nodes.
\nIn this phase, cluster consisting of certain number of nodes with a cluster head is selected based on some parameters.
\nEach sensor sends its data to the base station through the cluster heads. This centralize data transmission reduces collision within clusters.
\nFor an effective data delivery, multipath routing protocol generates a multipath (primary and secondary paths) from the source node to the destination node. It uses secondary path in case the primary path fails. With this, fault tolerance is achieved. However, this increases the cost of routing through the cost of maintaining multiple paths between source and destination [10, 16]. There are different types of multipath-based routing protocols.
\nIn a disjoint path routing protocol, every source node finds the shortest disjointed multipath to the sink node. It evenly shares its data load among these disjointed paths. All the paths in this multipath share no sensor node. The protocol is reliable with extra overhead but at a low energy.
\nTo construct braided multipath, the protocol first selects the primary path; then for every sensor, the best path is chosen from source to sink node, but this path does not include the primary node. The best alternative paths that are not necessarily disjoint from the primary path are called idealized braided multipath. These alternative paths are located either on the primary path or very close to it which means that the energy consumption on both the primary path and an alternative path is almost equal [17].
\nN to 1 multipath discovery protocol is a protocol based on flooding. Example of N to 1 multipath-based routing protocol is multipath-based segment-by-segment routing (MSSR) protocol proposed by Lu et al. in [18]. MSSR protocol divides a single path into multiple segments, where multiple node-disjoint paths are discovered and independently maintained. N to 1 multipath discovery routing protocol reduces congestion, and effectively manages.
\nLocation-based routing protocol routes data based on the distance of the source and destination nodes. It calculates the distance between source and destination nodes in order to determine estimated routing energy. Shruti [19] proposed a location-based routing protocol. The protocol uses the signal strength of the incoming signal to determine their distance. In their protocol, all the non-active nodes are put in sleeping mode in order to save energy. In location-based, the knowledge of the position of sensor nodes is exploited to route the query from the base station to the event. Location information enables the network to select the best route.
\nAnother example of the location-based protocol is the geographic adaptive fidelity (GAF) protocol for mobile adhoc networks (MANETs). GAF conserves energy, and reduces routing overhead, which makes suitable for WSNs. Other examples of location-based protocols are location-aided routing (LAR), energy-efficient location-aided routing (EELAR), greedy location-aided routing protocol (GLAR), etc.
\nQoS-based routing protocol balances effective data delivery of the data to the sink node with some predetermined QoS metrics [17, 20]. Some of the existing QoS-based routing protocols are described below:
\nSAR protocol uses energy, QoS on each path, and the priority level of each packet as the QoS metrics to achieve effective data delivery. SAR protocol discovers and uses multiple paths from the sink node to sensor nodes for effective data delivery. SAR protocol considers energy efficiency and fault tolerance and also focuses on minimizing the average weighted QoS metric during data transfer [21].
\nSPEED is also an example of QoS-based routing protocol. In SPEED, every sensor node keeps its neighboring node information in order to increase the performance of the protocol. For example, SPEED protocol has congestion avoidance mechanism that is used to avoid congestion. The mechanism relies on the node information. Routing module in SPEED is called stateless geographic nondeterministic forwarding (SGNF) and works together with four modules at the network layer. In this protocol, the total energy used for transmission is incomparable to the performance of the routing algorithm.
\nIt is an energy-efficient routing protocol used by heterogeneous WSNs for delay-sensitive, bandwidth-hungry, time-critical, and QoS-aware applications. The QHCR protocol provides dedicated paths for real-time applications as well as delay-sensitive applications at a lower energy. The QHCR protocol consists of information gathering, cluster head selection, and intra-cluster communication phases.
\nMobility-based routing protocol is a lightweight protocol that ensures data delivery from source to destination nodes. Tree-based efficient data dissemination protocol (TEDD), scalable energy-efficient asynchronous dissemination (SEAD), two-tier data dissemination (TTDD), and data MULES are some of the examples of mobility-based routing protocol. These routing protocols deal with the dynamism of the topology of the network. The closest node to the sink node tends to transmit more than others, which reduces its lifetime faster than other nodes [22]. Another example of the mobility-based routing protocol was the protocol proposed by Kim et al. [23]. The authors proposed a temperature-aware mobility algorithm for wireless sensor networks. Their algorithm employs store-and-carry mechanism to overcome the challenges posed by human postural mobility. In their store-and-carry-based routing protocol, routing packets are stored in a temporary memory called buffer. The buffer reroutes lost data to any intermediary node that temporarily lost connection with the source node. Their protocol also uses temperature to determine the intermediary node.
\nAnother example of mobility protocol is the routing protocol proposed by Kumar et al. in [24]. They use ant colony optimization (ACO) and endocrine cooperative particle swarm optimization (ECPSO) algorithms to enhance the performance of the WSNs.
\nMost of the existing WSN routing protocols and existing security solutions are unsuitable for WSNs. This is due to resources constraint associated with WSNs [25]. These constraints majorly determine the kind of security approaches that can be adopted for WSNs. Various security issues and their solutions are described in this section.
\nThe increase in demand for a real-time information has made WSN become more expedient. WSNs most of the time employs multi-hop transmission mode to overcome their constraints. The major problem of multi-hop transmission is attacks on the source data and nodes’ identities during hopping. For a resource-constraint WSN with source node sending data to the destination through several intermediary nodes, there is a possibility of intrusion, identity tracing by an adversary, gleaning, and modification of source data by the intermediary nodes. WSNs, most times, operate in hostile environments and can be subjected to side channel attacks, such as differential power analysis. In these attacks, the adversary monitors the system, repeats the same operation, and takes careful measurements of power consumed in a cycle-by-cycle basis in order to either recover the secret key or perturb used in the perturbation. To prevent this, a scalar blinding is usually engaged in cryptographic-based security solutions. The scalar multiplication is blinded using integer m, where m is the order of the point P\n\n
Another issue in WSNs is how to preserve the identities of the source and destination nodes from the privy of intermediary nodes and adversaries during multi-hop. That is, there must be a form of lightweight authentication feature(s) inherent in the data packet between a source and destination nodes. Some other attacks on WSNs are discussed below.
\nThis attack targets the routing information between two sensor nodes. It can be launched through spoofing or replaying the routing information. This can be done by adversaries who have the capability of creating routing loops, attracting or repelling network traffic, and extending or shortening source routes. This attack is a passive attack which is not only easy to launch but elusive to detection. However, a unique identity can be created for the selected path (using key-based hash function of the pseudonyms or identity of all the selected intermediate nodes and embellishes in the message, any attempt to record data packet from a location and re-tunnel it at another location will be detected by the base station when comparing the embellished path identity with hash of all the appended pseudonyms or identities of all the nodes involved in the multi-hop).
\nIn this attack, adversary compromises the WSN by creating fake identities to disrupt the network protocols. Sybil attack can lead to denial of services. It may also affect mapping during routing, since a Sybil node creates illegal identities in a bid to break down the one-to-one mapping between each node. Sybil is common in P2P networks and also extends to wireless sensor networks [8]. Moreover, detection and defense against Sybil attack is more challenging; this is due to the limited energy and computational capabilities of WSNs. Different efforts had been developed to thwart Sybil attack in WSN. An example is the use of a pair-wise key-based detection scheme which sets a threshold for the number of the identity that a node can use [21]. However, this requires pre-assignment of keys to sensor node.
\nAnother way to thwart Sybil attack is to validate identity of every node involved in routing. This can be reactively or proactively done. Reactively means prior to routing, a node must provide enough identification parameters to differentiate it from all other sensor nodes. The most common method is a resource test. Another way is to increase the cost against the benefit in identity generation [8]. That is, increasing cost of creating an identity and reducing the possible of having multiple identities will thwart Sybil attack, since the goal of a Sybil attacker is to acquire more identities. Also, traceable pseudonym and network-node identity generated by base station can be used to prevent a Sybil attack [9, 26].
\nThis attack prevents the sink node (base station) from obtaining the complete and correct data from the sensors, thus posing a threat to higher layer applications. In this attack, an adversary makes itself receptively attractive to its neighboring nodes in order to direct more traffics to itself [27, 28]. This results in adversary attracting all the traffics that is meant for the sink node. The adversary can then launch a more severe attack on the network, like selective forwarding, modifying, or dropping the packets. WSN is more vulnerable to this attack because its nodes most of the time send data to the base station [29].
\nMeanwhile, a point-to-point authentication between source node, identifiable intermediate nodes, and end-to-end symmetric encryption between source and destination nodes can be used prevent sinkhole, Sybil, and sinkhole attacks. The attack is foiled once the adversary could not decrypt end-to-end symmetric encrypted data even if it successfully impersonates the node and receives its data packet [9].
\nIn a clone attack, the attacker first attacks and captures the legitimate sensor nodes from the WSNs, collects all their information from their memories, copies them on multiple sensor nodes to create clone nodes, and finally deploys them to the network. Once a node is clone, adversary can then launch any other attacks. There are two different ways of detecting this attack: centralized and distributed approaches. Centralized uses sink node to detect and foil the activities of clone nodes, while distributed approach uses selected nodes to detect clone nodes and foil their activities in the network. Distributed approach is suitable for static WSNs because distributed techniques use nodes’ location information to detect clones and sensor nodes with the same identity, but different addresses are taken as clone nodes. Meanwhile, in mobile WSNs, it is a different thing entirely, sensor nodes keep changing their position, and these nodes keep joining and leaving the network. Hence, node location information is not considered as the best technique for detecting clone nodes. Clone node can launch the following attacks:
\nMulti-hop-based WSN routing protocols assumed that all the neighboring nodes must re-hop their received data packets. Malicious nodes selectively forward some packets while dropping the others. Selective forwarding attacks are most effective when the adversary is actively involved in the data flow.
\nThis attack utilizes the connection between nodes. Most routing protocols require sensor nodes to broadcast HELLO packets to announce themselves to their neighboring nodes. An adversary may exploit this to deceive sensor nodes receiving the HELLO packet that they are within the radio range of the source node. In [30], the authors proposed a new method for detecting the HELLO flood attack based on distance. Here, nodes not only compare the RSS of the received HELLO packet but also compare the node’s distance to the selected cluster head (CH) with the threshold distance. Only those nodes whose RSS as well as distance falls within the threshold limits are allowed to join the network. For example, in the setup phase of LEACH protocol [31], CH sends its own location coordinates. The nodes receiving HELLO packets from CH calculate the distance \n
Here, (x1; y1) are the coordinates of the sensor node receiving the packet, and (x2; y2) are the coordinates of CH. Each sensor node calculate the radio signal strength value (\n
This type of attack exploits the weaknesses in the sensor network, by attempting to disrupt the sensor network. Denial of service (DoS) attack denies services to valid users [32]. In a safety-critical network, this kind of attack can be disastrous to the functionality of the network. One of the methods engaged by adversary to launch DoS is by flooding the network with messages in order to increase traffics on the network. The DOS attack can be detected through proper filtration of incoming messages based on the contents and identifying nodes with high number of faulty messages. Faulty messages are detected by checking for the contradiction between messages sent by neighboring nodes [33].
\nRecently, application of WSN has gained massive attention leading to new security challenges and design issues [34]. In this section, we discussed relevant research efforts on the development of security schemes for WSN using different approaches such as effective key management, public key infrastructure (PKI), multiclass nodes, as well as grouping of nodes to improve the security of routing protocols in WSNs.
\nDu et al. presented a scheme with an example of an effective key management. Their scheme takes advantage of the high-end sensors in the heterogeneous networks. The performance evaluation and security analysis of their scheme show that the key management scheme provides better security with less complexity than the existing key management schemes [35]. The protocol pre-assigns a few keys in the L-sensor and a few keys to every H-sensor. This is because H-sensor is tamper-proof and has a larger memory than L-sensor. Their scheme uses asymmetric pre-distribution (AP) key management scheme since the number of pre-distributed keys in an H-sensor and in an L-sensor is different [12].
\nYu in [36] solved the security problem in WSN using the public key cryptography as a tool to ensure the authenticity of the sink node or base station. The approach consists of two phases; the first phase is node to sink handshake phase, where sink and sensor nodes set up session keys for secure data exchange. In the second phase, the session keys are used to encrypt data. Their scheme is very easy to implement, and requires a low computational power. The only limitation of their scheme is that all the participating nodes in the network have to agree on a common key prior to the exchange of data. However, any scheme based on a single key is vulnerable to the key compromise. That is, a compromised sensor node will not only compromise the shared key but also the whole network.
\nAlso, Chen et al. [37] presented a PKI-based approach to ensure secure keys exchange in the WSNs. Their scheme provides key management mechanism for wireless sensor network applications that can handle sink mobility and deliver data to neighboring nodes and sinks without failure. They also presented a method for detecting and thwarting DoS attack and data authentication encryption.
\nDu et al. [38] presents a new secure routing protocol for heterogeneous sensor networks (HSNs), which is a two-tier secure routing (TTSR) protocol. The TTSR protocol consists of both intra-cluster routing and inter-cluster routing schemes. The intra-cluster routing forms a minimum spanning tree (shortest path tree) among L-sensors in a cluster for data forwarding. In case of inter-cluster routing, data packets are sent by H-sensors in the relay cells along the direction from the source node to the sink node. The tree-based routing and relay via relay cells of TTSR make it resistant to spoofing, selective forwarding, and sinkhole and wormhole attacks.
\nDu [39] also proposed a novel QoS routing protocol that includes bandwidth calculation and slot reservation for mobile ad hoc networks (MANETS). Their QoS routing protocol takes advantage of the numerous transmission ability of multi-class nodes. Their protocol used three encryption keys:
A public key known by the sink and all other nodes
Node private key shared by two neighbor nodes and refreshed in the route discovery phase
A share primary key between node and sink node
The QoS routing protocol divides transmission data into different data slices. Each slice is route through a unique route of the discovered multipath.
\nIn group-based WSN security scheme, the dominating node processes the sensed information locally and prepares the authenticated report for the destination node [40]. In this category, sensor nodes are grouped into smaller clusters wherein each cell assigns a special sensor node to carry out all the burden of relaying multi-hop packets. Hence division of labor is possible in the network, which makes the scheme to consume low power. Zhang et al. in [41] presented a group-based security scheme for distributed wireless sensor networks; their scheme involves three entities: one or more sink nodes, Y number of group dominator nodes, and N number of ordinary sensor nodes.
\nPoint-to-point security solution involves secure routing between every two nodes along the multi-hop path. To show the design and efficacy of point-to-point solution, we fully describe a typical point to point security solution for multi-hop based WSNs proposed in [9]. Olakanmi and Dada [9] proposed an effective point-to-point security scheme that engages point-to-point (PoP) mutual authentication scheme, perturbation, and pseudonym to overcome security and privacy issues in WSNs. To reduce computational cost and energy consumption, they used elliptic curve cryptography, hash function, and exclusive OR operations to evolve an efficient security solution for a decentralized WSNs. The network model, as shown in Figure 3, consists of base station (BS), immediate node (IN), source node (SN) or (sn), and destination node (DS) or (ds). The SNs and DSs are capable of multi-hop transmission; therefore any SN can become DS and vice versa.
\nWireless sensor network system model.
The PoP security scheme consists of the following phases: registration and key management, secure data exchange, perturbs generation, signature and obfuscation, authentication, and verification and decryption phases.
\nThe serial number ψ of each node is sent to BS. BS then generates unique pseudonym and network-node identity as follows:
BS randomly generates \n
Each node i randomly selects a unique \n
BS then computes \n
On the receipt of its encrypted pseudonym, each node then generates its corresponding node-base station shared key as γ\n\ni → bs\n = riφ and uses it to decrypt the received encrypted pseudonym.
To send data M, the primary SN signs M and generates perturb to secure M. It then encrypts the obfuscated message packet as σ, using its node-destination shared key ϕsn→ds. The message packet σ contains the signature δ, perturbed data \n
The perturbation enforces first level of security on the data. It is used to remove semantic pattern caused by wide variation in the transmitted data. The perturbation uses a novel additive noise generation method to perturb the data M. Primary source and destination nodes independently generate a set of perturb \n
The SN and its destination node generate their perturbation parameters \n
Using the destination perturbation parameter \n
For session, SN generates the perturbation chain as \n
Primary SN computes new perturb for every new data transmission of the same session by repeating step c using the previously used perturb \n
Primary source node signs and perturbs the data packet through the following process:
Both the SN and destination nodes compute the source-destination shared session key ϕsn → ds\n as follows:
SN and destination nodes uniquely generate κ1 and κ2, respectively.
SN extracts the two-way distribution parameter of destination node βds to compute ϕsn → ds\n as ϕsn → ds\n = κ1βds\n.
Sign its data M using its source-destination shared session key ϕsn → ds as δ = H ϕsn → ds\n (M), perturbs M as \n
SN finally generates its message packet as σ = δ||\n
SN then performs PoP authentication with its IN, as described in the next section, before hopping \n
After the signature and perturbation phase, the source node initiates the PoP authentication with the IN as follows:
SN generates an authentication token \n
SN and IN randomly generate υ ∈ \n
SN then encrypts the concatenated authentication token ω, pseudonym of source, pseudonym of IN, and time stamp as Eφsn → in\n (ω||Fsn\n||Fin\n||ts\n), concatenates it with nsn as Eφsn → in\n(ω||Fsn\n||Fin\n||ts\n))||nsn\n, and sends it to its IN.
On the receipt of Eφsn → in\n(ω ||Fsn\n||Fin\n||ts\n)||nsn\n, IN extracts nsn\n then computes its φ in→sn\n = ε.n\nsn\n. It decrypts the received Eφsn → in\n(ω||Fsn\n||Fin\n||ts\n) using its φsn → in\n to extract ω and ts. It, thereafter, re-encrypts the extracted ω and ts\n, using φin → sn\n, and sends it back to the SN. The SN decrypts it using its φsn → in\n and verifies it by comparing the ω and ts with their original values. If equal, SN hops its encrypted data packet σσ. The IN then becomes temporary SN and repeats this phase with its selected IN until the packet gets to the destination node.t
Destination node extracts and authenticates the received data M by following this procedure:
Destination node extracts the two-way distribution parameter of SN and βsn and computes destination of the used perturb P.
Destination node regenerates the used perturb \n
Destination node verifies the signature by re-signing the unblinded message \n
This chapter shows overview of wireless sensor networks with its security and privacy framework. The chapter proffers to readers an in-depth understanding of security and privacy issues as related to WSNs. Some existing research in WSN routing protocols are discussed. This chapter also helps researchers to understand the current trends in WSNs routing protocols and security schemes.
\nTwo and a half billion years ago a natural fission reactor operated on the Earth (Oklo). The discovery of this natural energy source created a series of theories and had implications yet to be evaluated both on the man-made artifacts of similar type and on some fundamentals considered so far as improbable to be challenged in quantum physics, biology, ecology, nuclear reactor theory. It also has an impact on knowledge management, on the epistemology and ethics. Aspects of the implications for mankind and the lessons learnt so far on the actions to build a sustainable civilization are presented in this chapter.
In 1972 the international community involved in the research, design and operation of MMES of fission type reactors was surprised and challenged by a discovery of the remains of an ancient natural fission reactor, in Oklo (Gabon). It was a NES type reactor (NES_Oklo).
However the discovery was predicted long time before by PK Kuroda [1]. The reactor in Gabon operated, intermittently, two and a half billion years ago for about two hundreds millions year and had an approximate power of 100 kW. It operated with uranium ore (using the isotope U235) and water [2, 3, 4, 5].
As the reactor physics classic results show, this would not be possible, provided the concentration of U235 (considered as a constant for the whole universe) being presently 0.71% was not higher (around 3.3%) by the time the reactor started operating. And this is not all. The reactor had to have a concentrated amount of U235 in a place forming a geometry and a configuration of cooling (with cooling water) of a very specific precise type. Apparently cyanobacteria concentrated the uranium and the water from the underground, pushed by the geological moves by that time (Africa and South America were splitting apart) created actually the reactor core, as called in the nuclear engineering. Even more than that, the type of soil assured the retention of the radioactive elements resulted from fission, which actually did not migrate further than the site.
All those aspects were very troubling for the nuclear community. In addition the calculations for the MMES reactors were seriously challenged when they were used to describe NES_Oklo.
Findings did not stop here, as series of other theories were developed, as for instance:
Theories related to how the oxygen formation (taking place exactly by that time) were related to the activity of the geyser nuclear reactor splitting water vapors, as water got overheated, to the atmosphere.
As for the biology the time of NES_Oklo operation is also coincident with the appearance of eukaryotes, living beings having cells with nucleus in a membrane, to which we also belong.
As a top of troubling discoveries, the site evaluations challenged some fundamentals of quantum mechanics and relativity, related to the alpha constant and the speed of light.
Not to mention the fact that new theories and observations started to assume that, may be even the Earth core is a nuclear fission reactor and may be Oklo was not the only surface reactor.
More than that evidence on existence of fission reactors is found also in our neighboring planets (Mars), all taking place at a certain time of evolution of energy chains of the universe, of the solar system and of our Earth. Operation of such NES reactors appears to give serious inputs on how an ecological type of such source of energy might be designed by mankind. All those aspects are really of high interest and researches are going on.
A troubling set of correlations and coincidences illustrate for this particular case how various phenomena with their lifecycles, their appearance, and development are connected to each other and how Mother Nature gives us lessons on how to manage complicated lifecycles of high energies without damaging it.
There is a vast literature on Oklo reactor, of which the references are representative in our view. The references could be started with the works of PK Kuroda, who predicted the first the possibility of the existence of a natural fission reactor on Earth.
This chapter will focus only on the lessons learnt so far. However, there are more than only natural sciences implications, but also on the manner we acquire knowledge, on how we build models and interact with their reality and how we related to their lifecycles.
Therefore the chapter will not address the details of the researches on Oklo, but rather the lessons learnt to the humanity for such a discovery. The approach adopted in the presentation of Oklo lessons in this chapter is also based on some author’s researches on the philosophy of science and models proposed to consider, model and interact with the energy sources, by describing their creation/emergence, their lifecycle and their interaction with mankind and its knowledge.
For this endeavor, a systematic approach was adopted and presented previously [6, 7, 8, 9]. Based on this approach the NES and MMES are evaluated in their interaction and development/transformation from one to another in a systematic manner, which is based on some assumptions, as follows:
Energy sources create systems, which might be considered Complex Systems (CS) [6] These systems are composed of elements and connectors between them defined as categories, in the mathematical sense [6].
For the ES considered as CS, defined by NES and MMES, because they have a behavior of topological nature and for their models, a topological description is possible, as they
are described by invariants, that preserve their nature after transformations,
create complex networks fractal like structures and
their emergence/transformation from one phase/state/form/source to another takes place step by step [10].
The KP of a given ES for a given NES cannot be predicted in detail, but in its general features. The proposed approach considers that the KP generates a topological structure (K(i)) based on a set of relationships between the objects modeled and it is developed in accordance with a certain Theory (Th(K(i))). The topological structure resulting from the KP is in isomorphism with the topological structure describing the emergence rules of the NES from one state to another. The method is based on three principles [10]:
Principle 1: The topological structure K(i) is described by the notion of category considered as:
reflecting a hierarchical “matrioshka” type of structure
being a general description of cybernetic description of objects and models as “black-boxes” for each level of construction and for each object.
being described by objects, morphisms, and identity morphisms
Principle 2: KP is performed in iterations on the categories for each object and each level up to the moment of reaching a critical status due to number and type of paradoxes that result at each step.
The set of invariants (syzygies) is continuously optimized from diverse points of view (using tools from different sciences) and based on the existing results on them a final set of minimal syzygies for a given model—using a given scientific tool—is reached (Hilbert’s syzygy theorem).
The process of reaching a status for a set of syzygies is therefore predictable and has an end. However the end state described by the resultant set of syzygies in that KP phase may not correspond to the real object. Therefore, a new iteration using another type of methods—analogy from another science that the previous iteration—is used for a new iteration.
The KP with these new tools will lead to another set of syzygies and have a status of paradoxes in comparison with the real object that will require a new iteration etc.
An example of NES group is presented in this paragraph. NES are assumed to consist of the following levels of energy sources (NES):
Subquantic (SQ)
Quantic (Q)
Electromagnetic (EM)
Molecular (MO)
Molecular and life (MOL)
Conscious planetary life (CPL)
Stellar and universe not alive (SUNA)
Stellar and universe life (SUA)
Conscious stellar and universe (CSU)
Principle 3: KP is asymptotically stable and complete. However the resultant final structure of this process, which is a CAS, may not be known by its detailed phenomenological characteristics, nor predicted, but rather known for its dominant syzygies.
The invariants are called syzygies and they are in the format described by formulas (1) and (2).
There are some specific generators (in the sense of syzygy theory) for a K(i) structure built for NES:
Exergy (Ex) of a NES (defined as the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir), as a measure of the efficiency of an energy conversion process. This generator has some specific characteristics:
It is conserved only when all processes of the system and the environment are reversible
It is destroyed whenever an irreversible process occurs.
Entropy in a thermodynamic (EnTh) interpretation as a measure of disorder
Information entropy (EnI) (as a measure of knowledge limits themselves)
Synergy (Sy) as a measure of a resultant set of features for a NES appearing from the existence and interaction of all systems and subsystems, leading to a set of characteristics for the whole NES than exist in the sum of its parts
Emergence (Em) from one level to another (in the example for NES presented from SQ to CSU) a process in which larger entities, patterns, and regularities arise through interactions among smaller or simpler entities that themselves do not exhibit such properties and evolve to new levels.
Nonlinearity (even for simple systems) and/or complexity (NlnCx) of NES as sources of chaotic structure and behavior
Features of CAS—fractals type of structure (Fr) of NES and K(i) knowledge topological structures built for them.
The physical meaning of the dominating syzygies, defining the phase change of ES (NES and MMES) is that they are a triadic set of characteristics of the state of the ES/syzygies and are [10, 11]:
Energy (E)
Mass (m)
Entropy (ψ)
These are optimal descriptors of each ES state and are described by the formulas (3)–(5)
where
E0, m0, ψ0 –and E1(k)*i1(k); m1(k)*i1(k) ψ 1(k)*i1(k) (Noted for the states 0 and 1) define the term called real energy/mass/entropy; examples of energy in such states are the energies perceived at Earth level by a human observer (including such as NES_Oklo), defining the Real Reality.
indexes 2 and 3 the simple complex part (for the states 2 and 3); examples of states of this type are the paranormal phenomena, energies, information channels perceived by a human observer becoming part of the observed object, defining the Intuition Reality of the second level Realm (cosmic) and
the rest of components are the hyper-complex part (for the states 4–8); examples are states of paradoxical situations coming from other realities and totally unexplainable for a human observer, but managing them by enantiotropy feedback chain (entropy of states of the triadic ES) and they are our connection to the Universe Realm and diverse realities (Universes) (formula (6))
The entropy has the following dominant syzygies for each state, as follows [11]:
Thermodynamic entropy, for the states 0 and 1 for the real states
Shannon entropy for the states 2 and 3, for the simple complex states
Enantiotropy for the states 4–8
The triadic set of syzygies defined the set of Realities (as in formula (6))
ES and their models define topological algebraic spaces, which might be represented as polyhedral type, describing their states and illustrating the optimal cases.
The description of emergence/transformation of one source in another or of passage from one phase to another is based on the method presented in [6, 10].
ES and their models exist in two types of interconnections, with:
Other natural phenomena
At a given level of civilization
For instance NES_Oklo appeared 2.5 billion years ago, while the “Reactor designer” had at its disposal:
A certain geological configuration
A certain status of living beings
A certain status of interface with cosmos
No existing civilization
Environment as we know being under construction
However, the interpretation we make of this source is done at a certain level of our civilization (in its very early beginnings, judging by the criteria of what kind of energy we could harness) [6]. We are far away by several centuries before being able to harness the energy of our sun, which is quite a primitive phase. On the other side, our KP is based on an extremely advanced tool (the interdisciplinary and trans disciplinary one) which may push us to advance much faster than we may envisage now. However, the stronger the forces we harness, the higher the risk to get to the finish of civilization by self-destruction.
We are at a crossroad of the evolution and lessons from NES like Oklo are extremely useful, as they show us how to harness better high energy with high risk sources [6].
In our present knowledge the KP assumes for the ES cases a set of assumptions generated by the paradigms, creating paradoxes, as for instance [6]:
Paradigm 1-ES as a CS: A modeling system has to be built in order to represent Risk Analyses for ES (RES) as a complex system, too. RES is converging to a stable unique real state. However the KP results, including those RES are limited by our present knowledge, as described by the real Earth level mentioned above.
Paradigm 2: ES model involves knowledge of the risks associated to a certain source of energy. However, usually we actually are not aware of the real risks and we know very little about the interconnections of lifecycle dangers for interfering processes (energy level, emergence correlated with civilization one or with geological one etc.)
Paradigm 3: Details of ES and their lessons learnt. We design ES (MMES) for which Nature already indicated the optimal solutions. However, due to our reduced technical and scientific level at a certain moment we cannot understand the lessons from the beginning, but step by step.
Paradigm 4: Understanding the ES risks (RES) and defining them is a difficult task as we design first of a kind MMES and as we are not aware of all the aspects of the lifecycle. The MMES are challenged inevitably by serious events, which apparently test the design continuously.
Paradigm 5: ES risk analyses results are seen as inputs to decision making risk calculation results are used for decisions. However we are facing decisions under high uncertainties and the use of lateral thinking is decisive.
Paradigm 6: In the ES risk analyses results there are limits and biases specific to the level of knowledge of that issue, but also there are “hidden” biases due to the level of KP in the whole civilization at that moment. Inter and trans disciplinarity is not just a desired option, but a mandatory one to minimize such biases.
Paradigm 7: RES results evaluation for further iterations in the.KP is an iterative process and the Principle 3 mentioned above applies. The result could be a better understanding by the use of diverse tools, as for instance the information one can get by “backward engineering” from natural examples.
NES_Oklo sends to us messages. By diverse evaluations one could mention so far messages as the following:
The issue of the meaning of risk analyses for ES is very important, as the lessons learnt from NES_Oklo show. NES_Oklo was a combined non-live living organisms operation to produce energy. This is a high important topic for the future MMES to be designed by assuming the use of Artificial Intelligence, may be also natural and living organisms, etc. The evolution of our civilization and/or possible future interactions at cosmic level require a clear strategy on how to proceed if combined (natural, artificial, living non-living, etc.) energy sources production is to be evaluated and designed.
NES_Oklo teaches us on the absolute importance of intrinsic safety (the reactor operated, got decommissioned without being of any harm to its environment, but on the contrary, being part of the evolution “plan”).
NES_Oklo has the following features of importance for future evolutive MMES to be designed, built and operated by the mankind:
The limits of NES_Oklo were very well defined for all its lifecycle phases
During operation
Geometry stability of the core assured by the rocks configuration (the concrete part of any MMES)
Climate was stable in the parameters of the period
Interface with living organism was designed to be not only harmless, but also useful for both sides (cyanobacteria were prosperous for several millions of years).
During decommissioning
There was no migration beyond the site of the heavy radioactive solid waste.
The aerosols were actually part of the plan to rebuild the Earth atmosphere and generate new living beings—eukaryotes.
Apparently the design assumed how to better decommission it at the end of the lifecycle. Thinking of decommissioning from the research phase is a mandatory requirement for a well-designed MMES.
There is a fractal like design of the whole NES_Oklo reactor, as for instance the manner the following reactor functions were assured, as reflection at lower levels of the same principles:
Fuel load (uranium 235) to the reactor core, assured by cyanobacteria, as an intrinsic self-regulated process, in mirror with the operation of the whole reactor.
Diffusion of small distances in the specific rock of the site (several meters for more than 2 billion years [12]).
Radioactive radio-sols were part of the creation of new living organisms; therefore the containment was the whole atmosphere, without damaging it, but helping it.
There was an intrinsic safety assured by delayed neutrons, preventing transformation of the reactor into a bomb
The validity of reactor physics codes used for MMES was highly challenged. Although it seems so far that they could reproduce the reactor core design, there are yet issues to be clarified.
NES_Oklo has a direct impact on the lifecycle preparation of existing and future MMES, as follows:
Review the type of best plant control—centralized versus decentralized
Review of the safety analyses models for all the lifecycles and especially for decommissioning
Review existing researches on the future man machine interface for new reactors, role of artificial intelligence and the role of KP and generations to operate the plants
Set the goal of maximum simplification of MMES, counting to the highest extent possible on passive features and intrinsic safety protection.
Review the manner various phenomena are modeled for the reactor in coupled computer codes and either use higher computing capacities or simplify them
Design MMES as part of regional/global energy sources systems, integrated in the environment, based on ecological principles.
Several aspects from fundamental quantum mechanics and theory of relativity are yet to be reviewed, as the NES_Oklo measurements are challenging some of them
How constant is the alpha constant and the role of the amazing number 137 in the architecture of the universe
It appears that some constants are not so constant (for instance speed of light). If so the impact is very high on many aspects already considered confirmed and taboo to be challenged. An epistemic revolution is to be generated in Physics on the way to change the existing paradigms.
There is an amazing set of coincidences to have a reactor core designed (geological, biological, cosmic, etc.). If the rare coincidence might be more or less accepted, the troubling finding that the NES_Oklo is not the only one of this type leads to the debate about anaphatic and kataphatic approaches to the understanding of the Designer of the world.
The NES_Oklo operated from the design to decommissioning phase as a cybernetic machine understandable with high level cybernetics considering all the three levels from formulas (3)–(6)—real, simple complex and hyper-complex. The hyper-cybernetics, governed by the feedback control via the enantiotropy (entropy of the optimal ES states) is a very possible answer to previous questions. High level cybernetics—the cybernetics of CS states is indicated as describing such systems.
NES_Oklo raises a series of philosophical debates, too:
The evolution of life on Earth, the meaning of life and the role of randomness (if any) in its emergence and evolution.
The future of our civilization and how to use better the lessons so that to avoid destroying ourselves by the time we harness more and more powerful energy sources.
Why and how was it possible at a certain moment in time to have NES_Oklo? How to explain strange coincidences of NES_Oklo with eukaryotes, Earth terraforming and conditions for us to appear in the evolution (or what?) chain.
How to understand/manage messages for which we do not have yet the capability to understand, as they are from the category of hyper complex reality?
NES_Oklo had so far a significant impact on nuclear physics and nuclear engineering. However, its impact is yet to be completed, as new investigations and interdisciplinary works discover unexpected facts of the lessons transmitted by Oklo to us.
NES_Oklo is an example of how to build and operate an optimal, environmental friendly, for all lifecycle phases, nuclear fission reactor.
Summarizing, its lessons are related to:
Improvement of the design strategies for new MMES
Lessons on how to solve the waste management problem
The high advantages of using combined live-non alive elements in the fuel cycle
Foster the fundamental research in quantum mechanics, as the lessons are that, we are not yet understanding even basic aspects (as for instance the role of various universal constants)
Review the models we build for the Physics and ES and improve the KP for those aspects by using systematic approaches
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"247",title:"Automation",slug:"automation",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:10,numberOfAuthorsAndEditors:205,numberOfWosCitations:232,numberOfCrossrefCitations:209,numberOfDimensionsCitations:409,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"automation",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5809",title:"Service Robots",subtitle:null,isOpenForSubmission:!1,hash:"24727d51a5f26cb52694ad979bbbc1f8",slug:"service-robots",bookSignature:"Antonio J. R. Neves",coverURL:"https://cdn.intechopen.com/books/images_new/5809.jpg",editedByType:"Edited by",editors:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5798",title:"Surgical Robotics",subtitle:null,isOpenForSubmission:!1,hash:"0b5965ad361c21e8be05cdd6cce1293a",slug:"surgical-robotics",bookSignature:"Serdar Küçük",coverURL:"https://cdn.intechopen.com/books/images_new/5798.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"889",title:"Robotic Systems",subtitle:"Applications, Control and Programming",isOpenForSubmission:!1,hash:"e560d53a4116a307638d95c63c1a78a3",slug:"robotic-systems-applications-control-and-programming",bookSignature:"Ashish Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/889.jpg",editedByType:"Edited by",editors:[{id:"80372",title:"Dr.",name:"Ashish",middleName:null,surname:"Dutta",slug:"ashish-dutta",fullName:"Ashish Dutta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"152",title:"Robot Arms",subtitle:null,isOpenForSubmission:!1,hash:"ad134b214c187871a4740c54c479eccb",slug:"robot-arms",bookSignature:"Satoru Goto",coverURL:"https://cdn.intechopen.com/books/images_new/152.jpg",editedByType:"Edited by",editors:[{id:"6232",title:"Prof.",name:"Satoru",middleName:null,surname:"Goto",slug:"satoru-goto",fullName:"Satoru Goto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3593",title:"Remote and Telerobotics",subtitle:null,isOpenForSubmission:!1,hash:"06ddc7871a0815453ac7c5a7463c9f87",slug:"remote-and-telerobotics",bookSignature:"Nicolas Mollet",coverURL:"https://cdn.intechopen.com/books/images_new/3593.jpg",editedByType:"Edited by",editors:[{id:"6147",title:"Dr.",name:"Nicolas",middleName:null,surname:"Mollet",slug:"nicolas-mollet",fullName:"Nicolas Mollet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3690",title:"Robotics and Automation in Construction",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robotics_and_automation_in_construction",bookSignature:"Carlos Balaguer and Mohamed Abderrahim",coverURL:"https://cdn.intechopen.com/books/images_new/3690.jpg",editedByType:"Edited by",editors:[{id:"81514",title:"Dr.",name:"Carlos",middleName:null,surname:"Balaguer",slug:"carlos-balaguer",fullName:"Carlos Balaguer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3694",title:"New Developments in Robotics Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new_developments_in_robotics_automation_and_control",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3694.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3692",title:"Frontiers in Robotics, Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"frontiers_in_robotics_automation_and_control",bookSignature:"Alexander Zemliak",coverURL:"https://cdn.intechopen.com/books/images_new/3692.jpg",editedByType:"Edited by",editors:[{id:"3914",title:"Prof.",name:"Alexander",middleName:null,surname:"Zemliak",slug:"alexander-zemliak",fullName:"Alexander Zemliak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3607",title:"Automation and Robotics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"automation_and_robotics",bookSignature:"Juan Manuel Ramos Arreguin",coverURL:"https://cdn.intechopen.com/books/images_new/3607.jpg",editedByType:"Edited by",editors:[{id:"6112",title:"Dr.",name:"Juan-Manuel",middleName:null,surname:"Ramos-Arreguin",slug:"juan-manuel-ramos-arreguin",fullName:"Juan-Manuel Ramos-Arreguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"5555",doi:"10.5772/5865",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"56199",doi:"10.5772/intechopen.69874",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"27402",doi:"10.5772/25756",title:"Novel Assistive Robot for Self-Feeding",slug:"novel-assistive-robot-for-self-feeding",totalDownloads:5774,totalCrossrefCites:15,totalDimensionsCites:21,book:{slug:"robotic-systems-applications-control-and-programming",title:"Robotic Systems",fullTitle:"Robotic Systems - Applications, Control and Programming"},signatures:"Won-Kyung Song and Jongbae Kim",authors:[{id:"64432",title:"Dr.",name:"Won-Kyung",middleName:null,surname:"Song",slug:"won-kyung-song",fullName:"Won-Kyung Song"},{id:"72153",title:"Dr.",name:"Jongbae",middleName:null,surname:"Kim",slug:"jongbae-kim",fullName:"Jongbae Kim"}]}],mostDownloadedChaptersLast30Days:[{id:"56199",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"73486",title:"Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation",slug:"application-of-artificial-intelligence-ai-in-prosthetic-and-orthotic-rehabilitation",totalDownloads:307,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"service-robotics",title:"Service Robotics",fullTitle:"Service Robotics"},signatures:"Smita Nayak and Rajesh Kumar Das",authors:[{id:"204704",title:"Mrs.",name:"Smita",middleName:null,surname:"Nayak",slug:"smita-nayak",fullName:"Smita Nayak"},{id:"321308",title:"Dr.",name:"Rajesh",middleName:null,surname:"Das",slug:"rajesh-das",fullName:"Rajesh Das"}]},{id:"55313",title:"The Surgical Robot: Applications and Advantages in General Surgery",slug:"the-surgical-robot-applications-and-advantages-in-general-surgery",totalDownloads:1358,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Rodolfo José Oviedo Barrera",authors:[{id:"204248",title:"Dr.",name:"Rodolfo",middleName:"José",surname:"Oviedo",slug:"rodolfo-oviedo",fullName:"Rodolfo Oviedo"}]},{id:"55664",title:"Bilateral Axillo-Breast Approach Robotic Thyroidectomy: Introduction and Update",slug:"bilateral-axillo-breast-approach-robotic-thyroidectomy-introduction-and-update",totalDownloads:1278,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Do Hoon Koo, Dong Sik Bae and June Young Choi",authors:[{id:"198460",title:"Dr.",name:"Do Hoon",middleName:null,surname:"Koo",slug:"do-hoon-koo",fullName:"Do Hoon Koo"},{id:"200696",title:"Prof.",name:"Dong Sik",middleName:null,surname:"Bae",slug:"dong-sik-bae",fullName:"Dong Sik Bae"},{id:"200697",title:"Prof.",name:"June Young",middleName:null,surname:"Choi",slug:"june-young-choi",fullName:"June Young Choi"}]},{id:"57523",title:"A Personal Robot as an Improvement to the Customers’ In- Store Experience",slug:"a-personal-robot-as-an-improvement-to-the-customers-in-store-experience",totalDownloads:964,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Joana Santos, Daniel Campos, Fábio Duarte, Filipe Pereira, Inês\nDomingues, Joana Santos, João Leão, José Xavier, Luís de Matos,\nManuel Camarneiro, Marcelo Penas, Maria Miranda, Ricardo\nMorais, Ricardo Silva and Tiago Esteves",authors:[{id:"199794",title:"Ph.D.",name:"Inês",middleName:null,surname:"Domingues",slug:"ines-domingues",fullName:"Inês Domingues"},{id:"199930",title:"MSc.",name:"Ricardo",middleName:null,surname:"Silva",slug:"ricardo-silva",fullName:"Ricardo Silva"},{id:"199974",title:"MSc.",name:"Luís",middleName:null,surname:"Matos",slug:"luis-matos",fullName:"Luís Matos"},{id:"205325",title:"MSc.",name:"Daniel",middleName:null,surname:"Campos",slug:"daniel-campos",fullName:"Daniel Campos"},{id:"205326",title:"MSc.",name:"Joana",middleName:null,surname:"Santos",slug:"joana-santos",fullName:"Joana Santos"},{id:"205327",title:"MSc.",name:"João",middleName:null,surname:"Leão",slug:"joao-leao",fullName:"João Leão"},{id:"205328",title:"MSc.",name:"José",middleName:null,surname:"Xavier",slug:"jose-xavier",fullName:"José Xavier"},{id:"205329",title:"MSc.",name:"Manuel",middleName:null,surname:"Camarneiro",slug:"manuel-camarneiro",fullName:"Manuel Camarneiro"},{id:"205330",title:"MSc.",name:"Marcelo",middleName:null,surname:"Penas",slug:"marcelo-penas",fullName:"Marcelo Penas"},{id:"205331",title:"MSc.",name:"Maria",middleName:null,surname:"Miranda",slug:"maria-miranda",fullName:"Maria Miranda"},{id:"205332",title:"Mrs.",name:"Ricardo",middleName:null,surname:"Morais",slug:"ricardo-morais",fullName:"Ricardo Morais"},{id:"205333",title:"Dr.",name:"Tiago",middleName:null,surname:"Esteves",slug:"tiago-esteves",fullName:"Tiago Esteves"}]},{id:"54250",title:"The Next-Generation Surgical Robots",slug:"the-next-generation-surgical-robots",totalDownloads:2624,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Zheng Wang, Sicong Liu, Jing Peng and Michael Zhiqiang Chen",authors:[{id:"197125",title:"Dr.",name:"Zheng",middleName:null,surname:"Wang",slug:"zheng-wang",fullName:"Zheng Wang"},{id:"197412",title:"Dr.",name:"Sicong",middleName:null,surname:"Liu",slug:"sicong-liu",fullName:"Sicong Liu"},{id:"204520",title:"Dr.",name:"Jing",middleName:null,surname:"Peng",slug:"jing-peng",fullName:"Jing Peng"},{id:"204521",title:"Dr.",name:"Michael",middleName:null,surname:"Chen",slug:"michael-chen",fullName:"Michael Chen"}]},{id:"5577",title:"Advanced Control Schemes for Cement Fabrication Processes",slug:"advanced_control_schemes_for_cement_fabrication_processes",totalDownloads:9422,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Susana Arad, Victor Arad and Bogdan Bobora",authors:null},{id:"56421",title:"Robotic Splenic Flexure and Transverse Colon Resections",slug:"robotic-splenic-flexure-and-transverse-colon-resections",totalDownloads:897,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Igor Monsellato, Maria Caterina Canepa, Vittorio d’Adamo,\nGiuseppe Spinoglio, Fabio Priora and Luca Matteo Lenti",authors:[{id:"80720",title:"Ph.D.",name:"Igor",middleName:null,surname:"Monsellato",slug:"igor-monsellato",fullName:"Igor Monsellato"},{id:"211489",title:"Dr.",name:"Fabio",middleName:null,surname:"Priora",slug:"fabio-priora",fullName:"Fabio Priora"},{id:"211494",title:"Dr.",name:"Maria Caterina",middleName:null,surname:"Canepa",slug:"maria-caterina-canepa",fullName:"Maria Caterina Canepa"},{id:"211495",title:"Dr.",name:"Vittorio",middleName:null,surname:"D'Adamo",slug:"vittorio-d'adamo",fullName:"Vittorio D'Adamo"},{id:"211500",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Spinoglio",slug:"giuseppe-spinoglio",fullName:"Giuseppe Spinoglio"},{id:"212109",title:"Dr.",name:"Luca Matteo",middleName:null,surname:"Lenti",slug:"luca-matteo-lenti",fullName:"Luca Matteo Lenti"}]},{id:"5555",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"55190",title:"Concept of Virtual Incision for Minimally Invasive Surgery",slug:"concept-of-virtual-incision-for-minimally-invasive-surgery",totalDownloads:832,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Yuki Horise, Atsushi Nishikawa, Toshikazu Kawai, Ken Masamune\nand Yoshihiro Muragaki",authors:[{id:"13925",title:"Prof.",name:"Atsushi",middleName:null,surname:"Nishikawa",slug:"atsushi-nishikawa",fullName:"Atsushi Nishikawa"}]}],onlineFirstChaptersFilter:{topicSlug:"automation",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/254272/antonio-simoes",hash:"",query:{},params:{id:"254272",slug:"antonio-simoes"},fullPath:"/profiles/254272/antonio-simoes",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()