Parameters used for the characterisation of compost organic matter, the information they provide and related references (adapted from Böhm, 2009)
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"6794",leadTitle:null,fullTitle:"Phytochemicals - Source of Antioxidants and Role in Disease Prevention",title:"Phytochemicals",subtitle:"Source of Antioxidants and Role in Disease Prevention",reviewType:"peer-reviewed",abstract:"Phytochemicals provides original research work and reviews on the sources of phytochemicals, and their roles in disease prevention, supplementation, and accumulation in fruits and vegetables. The roles of anthocyanin, flavonoids, carotenoids, and taxol are presented in separate chapters. Antioxidative and free radicle scavenging activity of phytochemicals is also discussed. The medicinal properties of Opuntia, soybean, sea buckthorn, and gooseberry are presented in a number of chapters. Supplementation of plant extract with phytochemical properties in broiler meals is discussed in one chapter. The final two chapters include the impact of agricultural practices and novel processing technologies on the accumulation of phytochemicals in fruits and vegetables. This book mainly focuses on medicinal plants and the disease-preventing properties of phytochemicals, which will be a useful resource to the reader.",isbn:"978-1-78984-378-1",printIsbn:"978-1-78984-377-4",pdfIsbn:"978-1-83881-711-4",doi:"10.5772/intechopen.72985",price:119,priceEur:129,priceUsd:155,slug:"phytochemicals-source-of-antioxidants-and-role-in-disease-prevention",numberOfPages:218,isOpenForSubmission:!1,isInWos:1,hash:"de750b7a7b62ae27896c73a630c39cb3",bookSignature:"Toshiki Asao and Md Asaduzzaman",publishedDate:"November 7th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6794.jpg",numberOfDownloads:14993,numberOfWosCitations:24,numberOfCrossrefCitations:20,numberOfDimensionsCitations:42,hasAltmetrics:1,numberOfTotalCitations:86,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 10th 2018",dateEndSecondStepPublish:"January 31st 2018",dateEndThirdStepPublish:"April 1st 2018",dateEndFourthStepPublish:"June 20th 2018",dateEndFifthStepPublish:"August 19th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"106510",title:"Dr.",name:"Toshiki",middleName:null,surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao",profilePictureURL:"https://mts.intechopen.com/storage/users/106510/images/system/106510.jpeg",biography:"Dr. Toshiki Asao is a specialist in hydroponic crop production and Professor at Department of Agriculture, Faculty of Life and Environmental Science, Shimane University, Japan. Dr. Asao is a native of Kyoto, Japan and received Ph.D. majoring Agriculture from Kyoto University. His main research focus is the development of hydroponic techniques for vegetables and ornamentals in greenhouses and also the development of specialty vegetables through hydroponics under controlled environment agriculture providing human health benefits beyond basic nutrition. His other research project is the studying autotoxicity in vegetables and ornamentals in hydroponics and developing possible control measures. He has published a number of scientific articles, book chapters, and edited books.",institutionString:"Shimane University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Shimane University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"171564",title:"Dr.",name:"Md",middleName:null,surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/171564/images/system/171564.jpeg",biography:"Dr. Asaduzzaman is a native of Bangladesh and received Ph.D. majoring Bioproduction Science from Tottori University, Japan. He has expertise in hydroponic crop production and currently working at Horticulture Research Centre, Bangladesh Agricultural Research Institute, Bangladesh. His main research focuses on the development of hydroponic techniques for fruits, vegetables and ornamentals in greenhouse, production of specialty crops under controlled environment agriculture and development of specialty dietary components through hydroponic production of vegetables providing human health benefits beyond basic nutrition. His other research project includes studying the autotoxicity, a phenomenon of intraspecific allelopathy in vegetables and ornamentals through hydroponics, and developing suitable control measures to overcome. He has published 24 journal articles and 4 book chapters in international SCI-indexed journals and books. He has been awarded Gold Medal from Bangladesh Agricultural University in 2011 and BAS-TWAS 2016 Prizes for the Young Scientists from Bangladesh.",institutionString:"Bangladesh Agricultural Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Bangladesh Agricultural Research Institute",institutionURL:null,country:{name:"Bangladesh"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"371",title:"Phytochemistry",slug:"agricultural-and-biological-sciences-plant-biology-phytochemistry"}],chapters:[{id:"64037",title:"Introductory Chapter: Phytochemicals and Disease Prevention",doi:"10.5772/intechopen.81877",slug:"introductory-chapter-phytochemicals-and-disease-prevention",totalDownloads:869,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Md Asaduzzaman and Toshiki Asao",downloadPdfUrl:"/chapter/pdf-download/64037",previewPdfUrl:"/chapter/pdf-preview/64037",authors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"},{id:"171564",title:"Dr.",name:"Md",surname:"Asaduzzaman",slug:"md-asaduzzaman",fullName:"Md Asaduzzaman"}],corrections:null},{id:"61539",title:"Phytochemicals—God’s Endowment of Curative Power in Plants",doi:"10.5772/intechopen.77423",slug:"phytochemicals-god-s-endowment-of-curative-power-in-plants",totalDownloads:1145,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Olayinka Temitayo Ogunmefun",downloadPdfUrl:"/chapter/pdf-download/61539",previewPdfUrl:"/chapter/pdf-preview/61539",authors:[{id:"243491",title:"Dr.",name:"Olayinka",surname:"Ogunmefun",slug:"olayinka-ogunmefun",fullName:"Olayinka Ogunmefun"}],corrections:null},{id:"62876",title:"Introduction to Phytochemicals: Secondary Metabolites from Plants with Active Principles for Pharmacological Importance",doi:"10.5772/intechopen.78226",slug:"introduction-to-phytochemicals-secondary-metabolites-from-plants-with-active-principles-for-pharmaco",totalDownloads:3999,totalCrossrefCites:4,totalDimensionsCites:7,signatures:"Nadia Mendoza and Eleazar M. Escamilla Silva",downloadPdfUrl:"/chapter/pdf-download/62876",previewPdfUrl:"/chapter/pdf-preview/62876",authors:[{id:"51406",title:"Dr.",name:"Eleazar",surname:"Escamilla Silva",slug:"eleazar-escamilla-silva",fullName:"Eleazar Escamilla Silva"},{id:"243304",title:"Ph.D. Student",name:"Nadia",surname:"Mendoza",slug:"nadia-mendoza",fullName:"Nadia Mendoza"}],corrections:null},{id:"60884",title:"Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases",doi:"10.5772/intechopen.76719",slug:"free-radicals-and-the-role-of-plant-phytochemicals-as-antioxidants-against-oxidative-stress-related-",totalDownloads:1943,totalCrossrefCites:10,totalDimensionsCites:23,signatures:"Godwill Azeh Engwa",downloadPdfUrl:"/chapter/pdf-download/60884",previewPdfUrl:"/chapter/pdf-preview/60884",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"}],corrections:null},{id:"62593",title:"Anthocyanins-Smart Molecules for Cancer Prevention",doi:"10.5772/intechopen.79613",slug:"anthocyanins-smart-molecules-for-cancer-prevention",totalDownloads:1647,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Zorița M. Diaconeasa, Alexandra D. Frond, Ioana Ştirbu, Dumitrița\nRugina and Carmen Socaciu",downloadPdfUrl:"/chapter/pdf-download/62593",previewPdfUrl:"/chapter/pdf-preview/62593",authors:[{id:"202954",title:"Associate Prof.",name:"Zorita",surname:"Diaconeasa",slug:"zorita-diaconeasa",fullName:"Zorita Diaconeasa"},{id:"224895",title:"Prof.",name:"Carmen",surname:"Socaciu",slug:"carmen-socaciu",fullName:"Carmen Socaciu"},{id:"258559",title:"MSc.",name:"Alexandra D.",surname:"Frond",slug:"alexandra-d.-frond",fullName:"Alexandra D. Frond"},{id:"258560",title:"MSc.",name:"Ioana",surname:"Stirb",slug:"ioana-stirb",fullName:"Ioana Stirb"},{id:"258561",title:"Prof.",name:"Dumitrita",surname:"Rugina",slug:"dumitrita-rugina",fullName:"Dumitrita Rugina"}],corrections:null},{id:"62634",title:"Role of Flavonoids as Wound Healing Agent",doi:"10.5772/intechopen.79179",slug:"role-of-flavonoids-as-wound-healing-agent",totalDownloads:1052,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Muhammad Shahzad Aslam, Muhammad Syarhabil Ahmad,\nHumayun Riaz, Syed Atif Raza, Shahzad Hussain, Omer Salman\nQureshi, Povydysh Maria, Zainab Hamzah and Osama Javed",downloadPdfUrl:"/chapter/pdf-download/62634",previewPdfUrl:"/chapter/pdf-preview/62634",authors:[{id:"124185",title:"Dr.",name:"Humayun",surname:"Riaz",slug:"humayun-riaz",fullName:"Humayun Riaz"},{id:"220324",title:"Dr.",name:"Muhammad Shahzad",surname:"Aslam",slug:"muhammad-shahzad-aslam",fullName:"Muhammad Shahzad Aslam"},{id:"220326",title:"Dr.",name:"Muhammad Syarhabil",surname:"Ahmad",slug:"muhammad-syarhabil-ahmad",fullName:"Muhammad Syarhabil Ahmad"},{id:"241239",title:"Prof.",name:"Syed",surname:"Atif Raza",slug:"syed-atif-raza",fullName:"Syed Atif Raza"},{id:"241240",title:"Dr.",name:"Shahzad",surname:"Hussain",slug:"shahzad-hussain",fullName:"Shahzad Hussain"},{id:"241242",title:"Dr.",name:"Osama",surname:"Javed",slug:"osama-javed",fullName:"Osama Javed"},{id:"241254",title:"Dr.",name:"Povydysh",surname:"Maria",slug:"povydysh-maria",fullName:"Povydysh Maria"},{id:"241260",title:"Prof.",name:"Zainab",surname:"Hamzah",slug:"zainab-hamzah",fullName:"Zainab Hamzah"},{id:"241294",title:"Mr.",name:"Omer Salman",surname:"Qureshi",slug:"omer-salman-qureshi",fullName:"Omer Salman Qureshi"}],corrections:null},{id:"61526",title:"Plant Extracts, Energy, and Immune Modulation in Broilers",doi:"10.5772/intechopen.77220",slug:"plant-extracts-energy-and-immune-modulation-in-broilers",totalDownloads:785,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Vasil Pirgozliev, Stephen C. Mansbridge, Paul Rose and David Bravo",downloadPdfUrl:"/chapter/pdf-download/61526",previewPdfUrl:"/chapter/pdf-preview/61526",authors:[{id:"239867",title:"Dr.",name:"Vasil",surname:"Pirgozliev",slug:"vasil-pirgozliev",fullName:"Vasil Pirgozliev"},{id:"239869",title:"Dr.",name:"Stephen",surname:"Mansbridge",slug:"stephen-mansbridge",fullName:"Stephen Mansbridge"},{id:"239870",title:"Dr.",name:"Stephen Paul",surname:"Rose",slug:"stephen-paul-rose",fullName:"Stephen Paul Rose"},{id:"239872",title:"Dr.",name:"David",surname:"Bravo",slug:"david-bravo",fullName:"David Bravo"}],corrections:null},{id:"61839",title:"Evaluation of Nutritional and Medicinal Properties of Opuntia elatior Mill",doi:"10.5772/intechopen.77081",slug:"evaluation-of-nutritional-and-medicinal-properties-of-opuntia-elatior-mill",totalDownloads:648,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Krishna N. Patel and Kalpeshkumar B. Ishnava",downloadPdfUrl:"/chapter/pdf-download/61839",previewPdfUrl:"/chapter/pdf-preview/61839",authors:[{id:"241647",title:"Dr.",name:"Kalpeshkumar",surname:"Ishnava",slug:"kalpeshkumar-ishnava",fullName:"Kalpeshkumar Ishnava"},{id:"244223",title:"Mrs.",name:"Krishna",surname:"Patel",slug:"krishna-patel",fullName:"Krishna Patel"}],corrections:null},{id:"61926",title:"Phytochemical Profiling of Soybean (Glycine max (L.) Merr.) Genotypes Using GC-MS Analysis",doi:"10.5772/intechopen.78035",slug:"phytochemical-profiling-of-soybean-glycine-max-l-merr-genotypes-using-gc-ms-analysis",totalDownloads:780,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Salem Alghamdi, Hussein Migdadi, Muhammad Khan, Ehab H. El-\nHarty, Megahed Ammar, Muhammad Farooq and Muhammad\nAfzal",downloadPdfUrl:"/chapter/pdf-download/61926",previewPdfUrl:"/chapter/pdf-preview/61926",authors:[{id:"242341",title:"Associate Prof.",name:"Hussein",surname:"Migdadi",slug:"hussein-migdadi",fullName:"Hussein Migdadi"},{id:"242343",title:"Prof.",name:"Salem",surname:"Alghamdi",slug:"salem-alghamdi",fullName:"Salem Alghamdi"},{id:"242344",title:"Dr.",name:"Muhammad",surname:"Altaf Khan",slug:"muhammad-altaf-khan",fullName:"Muhammad Altaf Khan"},{id:"242345",title:"Prof.",name:"Megahed",surname:"Ammar",slug:"megahed-ammar",fullName:"Megahed Ammar"},{id:"242346",title:"Prof.",name:"Ehab",surname:"Elharty",slug:"ehab-elharty",fullName:"Ehab Elharty"},{id:"242349",title:"Prof.",name:"Muhammad",surname:"Farooq",slug:"muhammad-farooq",fullName:"Muhammad Farooq"}],corrections:null},{id:"61610",title:"Qualitative Analysis of Phytochemicals from Sea Buckthorn and Gooseberry",doi:"10.5772/intechopen.77365",slug:"qualitative-analysis-of-phytochemicals-from-sea-buckthorn-and-gooseberry",totalDownloads:754,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ana-Alexandra Sorescu, Alexandrina Nuta, Rodica-Mariana Ion and\nLorena Iancu",downloadPdfUrl:"/chapter/pdf-download/61610",previewPdfUrl:"/chapter/pdf-preview/61610",authors:[{id:"171504",title:"Prof.",name:"Rodica-Mariana",surname:"Ion",slug:"rodica-mariana-ion",fullName:"Rodica-Mariana Ion"},{id:"241005",title:"Ph.D. Student",name:"Ana-Alexandra",surname:"Sorescu",slug:"ana-alexandra-sorescu",fullName:"Ana-Alexandra Sorescu"},{id:"243708",title:"Dr.",name:"Alexandrina",surname:"Nuta",slug:"alexandrina-nuta",fullName:"Alexandrina Nuta"},{id:"252704",title:"MSc.",name:"Lorena",surname:"Iancu",slug:"lorena-iancu",fullName:"Lorena Iancu"}],corrections:null},{id:"61377",title:"Potential Adverse Effects of Alteration of Phytochemical Accumulation in Fruits and Vegetables",doi:"10.5772/intechopen.77099",slug:"potential-adverse-effects-of-alteration-of-phytochemical-accumulation-in-fruits-and-vegetables",totalDownloads:732,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Sechene Stanley Gololo",downloadPdfUrl:"/chapter/pdf-download/61377",previewPdfUrl:"/chapter/pdf-preview/61377",authors:[{id:"241043",title:"Ph.D.",name:"Sechene",surname:"Gololo",slug:"sechene-gololo",fullName:"Sechene Gololo"}],corrections:null},{id:"61800",title:"An Evaluation of the Impact of Novel Processing Technologies on the Phytochemical Composition of Fruits and Vegetables",doi:"10.5772/intechopen.77730",slug:"an-evaluation-of-the-impact-of-novel-processing-technologies-on-the-phytochemical-composition-of-fru",totalDownloads:648,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Vishal Ganessingh, Raeesah Sahibdeen and Rohanie Maharaj",downloadPdfUrl:"/chapter/pdf-download/61800",previewPdfUrl:"/chapter/pdf-preview/61800",authors:[{id:"67589",title:"Dr.",name:"Rohanie",surname:"Maharaj",slug:"rohanie-maharaj",fullName:"Rohanie Maharaj"},{id:"242730",title:"Mr.",name:"Vishal",surname:"Gannesingh",slug:"vishal-gannesingh",fullName:"Vishal Gannesingh"},{id:"242731",title:"Mrs.",name:"Raeesah",surname:"Sahibdeen",slug:"raeesah-sahibdeen",fullName:"Raeesah Sahibdeen"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1781",title:"Hydroponics",subtitle:"A Standard Methodology for Plant Biological Researches",isOpenForSubmission:!1,hash:"071c412cbb627ba8c3a470c78f0ec085",slug:"hydroponics-a-standard-methodology-for-plant-biological-researches",bookSignature:"Toshiki Asao",coverURL:"https://cdn.intechopen.com/books/images_new/1781.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5945",title:"Amino Acid",subtitle:"New Insights and Roles in Plant and Animal",isOpenForSubmission:!1,hash:"b7d91fed8804240b70bcc3e803f3b73a",slug:"amino-acid-new-insights-and-roles-in-plant-and-animal",bookSignature:"Toshiki Asao and Md. Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/5945.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6996",title:"Strawberry",subtitle:"Pre- and Post-Harvest Management Techniques for Higher Fruit Quality",isOpenForSubmission:!1,hash:"dc740162f400a4dd3e9377a140424917",slug:"strawberry-pre-and-post-harvest-management-techniques-for-higher-fruit-quality",bookSignature:"Toshiki Asao and Md Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/6996.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3244",title:"Soybean",subtitle:"Bio-Active Compounds",isOpenForSubmission:!1,hash:"b21aa6107fce439bd06d53fbe0bc3c9e",slug:"soybean-bio-active-compounds",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3244.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7688",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,isOpenForSubmission:!1,hash:"16f7407afbf69173f4fa419b4338a6c8",slug:"plant-physiological-aspects-of-phenolic-compounds",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7018",title:"Progress in Carotenoid Research",subtitle:null,isOpenForSubmission:!1,hash:"14ba5fb24fd6a28556e5b496fc87e9c8",slug:"progress-in-carotenoid-research",bookSignature:"Leila Queiroz Zepka, Eduardo Jacob-Lopes and Veridiana Vera De Rosso",coverURL:"https://cdn.intechopen.com/books/images_new/7018.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6530",title:"Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!1,hash:"104f235908f326361a3ab16891949b70",slug:"terpenes-and-terpenoids",bookSignature:"Shagufta Perveen and Areej Al-Taweel",coverURL:"https://cdn.intechopen.com/books/images_new/6530.jpg",editedByType:"Edited by",editors:[{id:"192992",title:"Prof.",name:"Shagufta",surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9482",title:"Essential Oils",subtitle:"Bioactive Compounds, New Perspectives and Applications",isOpenForSubmission:!1,hash:"16d29ce9f4f9ea78b5d3789c8fd79b0c",slug:"essential-oils-bioactive-compounds-new-perspectives-and-applications",bookSignature:"Mozaniel Santana de Oliveira, Wanessa Almeida da Costa and Sebastião Gomes Silva",coverURL:"https://cdn.intechopen.com/books/images_new/9482.jpg",editedByType:"Edited by",editors:[{id:"195290",title:"Dr.",name:"Mozaniel",surname:"Santana de Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana de Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",isOpenForSubmission:!1,hash:"6c33178a5c7d2b276d2c6af4255def64",slug:"flavonoids-a-coloring-model-for-cheering-up-life",bookSignature:"Farid A. Badria and Anthony Ananga",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8077",title:"Phytochemicals in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8db73d87975ed16ea4758f1aecb5bf27",slug:"phytochemicals-in-human-health",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10300",leadTitle:null,title:"Breast Cancer",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tWorldwide, breast cancer is the most frequent invasive cancer among women, impacting over two million women each year, and also causes the maximum number of cancer-related deaths among women. The incidence of breast cancer varies greatly around the world. While breast cancer rates are higher among women in more developed regions, rates are increasing in nearly every region globally. Researchers and clinicians around the world are working to find better ways to prevent, detect, and treat breast cancer, and to improve the quality of life of patients and survivors. In recent years, there is substantial amount of development in the area of breast cancer research and its clinical applications, for instance breast cancer biology and genomics; epidemiology and prevention; early detection and screening; as well as diagnosis and treatment. In addition, since the advent of various emerging technologies, such as stem cell technology, genome editing technology, bionanotechnology, as well as tissue engineering and regenerative medicine-and the knowledge gained from such studies not only enhanced our understanding of breast cancer but also produced novel insights that could lead to the development and deployment of newer clinical/therapeutic interventions.
\r\n\r\n\tTherefore, the purpose of this book is to consolidate the recent advances in area of breast cancer biology/therapeutics covering a broad-spectrum of interrelated topics in a timely fashion, and to disseminate that knowledge in a comprehensible way to a great scientific and clinical audience.
",isbn:"978-1-83969-203-1",printIsbn:"978-1-83969-202-4",pdfIsbn:"978-1-83969-204-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"bcf3738b16b0a4de6066853ab38b801c",bookSignature:"Dr. Mani T. Valarmathi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",keywords:"Breast Cancer Pathophysiology, Metastatic Breast Cancers, Breast Cancer Stem Cells, Breast Cancer Cells Proliferation, Breast Cancer Signalling Pathways, Breast Cancer Epithelial to Mesenchymal Transformation, Breast Cancer Genomics, Breast Cancer Proteomics, Breast Cancer Immunology, Breast Cancer Immunotherapy, Nanomedicine of Breast Cancer, Bioengineering Models of Breast Cancer",numberOfDownloads:6,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 26th 2020",dateEndSecondStepPublish:"November 23rd 2020",dateEndThirdStepPublish:"January 22nd 2021",dateEndFourthStepPublish:"April 12th 2021",dateEndFifthStepPublish:"June 11th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Mani T. Valarmathi has had extensive experience in research on various types of stem cells. He is a member of the Society for Stem Cell Research, American Association for Cancer Research, American Society for Investigative Pathology, American Chemical Society, European Society of Cardiology, American Society of Gene & Cell Therapy, American Heart Association.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",biography:"Mani T. Valarmathi is presently an assistant professor at the University of Alabama at Birmingham, USA. He began his scientific career as a cancer geneticist, but soon became captivated with the emerging and translational fields of stem cell biology, tissue engineering, and regenerative medicine. After completing his Bachelor’s degree in Chemistry at the University of Madras, he received his MBBS in Medicine and Surgery and MD in Pathology from the University of Madras, as well as his PhD in Medical Biotechnology from All-India Institute of Medical Sciences, New Delhi, India. For over 15 years, he has had extensive experience in research on various types of stem cells, including adult, embryonic (pluripotent), and induced pluripotent stem cells. Currently, his research work focuses on generating three-dimensional vascularized tissues and/or organs for implantation purposes. He is a member of many prestigious national and international professional societies and scientific organizations, such as ISSCR, TERMIS, AACR, ASIP, ACS, ESC, ISHR, ASGCT, and AHA.",institutionString:"The University of Alabama at Birmingham",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Alabama at Birmingham",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"75508",title:"Structural Insight of the Anticancer Properties of Doxazosin on Overexpressing EGFR/HER2 Cell Lines",slug:"structural-insight-of-the-anticancer-properties-of-doxazosin-on-overexpressing-egfr-her2-cell-lines",totalDownloads:1,totalCrossrefCites:null,authors:[null]},{id:"75499",title:"The Use of Plants’ Natural Products in Breast Cancer: Have We Already Found the New Anticancer Drug?",slug:"the-use-of-plants-natural-products-in-breast-cancer-have-we-already-found-the-new-anticancer-drug",totalDownloads:0,totalCrossrefCites:0,authors:[null]},{id:"75360",title:"In vitro Approaches to Model Breast Tumor Complexity",slug:"in-vitro-approaches-to-model-breast-tumor-complexity",totalDownloads:5,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",isOpenForSubmission:!1,hash:"c215f02d4268e4b7cccdaea141ec8647",slug:"stromal-cells-structure-function-and-therapeutic-implications",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7870",title:"Muscle Cells",subtitle:"Recent Advances and Future Perspectives",isOpenForSubmission:!1,hash:"64634d90d737661d1e606cac28b79969",slug:"muscle-cells-recent-advances-and-future-perspectives",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/7870.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17435",title:"Modelled on Nature – Biological Processes in Waste Management",doi:"10.5772/17140",slug:"modelled-on-nature-biological-processes-in-waste-management",body:'Biological degradation and transformation of organic substances under aerobic or anaerobic conditions are key processes within the natural metabolism of an equilibrated circulation system in order to handle the accumulating biomass. These fundamental processes are the basis for management strategies focusing on the biological treatment of organic waste materials. They are subjected to the biochemical metabolism using the capability of microbial populations to degrade, transform and stabilise organic matter. Stabilisation comprises biological as well as abiotic chemical and physical processes and their interaction. Avoiding greenhouse gases and shortening the after care period stabilisation is the key target for safe waste disposal in landfills. Biogenic waste materials are a source of secondary products: biogas obtained by anaerobic digestion and composts produced under aerobic conditions. For composts stabilisation is a relevant process to achieve plant compatibility and persistent organic substances for soil amelioration. Biological processes additionally contribute to landfill remediation, e.g. by methane oxidation.
Nevertheless, biological degradation of waste materials is ambivalent and can lead to harmful effects if microbial activities take place under uncontrolled conditions in imbalanced systems. Abandoned landfills from the past demonstrate this fact. Anthropogenic organic wastes differ from “natural” organic waste by their amount, their heterogeneity and the content of xenobiotics. Therefore it is necessary to support and optimise biological degradation of waste organic matter by adequate process operation and technical devices. The equilibrium of necessary mineralisation and accessible humification is a topic of high interest in the context of carbon fixation.
“Optimisation” is no aspect in the context with natural degradation processes. Additionally they are not harmless a priori. They take place under the current conditions, but it can be assumed that an equilibrium is reached over longer periods of time. Changes of environmental conditions by anthropogenic activities can accelerate biological degradation. Peat bogs that were drained and amended with carbonates lose organic matter due to mineralisation (Küster, 1990). The pH value, water and air supply and temperature mainly influence the transformation rate. This fact indicates that biodegradability is not only an inherent property that depends on chemical and physical features of the material. The behaviour of biodegradable substances is affected by the interaction of both material characteristics and environmental conditions.
This chapter provides an overview of biological processes in waste management, targets and benefits, weak points and optimisation potential, process and product control by modern analytical tools such as FT-IR spectroscopy and thermal analysis.
The biological treatment of waste materials primarily focuses on stabilisation of organic matter in order to avoid gaseous emissions after waste disposal. The aspect of resource recovery has gained in importance during the last two decades. Although resource recovery has been practiced in the past, e.g. by composting of organic residues, this idea is currently going through a renaissance, primarily due to the necessity of energy supply and increase of soil organic matter by compost application. The retrieval of chemical products from waste materials is also under discussion.
The knowledge about the biodegradability and microbial processes is a prerequisite for the optimum use of biogenic waste. The heterogeneous composition of the incoming material additionally demands a certain flexibility and adaptation according to basic requirements. In many cases there is a potential for process optimisation.
Soil improvement by compost application and its relevance to carbon storage and climate change
The benefits of compost application have been known for long time. According to historical traditions clever farmers recognised the value of “rotted” and “putrefying” organic waste for soil amelioration (Bruchhausen 1790, cited by Eckelmann, 1980). Compost management for many centuries has led to the formation of anthropogenic soils in several north-western European countries and in Russia (Hubbe et al., 2007). These so called “Plaggensoils” represent an impressive example of organic matter increase by compost application. “Terra preta” in the Amazon region also attests to the long-term effect of organic matter brought into soil by anthropogenic activities and organic waste (Sohi et al., 2009). Long-term experiments that have been initiated in the 19th century provide useful data on the effects of organic matter amendments and their long-term behaviour (Jenkinson & Rayner, 1977).
Agricultural activities, tillage and the application of mineral fertilisers have promoted losses of organic matter in soils that have caused their degradation to a certain degree. “Desertification” has become a keyword in this context (Montanarella, 2003). The current issue of climate change has additionally attracted notice to carbon losses. The maintenance of organic matter and organic carbon is an effective measure to reduce CO2 emissions. Besides technical approaches of carbon sequestration, prevention of carbon losses in soils by adequate tillage and compost application, which seems an effective measure should be given priority. Composts with high humic substance contents play a crucial role as they favour the fixation of carbon and minimise the losses.
How compost organic matter is integrated in different soil carbon pools is a topic of high interest in order to evaluate the stability and the long-term behaviour. Different approaches have been applied to identify and describe the carbon pools in soils (Six et al., 2000a; Six et al., 2000b; Pulleman & Marinissen, 2004). These methods can be applied to amended soils in order to trace the fate of compost organic matter and to quantify the contribution of composts to the stable carbon pool.
Composting is a biotechnological process that can be operated at different technical levels. Due to this fact composting is an appropriate technique for developing countries to handle biogenic resources for soil amelioration. Besides the environmental aspect resource recovery is a crucial issue. The application of composts on agricultural soils has gained in importance in view of the considerable losses of organic matter and soil degradation in many countries.
No European directive or regulation on compost quality determination has been put into force to date. A first step to establish such regulations was done by the Commission of the European Community in December 2008 by a green paper called “On the management of bio-waste in the European Union” (COM(2008) 811 final) (Commission of the European Communities, 2008). In this green paper national compost standards and legislations of the Member States are summarised. Compost policies and regulations differ substantially between the Member States. In Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Hungary, Malta, Poland, Romania, Sweden and the United Kingdom no specific compost legislation exists. In Lithuania, France and Slovakia compost regulations were integrated in the waste and environmental legislation or only simple registration schemes were established. In Belgium, Finland, Germany and Austria specific compost standards are available. Austria, Belgium and Finland have an obligatory and Germany a voluntary quality assurance system. But only in Austria compost reaches the level of a product.
In Austria the “Compost Ordinance” (BMLFUW, 2001) was put into force in 2001. These rules defined limit values for pollutants (especially for heavy metals), foreign matter (plastics, glass, metals) and plant compatibility (maturity, toxic components). The Austrian Compost Ordinance provides three compost classes that are distinguished by both the input materials (e.g. kitchen, yard and market waste, sewage sludge) and the specific limit values for heavy metals. The compliance with the Austrian Compost Ordinance is supported by the „Ordinance for the separate collection of biogenic waste from households“ (BMLFUW, 1992) which was enacted in 1992. It includes the obligation for the separate collection of biogenic waste from households, the recycling and use of these materials.
In America no directive or regulation on compost quality determination has been established up to date. The 50 federal states of America can rule compost quality by themselves. If there is any regulation available it only sets limit values for pollutants, especially for heavy metals.
A wide range of organic waste materials is available. There are several synonymic terms to describe the waste fraction that serves as input material for anaerobic digestion and composting: organic waste, biogenic waste and biowaste are the most common ones. Besides yard and kitchen waste that have always been a basic component of composts, residues from food industry (Grigatti et al.; Bustamante et al., 2011) and biotechnological processes, agriculture, sewage sludge (Doublet et al., 2010), digestates from anaerobic processes and mixtures of these materials extend the list of ingredients for composting. Agricultural waste comprises crop residues and manure (Shen et al., 2011). Due to increasing amounts of food waste in industrial countries the separate collection for different treatment strategies is under discussion (Levis et al., 2010). Nevertheless, prevention of food waste should be given the highest priority. Regarding biogenic waste there is also a high potential in developing countries, especially for market waste, crop residues and manure. Two aspects suggest the use of these materials: the minimisation of the environmental risk due to uncontrolled emissions and resource recovery. This purpose is paralleled by adequate measures in terms of waste separation and collection. The separation of biogenic waste from municipal solid waste is not taken for granted in all European countries. In some cases biogenic waste is treated with municipal solid waste and only separated after the biological treatment. In Austria the source separation of biogenic materials was stipulated in the nineties by a corresponding ordinance (BMLFUW, 1992) in order to avoid diffuse contamination that can not be removed ex post. The Austrian Compost Ordinance (BMLFUW, 2001) provides a list of possible ingredients for composting in the first annex.
Composting processes are operated in open windrow or closed systems. The geometry of the windrow should allow efficient aeration by convection. Mechanical rotating supports air supply and the removal of volatile metabolic products which is very important during the most reactive phase of degradation. In closed systems forced aeration is necessary. The biological treatment consists of specific phases that are clearly distinguished from each other in well operated processes. The most obvious degradation with the highest transformation rate takes place in the intensive rotting phase that is characterised by increasing temperature due to exothermic reactions. Early metabolic products such as volatile fatty acids and ammonium are parameters that are usually applied to describe this stage of decomposition. The pH value allows a rough estimation. The early stage features low pH values of 5 to 6. In the mature compost the pH ranges from 7 to 8.5. Appropriate process operation in the first phase is relevant to reduce odour emissions by efficient air and water supply. Anaerobic conditions in the windrow lead to methane formation that should be avoided. Nevertheless, temporarily or locally limited aeration also supports humic substance formation that is improved by a moderate degradation to moieties of bio-molecules. Very strong aeration favours mineralisation. After the intensive rotting process metabolic activities slow down and change into the curing and the maturation phase. This stage is characterised by decreasing temperature, low respiration activity, a C/N ratio of about 12 and the oxidation of ammonium to nitrate. The stable stage is indicated by a nearly constant level of organic matter and total organic carbon contents respectively. The remaining organic matter consists of hardly degradable enriched substances, of organic substances stabilised by mineral compounds and of humic substances that are synthesised during composting. This process still takes place in the maturation phase. The continuous degradation process until the measured parameters reach a nearly constant level and indicate a stable product, is only achieved if the conditions for microbial activities are adhered to. A lack of water often gives the appearance of a “stable” state because it leads to a standstill of the microbial metabolism. Due to degradation of organic matter mineral compounds are enriched and show a relative increase. They mainly contribute to the stabilisation of the remaining organic matter fraction. Due to the portion in biogenic waste and the geological background carbonates and clay minerals play the most important role. Fig. 1 illustrates the development of the CO2 concentration, temperature, respiration activity (RA4) and humic acid contents in two composting processes in plant BC1 and plant BC2. Although process kinetics are individual according to the input material and operation conditions, principles of biological degradation are clearly visible. The respiration activities start at different levels and decrease continuously to a low value. The high temperature for several weeks guarantees favourable conditions regarding hygienic requirements. The CO2 concentration in the windrow of plant BC2 is maintained for a longer time at a high level. The curves of humic acid formation are still increasing and indicate that the synthesis process has not yet been finished.
Development of the parameters in the windrows: (a and b) CO2 content (black dots) and temperature (grey symbols), (c and d) respiration activity (RA4, black symbols), humic acids (HA, grey symbols); a and c = plant BC1, b and d = plant BC2
The composition of the organic waste mainly influences the turnover rates and the final product. Easily degradable ingredients such as sugars are quickly metabolised which can lead to strong acidification and cause the metabolism to stop. The addition of pH increasing agents such as calcite supports the regulation of the biological process. Fundamental requirements of the microbial metabolism affect the quality of the composting process (Schlegel, 1992). It mainly depends on the experience of the operator in the composting plant. Besides a lack of water and air, the pH values, the C/N ratio and the concentration of metabolic products are relevant parameters that can improve or reduce the microbial activity. If easily degradable materials are mineralised too fast hardly degradable substances are not attacked at all. This fact suggests that a well-balanced mixture of easily, middle and hardly degradable input materials is necessary to maintain the microbial activity, to regulate the velocity of transformation and to crack recalcitrant substances as well. Additionally it is a prerequisite for humic substance synthesis. A moderate progress of degradation provides the necessary molecule moieties and the opportunity to affect hardly degradable molecules such as lignin that is known to be a relevant compound of humic substances. Fig. 2 shows the respiration activity for 7 days (RA7) and humic substance formation during two composting processes PI and PII, both operating biogenic waste, but considerably differing in the mixtures, especially in the fraction of medium degradable components such as grass clippings and leaves. The high microbial activity of process PI declined very fast due to an imbalanced mixture of easily and hardly degradable substances and humic acid contents remained at a low level. The microbial activity of process PII decreased more slowly. A constant increase of humic acid contents was observed. This fact underlines the assumption that moderate decrease of microbial activity supports humic acid formation in biowaste compost.
Development of respiration activity (RA7) and humic acid (HA) contents in two composting processes PI and PII (DM = dry matter; oDM = organic dry matter)
Due to the complexity of the material composition a large variety of microbial communities are involved in the metabolism of biogenic materials. A succession of different species is observed during the composting process (Franke-Whittle et al., 2009).
The progress of composting processes can be monitored by means of near- and mid-infrared spectroscopy and thermal analysis. Both methods reveal the chemical changes during the biological degradation process by the characteristic spectral or thermal pattern. Several publications in the field of infrared spectroscopic investigations have focused on prediction models for parameters commonly used in waste management to describe compost quality (Michel et al., 2006; Böhm, 2009; Tandy et al., 2010). Fig. 3 illustrates a biowaste composting process using mid-infrared spectroscopy (Fig. 3a) and thermal analysis (Fig. 3b). It is evident that the progressing degradation process is reflected by both the spectral and the thermal pattern. The bands that are assigned to organic components tend to decrease corresponding to the biological degradation of the molecules. The transformation of organic substances causes some bands of metabolic products to emerge and disappear. The bands that can be attributed to inorganic compounds, e.g. carbonates and clay minerals, gain in height due to their relative increase. More detailed information on band assignment in waste materials were provided by Smidt and Schwanninger (2005) and Smidt and Meissl (2007). The aliphatic methylene bands labelled by arrows in Fig. 3a are relevant indicators of mineralisation that is revealed by decreasing band intensities. Fig. 3b illustrates the degradation of organic matter by the diminishing heat flow. After 14 days those substances primarily were degraded that contribute to the first exothermic peak at 320 °C. Besides the weaker intensities of both peaks after 120 days of composting a shift of the second exothermic peak by 10 degrees to higher temperature (490 °C) is observed. This behaviour is related to increasing stabilisation.
Development of (a) infrared spectral and (b) thermal characteristics (heat flow profile) of biogenic waste during a composting process (selected stages: 0, 14 and 120 days)
The principal component analysis in Fig. 4 leads to the grouping of five composted materials due to spectral differences caused by the individual chemical composition. The materials of the Austrian biowaste composting processes Bio1, Bio2 and Bio3 can be distinguished as they differ in detail, but they are more similar to one another than the African biowaste (Bio4) composting process that is operated with locally available herbaceous materials. The difference of the sewage sludge compost (SSL) regarding the ingredients causes a large distance to biowaste composts in the scores plot of the principal component analysis (Fig. 4a). The biological degradation of different mixtures of biowaste and sewage sludge and biowaste and manure lead to a specific spectral pattern that is dominated by one of these components. In the biowaste/sewage sludge mixture the biogenic fraction is less resistant to microbial degradation than the anaerobically stabilised sewage sludge with a high portion of mineral compounds. By contrast, manure is faster degraded in the mixture biowaste/ manure and the spectral pattern becomes similar to the pure biowaste compost. The development with time is indicated by the arrows (Fig. 4b).
a) Principal component analysis of different composts based on their infrared spectral pattern (Bio1 – Bio4 = biowaste composts, SSL = sewage sludge compost); (b) different mixtures of biowaste/manure and biowaste/sewage sludge and their development during composting indicated by arrows
Due to practical reasons the description of compost organic matter is limited to quantitative determination of sum-parameters such as loss of ignition (LOI) and total organic carbon (TOC). Furthermore the nutrient content can be measured by the total nitrogen content (TN), phosphorous (P) and potassium (K) or mineralisation products such as ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N). Information on stability can be given by the carbon to nitrogen ratio (C/N). A wide C/N ratio is typical for not degraded input materials. A C/N ratio of about 12 reflects stable compost matter. Stability also can be detected by other parameters such as degradable organic substance (AOS), “fractionation according to van Soest (1963)”, biological (e.g. respiration activity, oxygen uptake rate) and plant compatibility tests. The parameters “degradable organic substance (AOS)” and the fractionation according to van Soest (1963)” focus on the specific degradability of organic matter fractions under different chemical conditions. Biological tests describe the behaviour of organic matter and therefore provide indirect information on reactivity and stability. The mentioned parameters do not provide any information on organic matter quality. Information on organic matter quality is provided by humic substance determination. More detailed insight into the chemical composition is available by sophisticated analytical tools. Fourier Transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, eco-toxicity tests and thermal analysis are currently applied in research, and apart from NMR spectroscopy these tools are intended for future practical application.
The mentioned parameters and analytical tools, the information they provide and related references are compiled in table 1 and table 2 (Böhm, 2009). The parameters and methods mainly focus on process control and the determination of maturity. Therefore they are related to organic matter and the mineralisation products.
Parameter | Information on | Related references |
Loss of ignition (LOI) | Quantity of organic matter | (Austrian Standard Institute, 1993) |
Total organic carbon (TOC) | Quantity of organic matter | (Austrian Standard Institute, 1993) |
Kjeldahl nitrogen (Nkjel) | (potential) Nutrient content | (Austrian Standard Institute, 1993) |
Mineralisation products (NH4-N, NO3-N) | Nutrient content | (Austrian Standard Institute, 1993; Haug, 1993) |
Low molecular weight carboxylic acids (C-2 to C-5) | Reactivity, Odour index | (Haug, 1993; Binner & Nöhbauer, 1994; Lechner & Binner, 1995) |
C/N | Stability | (Austrian Standard Institute, 1993; Haug, 1993; Barberis & Nappi, 1996; Ouatmane et al., 2000) |
Degradable organic substance (AOS) | Degradation behaviour | (Austrian Standard Institute, 1993) |
Fractionation of organic matter according to van Soest | Degradation behaviour | (van Soest, 1963) |
Biological tests e.g. oxygen uptake rate, respiration activity, enzymatic tests | Degradation behaviour, Stability | (Haug, 1993; Barberis & Nappi, 1996; Lasaridi & Stentiford, 1996; Lasaridi & Stentiford, 1998; Chica et al., 2003; Adani et al., 2004; Barrena GoÌmez et al., 2006) |
Plant compatibility | Stability, Maturity | (Zucconi et al., 1981a; Zucconi et al., 1981b; Austrian Standard Institute, 1993; Haug, 1993; Commission of the European Communities, 2008) |
Humic substances | Quality of organic matter | (Adani et al., 1995; Barberis & Nappi, 1996; Senesi & Brunetti, 1996; Ouatmane et al., 2000; Tomati et al., 2000; Zaccheo et al., 2002; Smidt & Lechner, 2005; Meissl et al., 2007) |
Parameters used for the characterisation of compost organic matter, the information they provide and related references (adapted from Böhm, 2009)
Besides maturity the content of toxic compounds plays a crucial role. Especially in countries where the application of pesticides in yards and gardens is very common, the contamination of biogenic input materials with organic pollutants can be relevant. Saito et al. (2010) reported on the concentration of clopyralid in composts. With regard to inorganic pollutants heavy metals are in the focus of interest. They remain in the cycle and are accumulated with repeated compost application. Therefore their content in the compost is limited. The classification of compost quality according to the Austrian Compost Ordinance (BMLFUW, 2001) is based on limit values of several heavy metal contents.
Besides the standard quality parameters that mainly focus on the reduction of negative impacts, additional quality criteria are useful that emphasise the positive effects of composts and underline the value as marketable products. Nutrients and their availability (Gil et al., 2011), the content of humic substances (Tan, 2003; Böhm et al., 2010) and phytosanitary effects (Pane et al., 2011) might be appropriate parameters to meet this purpose.
Parameter | Information on | Related references |
Spectroscopic methods Infrared spectroscopy (IR) Nuclear magnetic resonance (NMR) | Information on a molecular level. Identification of specific molecules and molecule groups Stability, Quality | FT-IR spectroscopy: (Ouatmane et al., 2000; Chen, 2003; Smidt et al., 2005; Smidt & Schwanninger, 2005) NMR spectroscopy: (Kögel-Knabner, 2000; Zaccheo et al., 2002; Chen, 2003; Tang et al., 2006) |
Ecotoxicity tests | Indirect information on toxic compounds and therefore on compost quality | (Barberis & Nappi, 1996; Kapanen & Itävaara, 2001; Alvarenga et al., 2007) |
Thermal analysis Thermogravimetry (TG) and Differential scanning calorimetry (DSC) Pyrolysis field ionisation mass spectrometry (Py-FIMS) Pyrolysis gas chromatography mass spectrometry (Py-GC/MS) | Stability (TG and DSC) Information on the molecular level with coupled MS | (Dell\'Abate et al., 2000; Ouatmane et al., 2000; Otero et al., 2002; Melis & Castaldi, 2004; Dignac et al., 2005; Smidt et al., 2005; Smidt & Lechner, 2005; Franke et al., 2007) |
Analytical tools used for the characterisation of compost organic matter, the information they provide and related references (adapted from Böhm, 2009)
Compost teas that are fermented aqueous extracts from composts are suggested by several authors as an alternative to mineral fertilisers and pesticides (Koné et al., 2010; Naidu et al., 2010).
Anaerobic digestion of biogenic materials is a booming technology as it combines organic matter stabilisation and energy recovery. The high interest in this technology is paralleled by the question how to handle the increasing amounts of digestates. Due to a limited retention time in the reactor digestates still feature a considerable reactivity. Therefore open systems for their storage such as lagoons, can lead to uncontrolled emissions of methane or N2O. The quantification of these relevant greenhouse gas compounds from these sources has not been done yet. The useful application of digestates becomes an important question in terms of available areas and transport distances. Digestates are directly used in agriculture or subjected to further treatment such as composting. Eco-balances are necessary to oppose the advantages to the disadvantages and to evaluate the benefits. Increasing pH values during the subsequent composting process lead to ammonia losses. Their determination is an additional question to be answered (Whelan et al., 2010). Nitrogen recovery can be provided by ammonia stripping (De la Rubia et al., 2010; Zhang & Jahng, 2010).
Basically most of the biogenic waste materials are appropriate for anaerobic digestion and only restricted by natural limitations of biodegradability. Lignin for instance is not degradable under anaerobic conditions. Steam explosion of lignocellulosics is a kind of pre-treatment of wooden materials in order to remove cellulosic compounds from the composite lignin and to make them available to microorganisms. Kitchen and market waste from the separate collection, mainly consisting of easily degradable components also serve as input materials for composting processes. By contrast, leftovers originating from public institutions, hospitals, hotels and schools are appropriate ingredients for anaerobic processes and do not compete with other ways of utilisation. Besides organic wastes from urban areas agricultural wastes such as liquid and solid manure and crop residues are processed locally in biogas plants. Industrial waste from the food industry and biotechnological processes, slaughterhouse waste and sewage sludge complete the wide range of organic substances that are processed in anaerobic digesters (Lee et al., 2010). The anaerobic treatment of sewage sludge is more a part of the waste water treatment. Anaerobically stabilised sludge that undergoes a composting process, comes within the limits of waste management. In Austria slaughterhouse waste is subject to restrictions in order to guarantee hygienic standards (Europäische Union, 2009).
Anaerobic digestion is usually carried out under mesophilic (~37°C) or thermophilic (~55°C) conditions (Madigan et al., 2003). Depending on the water content “wet” (5-25% dry matter) and “dry” (>25-55% dry matter) processes are distinguished. The water content also determines to a certain degree the fate of digestates. Very low contents of dry matter suggest an immediate application on fields by irrigation. If an additional composting process is planned, solid residues are in general separated by centrifugation or by a filter press. Anaerobic digestion at relatively low water contents allows a subsequent composting process. Whereas methanogenesis in a liquid process takes place in a temporal sequence, the dry process is dominated by the spatial sequence, depending on the motion of the bulk along the reactor. Anaerobic digestion plays a certain role as pre-treatment of municipal solid waste in several countries (Fdez.-Güelfo et al., 2011; Lesteur et al., 2011) in order to yield biogas before aerobic treatment and final disposal. Improvement of biogas production is a main target and many investigations focus on this issue. The organic fraction of municipal solid waste underwent a dry thermophilic anaerobic digestion process to find out the optimum solid retention time in the reactor regarding the gas production (Fdez.-Güelfo et al., 2011). Co-digestion of press water from municipal solid waste and food waste could improve the gas yield according to Nayono et al. (2010). Besides the substrate process conditions play an important role in terms of gas yields.
Different procedures and technologies are suggested to upgrade the resulting biogas regarding the purity degree of methane (Dubois & Thomas, 2010; Poloncarzova et al., 2011).
Molecular identification of microbial communities depending on substrates and process operation and their dynamics during anaerobic digestion were reported by several authors. Organic waste and household waste were used as substrates in these studies (Ye et al., 2007; Hoffmann et al., 2008; Montero et al., 2008; Cardinali-Rezende et al., 2009; Sasaki et al., 2011). Shin et al (2010) reported on characteristic microbial species that dominate specific phases of a food waste-recycling wastewater digestion process and therefore provide information on the performance of the reactor. Hydrolysis efficiency in a similar substrate and the related microbial communities were investigated by Kim et al. (2010). Wagner et al (2011) reported on diverse fatty acids such as acetic, propionic and butyric acid that inhibited methanogenesis coupled with an increase of hydrogen. Abouelenien et al. (2010) could improve the methane production by removal of ammonia that had a negative impact on methanogenesis. By contrast, elevated ammonia contents did not inhibit methanogenesis in a co-digestion process of dairy and poultry manure (Zhang et al., 2011). Although basic mechanisms of the anaerobic metabolism are well-known it should be emphasised that the results obtained are divergent according to the wide range of different experiments regarding individual feeding materials and process conditions. The identification of various microbial communities reflects the complexity of interactions in these processes.
Chemical characteristics of digestates are mainly influenced by the input material, process conditions and the retention time in the reactor. High salt concentrations caused by leftovers do not pose a problem for the subsequent composting process as they are removed with the waste water. By contrast, heavy metals primarily remain in the solid residue. As mentioned above the water content usually determines the further treatment or immediate application on fields. Quality criteria of the liquid residue that is directly applied on the field are mainly determined by the quality of the input material. The nitrogen content is the limiting compound according to the Water Act (Wasserrechtsgesetz BGBl. Nr. 215/1959, in der Fassung BGBl. I Nr. 142/2000) that regulates the output quantity. Composting is a suitable measure to stabilise digestates and to produce a valuable soil conditioner. Disaggregation of the wet, cloggy and tight material is a main issue to ensure the porosity and the efficient air supply. Wood particles and yard waste are appropriate bulking agents for this purpose.
Parameters usally applied in waste management such as the loss on ignition, total organic carbon contents and total nitrogen describe degradation and changes of organic matter during anaerobic digestion and composting. The reactivity of the material is measured using biological tests. The oxygen uptake during a period of 4 days reflects the current microbial activity (RA4), whereas the gas sum (GS21) indicates the gas forming potential under anaerobic conditions during a period of 21 days. Compared to time-consuming biological tests modern analytical tools provide fast information on reactivity and material characteristics. Near infrared spectroscopy was used by Lesteur et al (2011) to predict the biochemical methane potential of municipal solid waste. Fig. 5a demonstrates the development of the mid-infrared spectral pattern from the reactor feeding mixture (FM) to the digestate (D) and the composted digestate (DC). The samples originate from the Viennese biogas plant that processes 17,000 tons a year of biogenic waste from the separate collection, market waste and leftovers. The thermograms in Fig. 5b illustrate the mass losses of these samples. The degradation of organic matter becomes evident by decreasing mass losses.
The spectrum of the feeding mixture features a variety of distinct bands in the fingerprint region (1800-800 cm-1) and high intensities of the aliphatic methylene bands. The breakdown of biomolecules due to degradation is paralleled by their decrease. Distinct bands in waste materials indicate a variety of not degraded substances. With increasing degradation bands tend to broaden in the complex waste matrix. The band at 1740 cm-1 can be attributed to the C=O vibration of carboxylic acids, esters, aldehydes and ketones, indicating an early stage of degradation. The bands at 1640, 1540 and 1240 cm-1 represent different vibrations of amides (C=O, N-H, C-N). Typical absorption bands of carboxylates (C=O) and alkenes (C=C) are also found at 1640 cm-1. More detailed information on band assignment is provided by Smidt and Schwanninger (2005) and Smidt and Meissl (2007). Digestates are still reactive after a retention time of 21 days in the reactor. The remaining gas sum over a period of 21 days (GS21) was 80 to 120 L per kg dry matter. The total nitrogen content was found to be between 4 and 5% referring to dry matter (DM). The total nitrogen content in digestate composts was about 2.5% (DM). The nitrogen content is higher than in biowaste composts that feature 1-2% of total nitrogen (DM). Nevertheless, the losses during composting are considerable and need more attention in the future. Apart from the losses of this nutrient compound the volatilisation of ammonia that is formed at higher pH-values leads to odour nuisance in open windrow systems and represents one of the relevant problems in this type of composting plants.
Development of (a) the spectral and (b) the thermal (mass loss) pattern during anaerobic digestion and subsequent composting of digestates (FM = feeding mixture for the reactor, D = digestate, DC = digestate compost)
Depending on the input materials digestates keep a specific pattern. A principal component analysis based on FT-IR spectra reveals the similarity of residues that originate from thermophilic processes with a 2 to 3 week-retention time in the reactor (Fig. 6a). Three groups of digestates according to the input materials can be distinguished: manure, biowaste comprising yard waste, fruits and vegetables from households and markets and leftovers that had been mixed with different amounts of glycerol. The 1st principal component explains 85% of the variance, the 2nd one 7%. The loading plots indicate the spectral regions that are responsible for the discrimination of the materials: the aliphatic methylene bands at 2920 and 2850 cm-1, and nitrogen containing compounds such as amides at 1640 and 1540 cm-1 and nitrate at 1384 cm-1 (Fig. 6b).
a) Principal component analysis based on infrared spectra of digestates from different input materials that underwent thermophilic processes; (b) corresponding loadings plot of the first two principal components
Biological processes always deal with both aspects: resource recovery and the avoidance of negative emissions. The history of waste management started with harmful emissions. Waste was disposed in open dumps and was used to level off depressions in the landscape or to fill and dry wet hollows. This strategy has caused severe problems with increasing amounts of waste. The dumped waste was degraded anaerobically, metabolic products of early degradation stages were leached and washed out to the groundwater. Gaseous emissions leaked from the dumps to the top and into the atmosphere or migrated into nearby cellars which can cause an explosion if the critical mixture of methane with air is reached. These environmental problems have led to regulations about the technical demands on landfill sites. The idea was to prevent the emissions by closing the landfills with dense layers at the bottom and on the top to cut them from the environment. Actually the degradation processes continued and the emissions were sealed and preserved, but not prevented. It can be assumed that the life time of the technical barriers is over after some decades. The emissions, leachate at the bottom and landfill gas on the top, become relevant as soon as the density of the layers fails. This fact has promoted the latest changes in European regulations. The stabilisation of waste organic matter prior to landfilling was proclaimed and with regard to the biological treatment the natural stabilisation processes served as a paradigm.
Besides incineration mechanical-biological treatment is one option to stabilise municipal solid waste prior to final disposal. The mechanical-biological treatment of waste combines material recovery and stabilisation before landfilling. Big particles, especially plastics with a high calorific value, are separated by the mechanical treatment and used as refused derived fuels. The residual material features a relatively low calorific value, a high water content and a high biological reactivity. The calorific value is mainly influenced by the content of organic matter. The biological treatment abates all three parameters. Organic matter is degraded by microbes which leads to gaseous and liquid emissions. Due to the exothermic aerobic biological process the temperature rises. Water evaporates due to the generated heat and the material tends to run dry. The decrease of organic matter that is paralleled by the relative increase of inorganic compounds causes the calorific value to decrease. The degradation process is dominated by mineralisation. Depending on the input material humification takes place to a certain extent. Mineral components contribute to organic matter stabilisation. In practice MBT processes vary in many details. Apart from stabilisation of the output material for landfilling the biological process can focus on the evaporation of water to produce dry material for incineration. Another modification of the process provides anaerobic digestion prior to aerobic stabilisation in order to yield biogas in addition. Most of the MBT plants are situated in Germany and Austria. In France the biogenic fraction is not source separated and thus treated together with municipal solid waste. The output material is used as waste compost and applied on soils. In Germany and Austria this procedure is prohibited by national rules. In this section the MBT technology is described as it is implemented in Germany and Austria. The system configuration of the plants is described in Table 3.
plant | input material | system | mesh size/ treatment |
A | MSW | 4 w cs, 8-14 w rp | 80 mm cs, 60 mm rp, 45 mm lf |
B | MSW, SS | 2 w cs, 6-8 w rp | 80 mm cs, rp, 25 mm lf |
C | MSW | 4 w cs, 8 w rp | 80 mm cs, rp, 25 mm lf |
D | MSW | 3-4 w cs, 7-9 w rp | 160 mm cs, 20 mm rp, lf |
E | MSW | 4 w cs, 8 w rp | 80 mm cs, rp, 40 mm lf |
F | MSW | 5 w cs, 10-30 w rp | 25 mm cs, rp, lf |
G | MSW | 60-80 w cs+rp | 80 mm |
H | MSW | 30 w cs+rp | 25 mm |
J | MSW, ISW | 20 w cs+rp | 70 mm cs+rp, 25 mm lf |
K | MSW | 4 w cs, 10 w rp | 70 mm cs, rp, 30 mm lf |
L | MSW | 4 w cs, 20 w rp | 50 mm cs, rp, lf |
M | MSW, SS, BW | 10 w cs, 40-60 w rp | 60 mm cs, rp, 12 mm rp, 9 mm cp |
N | MSW | 4 w cs, 12 w rp | 80 mm cs, 10 mm rp, lf |
O | MSW | 3 w bd | 40 mm bd, ~25 mm lf |
P | MSW, BW | 9 w + 6 w rp | not sieved, 20 mm rp, 10 mm cp |
R | MSW | 6-8 w bd | 100 mm bd |
S | MSW | 1-2 w bd | 80 mm bd |
Austrian MBT plants, input materials and systems applied (MSW: municipal solid waste; SS: sewage sludge; BW: biowaste; ISW: industrial solid waste; cp: compost, cs: closed system; bd: biological drying; rp: ripening phase; lf: landfilled; w = week)
This table displays the diversity of the Austrian mechanical biological treatment processes regarding input materials, mesh size and the duration of rotting and ripening phases in open or closed systems (adapted from Tintner et al., 2010). In Germany about 50 plants are in operation, in Austria 17. Two Austrian plants produce exclusively refuse derived fuels.
Anaerobic digestion prior to the aerobic treatment is currently not performed in Austrian MBT plants.
The aerobic biological stabilisation process comprises in general two main phases. The first intensive rotting phase takes place in a closed box with forced aeration. The ripening phase proceeds in open windrows, sometimes covered with membranes. The respiration activity that reflects the reactivity of the material summarises the oxygen uptake (mg O2 g-1 DM) by the microbial community over a period of four days. The respiration activity of input and output, 4-week-old and already landfilled material originating from different Austrian plants was measured. In two plants also waste compost was produced which has ceased in the meantime. Results for mean values and the confidence intervals are given in Table 4.
Respiration activity (mg O2 *·g-1 DM) | |||
mean | cl | cu | |
Input material n=34 | 44.4 | 38.3 | 50.4 |
After 4 weeks n=19 | 24.1 | 15.8 | 32.4 |
Output material n=53 | 6.9 | 5.3 | 8.5 |
Waste compost n=9 | 7.8 | 2.6 | 13.0 |
Landfilled material n=13 | 6.4 | 2.7 | 10.1 |
Respiration activity over four days in mg O2*g-1 DM; cl: lower bound of confidence interval, cu: upper bound of confidence interval, α = 0.05
Depending on the system process kinetics can considerably differ regarding the decrease of reactivity. Fig. 7 presents the degradation of organic matter in three different plants (plants D, O, and P according to Table 3). The input material in plant P consists of municipal solid waste and biowaste that had not been separated. This mixture results in a highly reactive input material compared to the other plants. Plant O provides a wind cyclone for the separation of the heavy fraction after a three-week treatment. Plant D represents the classical MBT-type with a three-week intensive rotting phase in a closed system and a seven to nine-week ripening phase in an open windrow system (Tintner et al., 2010). The biological degradation of MBT materials corresponds to the biological degradation in composting processes.
In Fig. 8 the degradation processes in plants M and H are presented in more detail. The CO2 concentration and the temperature in the windrows are compared to the water content and the respiration activity of the material. In both plants the respiration activity decreases continuously according to organic matter mineralisation. The CO2 concentration depends on the system configuration. In the closed system of plant M the material is aerated actively for 10 weeks. Thereby the oxygen supply is ensured most of the time. In plant H no forced aeration is provided. The CO2 content increases up to 60 %. However, these temporarily anaerobic conditions in some sections do not inhibit the biological degradation as the material is turned regularly. The efficient aerobic degradation is verified by the high temperature. It is remarkable that the temperature of the windrow remained at a high level for a long time. The high temperature supports sanitation of the material which plays a secondary role for MBT output that is landfilled, compared to compost. Although the respiration activity decreased considerably further microbial activities took place, indicated by the constant high level of CO2 contents in the windrow. Inefficient turning might have been the reason for the CO2 contents and the high temperature.
Decrease of the respiration activity (RA4) in three different MBT-plants with different operation systems
The data reflect process kinetics by the specific pattern of organic matter degradation during the biological treatment of MBT materials. The principles of the metabolism are the same as in composting processes. However, the individual mixtures of input materials and system configuration strongly influence the transformation rate. The period of time that is necessary to comply with the limit values of the Landfill Ordinance (BMLFUW, 2008) is a main factor for successful process operation. It should be emphasised that water and air supply play a key role in this context and the retardation of organic matter degradation can in general be attributed to a deficiency of air and water. A homogenous distribution of air in the windrow and the removal of metabolic products is only guaranteed by regular mechanical turning.
When the legal requirements are reached the treated output material is landfilled. The most relevant parameters are the respiration activity with limit values of 7 mg*g DM-1 in Austria and 5 mg*kg DM-1 in Germany and the gas generation sum that provides information on the behaviour of waste materials under anaerobic conditions. The determination of the gas generation sum is obligatory in Austria and facultative in Germany. In both countries the limit value is 20 NL*kg DM-1.
Landfilling is usually performed in layers of about 20 to 30 cm. The material is rolled by a compactor. In some cases a 40-centimetre drainage layer of gravel is integrated every 2 metres between the waste material. The degree of compaction depends on the water content. At the end of the biological process the material is often dried out. This advantage for the sieving process counteracts the optimal compaction because the water content is lower than the necessary proctor water content. However, a satisfactory coefficient of permeability of about 10-8 m/s is usually achieved. The efficient compaction can be one of the main reasons why further degradation processes in the landfill are reduced to a minimum. As indicated in Table 4 the reactivity (mean value) of the landfilled material and of the MBT-output material is similar.
a and b) Development of the parameters in the windrow: CO2 content (black symbol) and temperature (circle), (c and d) respiration activity (RA4, black symbol), water content (WC, circle); a and c = plant M, b and d = plant H
In six different MBT plants one to four year-old landfilled materials were compared to the typical output material of these plants after the biological treatment. The comparison of the respiration activity confirmed that no significant degradation took place in the landfill.
Biological degradation after landfilling is minimised and the remaining organic matter is quite stable which is the main target of the pre-treatment of municipal solid waste. However, low methane emissions can be expected. These emissions are mitigated by means of methane oxidation layers where methanotrophic bacteria transform methane into CO2 (Jäckel et al., 2005; Nikiema et al., 2005). Several publications have focused on the identification of the involved methanotrophs (Gebert et al., 2004; Stralis-Pavese et al., 2006). Regarding the discussion about landfills as carbon sinks the question arises, how much carbon can finally be stored in MBT landfills. The remaining carbon content in MBT landfills can be considered as a stable pool, taken out of the fast carbon cycle. The mean content of organic carbon of the landfilled materials was 15.6 % DM at a 95 %-confidence interval from 13.3 to 17.8 % DM. The fitting model of the final degradation phase is a topic of current research.
Besides the time consuming conventional approaches for the determination of the biological reactivity in MBT materials FT-IR spectroscopy was proven to be an adequate alternative. The prediction model for the respiration activity (RA4) and the gas generation sum (GS21) presented in Böhm et al. (2010) are based on all degradation stages and types of MBT materials existing in Austria.
The second relevant parameter to be measured prior to landfilling is the calorific value. This parameter is usually determined by means of the bomb calorimeter. An alternative method of determination is thermal analysis. The prediction model described by Smidt et al. (2010) is also based on all stages and types of MBT materials existing in Austria.
Although microbial processes lead to mineralisation of waste organic matter and finally to the stabilisation by mineralisation, interactions with mineral compounds or humification, degradation is paralleled by harmful emissions if it is not managed under controlled conditions. The amount and the particular composition of municipal solid waste lead to the imbalance of the system. Careless disposal of municipal solid waste and industrial waste in the past has caused considerable problems in the environment. Due to anaerobic degradation of waste organic matter groundwater and soils were contaminated. The discussions on climate change have attracted much attention on relevant greenhouse gas emissions in this context, especially on methane. Emissions of nitrous oxide from landfills have not been quantified yet. This awareness has led to adequate measures in waste management. As mentioned in the previous section the treatment of municipal solid waste before final disposal is a legal demand in order to have biological processes taken place under controlled conditions.
Despite national rules risk assessment of old landfills and dumps is still a current topic. In countries without an adequate legal frame for waste disposal it will be for a long time. Landfill assessment usually comprises the measurement of gaseous emissions on the surface. Due to inhibiting effects such as drought that prevent mineralisation, the investigation of the solid material is suggested as it reveals the potential of future emissions. Basically the analytical methods FT-IR spectroscopy and thermal analysis are appropriate tools to assess the reactivity of old landfills and dumps (Tesar et al., 2007; Smidt et al., 2011). Biological tests using different organisms provide information on eco-toxicity. The advantage of this approach is the overall view on the effect not on the identification of several selected toxic compounds (Wilke et al., 2008). This procedure is less expensive and in many cases, especially in old landfills containing municipal solid waste, sufficient. Nevertheless, until now the identification and quantification of single organic pollutants and heavy metals is the common approach.
Depending on the degree of contamination specific measures of remediation are required. Excavation of waste materials is the most extreme and expensive way of sanitation. The presence of hazardous pollutants can necessitate such procedures. In many cases the reactivity of organic matter is the prevalent problem and mitigation of methane by a methane oxidation layer is an adequate measure. In-situ aeration is an additional approach to avoid methane emissions. Due to the forced aeration of the waste matrix in the landfill aerobic conditions replace anaerobic ones. They accelerate and favour the biological degradation of organic matter to CO2.
As a consequence of the new strategy of waste stabilisation prior to landfilling the possibility of re-use and land restoration for after use becomes evident. Especially the demand for space for the production of renewable energy crops has promoted the awareness of a more economical and considerate exploitation of land. The typical landfill emissions in the past restricted the potential for many after use concepts. Landfill gas minimises the feasibility for agricultural purposes. Therefore most of the old landfill sites are not in use at all. The alternatives for after use concepts range from highly technical facilities or leisure parks to natural conservation areas. Even when the production of food on landfill sites is not taken into account agricultural use for the production of energy crops (maize, wheat, elephant grass, short rotation coppice) has a great potential (Tintner et al., 2009). There are some constraints such as climatic conditions, soil properties, soil depth, compaction, water availability and drought, waterlogging, aeration, and the nutrient status. Provided that no or just negligible landfill gas emissions are present in the root zone, careful site management including a correct soil placement and handling, soil amelioration, irrigation respectively drainage depending on precipitation, fertilisation, choice of adequate species, can accomplish the necessary environmental conditions (Nixon et al., 2001). Remediation of the sites is just a prerequisite for a successful land use management.
The biological treatment of organic waste materials is state of the art in Austria. Two main strategies are in the focus of interest: stabilisation of organic matter for safe waste disposal or landfill remediation and production of biogas and composts. The biological treatment of waste matter takes place according to the principles of the microbial metabolic pathways. The knowledge of fundamental requirements determines the quality of process operation. Water and air supply is a key factor in aerobic processes and mainly influences the progress of degradation besides the pH value and the nutrient balance. Water and air supply only depend on process operation, the nutrient balance is preset by the incoming waste material mixture. In small treatment plants it can be influenced marginally. The pH value is rather a result of input materials and process operation. Anaerobic digestion for biogas production requires more technical control to maintain a constant gas yield. Microbial processes always take place. It is a matter of anthropogenic activities to avoid the negative impact on the environment, but to use the potential of microbial processes.
In the past four decades, various technologies have been developed and implemented to improve the production from shale gas formation as it is a commercially feasible source of energy. Hydraulic fracturing is a technique applied to enhance hydrocarbon extraction from subsurface geological formations by injecting a fluid at pressure higher than formation pressure to crack open the hydrocarbon formation rock. The hydraulic fracturing technology is not new; first experiment was conducted in 1947, and the first industrial implementation was in 1949 [1]. Hydraulic fracturing has, since then, been used for stimulating unconventional reservoirs and enhancing oil and natural gas recoveries. The first operation of fracturing treatment was performed by gelled crude, and later gelled kerosene was used. By the end of year 1952, many fracturing treatments were carried out by processed and live crude oils. This type of fluids is low-cost and permitting greater volumes at lower cost. In 1953 water-based fluids began to be utilized as a fracturing fluid, and a number of gelling agent additives such as surfactants were added, to the fracturing fluids, to reduce emulsion with formation fluid. Subsequently, additional clay stabilizing agents were improved and incorporated with water and used as a hydraulic fracturing fluid to fracture many reservoir formations. Alcohol and foam were also used to improve water-based fracturing fluids and utilized to fracture more formations. Currently aqueous fluids such as acid, brines, and water are utilized as base fluids with around 96% of all fracturing treatments using a propping agent. During the early years of the 1970s, the key advance in using fracturing fluids was in applying metal-based cross-linking agents to increase the viscosity of gelled water-based fracturing fluids designed for deeper wells at higher-temperature conditions [1].
The key factor of technological revolution is due to the fast evolution of drilling and completion techniques as well as the improvement of the fracturing technology. From the primary explosion technology of nitroglycerin to the newest fracturing technology of synchrotron, the developed fracturing technology has gradually improved the shale gas recovery efficiency.
The earliest nitroglycerin explosion technology was used in the 1970s in a vertical well with an open-hole completion. This technique affected wellbore stability and caused very limited penetrations. In 1981, a new fracturing fluid combined of nitrogen (N2) and carbon dioxide (CO2) foam was utilized in vertical wells in shale gas formations. This implementation led to gas recovery increase by 3–4 times and reduced formation damage. Subsequently, in 1992 the first horizontal well was drilled in shale gas formation in Hammett basin. Horizontal wells then steadily supplanted the practice of vertical wells. A cross-linked gel was applied as a thickening or cross-linking agent during the period from the 1980s to the 1990s. The fracturing technique of horizontal wells can effectively generate fractured networks and increase the hydrocarbon flow area. This method is favorable because it minimizes the cost and increases hydrocarbon recovery. Thus, the development of large-scale hydraulic fracturing using horizontal wells contributed to the economic development of shale gas resources [2].
A major development was made in 1998 in fracturing technology by introducing a water-based liquid fluid instead of gel. This new fracturing fluid has a low sand (proppants) ratio of approximately 90% less than that used in the gelled fracturing. Thus, fracturing fluid associated cost was minimized by more than 50%. This type of fracture fluid can provide better fracturing performance that may increase the recovery efficiency up to 30% [2].
After the year 2000, a new technology called the segmental fracturing technology has been developed and utilized in horizontal wells during shale gas exploitation. This technology has further been developed and improved to include more than 20 segments leading to improvements in both the recovery efficiency and drainage area. Horizontal segmental fracturing technology is broadly used in the United States in the development of shale gas wells over the standard method by 85% [2].
After the year 2005 using both techniques of segmental fracturing technology and microseismic crack monitoring in shale gas development using fracture horizontal wells has significantly enhanced shale gas recovery. A new brand of fracturing technology was subsequently introduced in the year 2006 which is synchronous fracturing technology that has been utilized in the Barnett shale gas basin. Table 1 summarizes the development of drilling and completion methods and the history of shale gas development in the Barnett basin, United States [3].
Stage | Year | Total well number | Fracturing technology |
---|---|---|---|
Initial | 1979 | 5 | High-energy gas fracturing |
1981 | 6 | N2 and CO2 foam fracturing | |
1984 | 17 | Cross-linked gel fracturing, liquid quantity 105 gal (378 m3) | |
1985 | 49 | Cross-linked gel fracturing, liquid quantity 5 × 105 gal (1892 m3) | |
1988 | 62 | Cross-linked gel fracturing | |
1991 | 96 | Horizontal well and cross-linked gel fracturing | |
1995 | 200 | Horizontal well fracturing and cross-linked gel fracturing | |
1997 | 300 | Riverfracing treatment, liquid quantity 5 × 105 gal (1892 m3) | |
1999 | 450 | Riverfracing treatment, inclinometer fracture monitor | |
2001 | 750 | Riverfracing treatment, microseismic fracture monitor | |
2002 | 1700 | Horizontal well fracturing, riverfracing treatment | |
Development | 2003 | 2600 | New well configuration with 719 vertical wells, 85 horizontal wells, and 117 directional wells |
2004 | 3500 | 150 wells with horizontal well stage fracturing 2–4 stages | |
2005 | 4500 | 600 new horizontal wells where drilling time is greatly reduced | |
2006 | 5500 | Synchronous fracturing, lower development costs | |
2007 | 7000 | Horizontal well fracturing, synchronous fracturing | |
2008 | 9000 | Repeated fracturing | |
Steady | 2009 | 13,000 | Maintain capacity, lower costs, enhancing oil recovery |
Stimulation development of Barnett shale gas formation [3].
The mechanism of fracturing stimulation of shale gas reservoirs is not the same as a conventional or sandstone gas reservoir. Shale gas reservoirs, in general, cannot be found as conventional traps, but they are self-generating and self-storage gas reservoirs. The natural fracturing network can particularly enhance shale tight formation permeability [4]. Shale gas capacity can be attained through microfractures in shale formation. These fractures involve both a percolation path and a storage space of shale gas. They create the necessary communication and connectivity for the shale gas to reach the wellbore. Furthermore, shale gas recovery factor can be achieved through the existence of reservoir fractures’ and its density and characteristic and opening degree in the reservoir. Shale reservoirs are usually well stimulated and completed with good natural fractures and bedding. High brittleness is one of the significant parameters, which relates to the share failure during shale reservoir hydraulic fracturing process. It is responsible for the formation of complex fracture networks and the connections between natural fractures. Hence, the main purpose of utilizing stimulation technology on shale gas formation is to generate effective fracture networks to improve the reconstruction volume and enhance the reservoir capacity [5].
Fracturing technology of shale reservoirs can be classified based on the type of well fracturing into three categories, vertical, deviated, and horizontal fracturing wells, as shown in Figure 1. Fracturing technology can also be divided based on the type of fracturing fluid used such as gas, foam, gel, etc. Target zone can be fractured into different sections as single section and multi-section fracturing. Moreover, various factors should be taken into account while choosing the choice of fracturing fluid and fracturing technology such as the shale gas reservoir depth, capacity and formation sensitivity, natural fractures, and the well completion technology [6].
Sketch map of vertical well and horizontal well fracturing [4].
The most commonly used fracture technologies now are the multi-section fracturing, riverfracing, hydra-jet fracturing, fracture network fracturing, re-fracturing, and simultaneous fracturing. However, more attention is being given to CO2 and N2 fracturing. This fracturing technology’s features and application conditions are different as shown in Table 2.
Fracturing technology | Technical physical features | Application area |
---|---|---|
Stage fracturing |
|
|
Riverfracing treatment |
|
|
Hydra-jet fracturing |
|
|
Repeated fracturing |
|
|
Simultaneous fracturing |
|
|
Network fracturing |
|
|
CO2 and N2 foam fracturing |
|
|
Large hydraulic fracturing |
|
|
Technical characteristics and application of fracturing technologies [7].
Since it was proposed for the first time by Giger in 1985 [8], the concept of horizontal well fracturing has been widely practiced as a valuable technique to improve well production and increase the recovery of unconventional reservoirs. Horizontal well fracturing treatments in field generally create multi-fractures in selected intervals along the wellbore. Processes of fracture initiation and propagation in horizontal wells are different from those in vertical wells due to the larger contact surface area with the formations, thus resembling more complex reservoir situation. When multi-fractures are propagated, they often join or intersect with each other, forming patterns that are known as multi-fracture networks, which immensely increase the storage capacity and the fluid transmissibility of formations. Multi-fracture networks are not easy to be assessed or studied due to the complexity; however, they are evaluated using mathematical and statistical techniques and may be represented using fractals.
The classical hydraulic fracturing theory indicates that the main formed fracture is a symmetric bi-wing plane extending parallel to the direction of maximum principal stress. However, field hydraulic fracturing treatment is completely different as complex fracture networks take place where the main fracture and other smaller branch fractures simultaneously extend in the fracture propagation zone [9, 10, 11].
Microseismic mapping shows that hydraulic fracturing in shale forms a multi-fracture network system [12, 13, 14, 15] which consists of complex fractures as shown in Figure 2 [16]. It was concluded from the mapping that natural fractures’ direction was to the northwest and the propagation of the induced hydraulic fractures direction was to the northeast where they intersected with natural fractures. This led to many crosscutting linear features and formed a complex fracture. Based on fracture extension characteristic in shale reservoirs, hydraulic fractures are classified into four major types [16]: single plane bi-wing fracture, complex multiple fracture, complex multiple fracture with open natural fractures, and complex fracture network as shown in Figure 3.
Multi-fracture network extension in shale reservoirs during hydraulic fracturing (after Warpinski et al. 2008 [16]).
The hydraulic fracture classification complexity (after Warpinski et al. 2008 [16]).
Confirming field observation from seismic mapping, simulation experiments [17, 18, 19, 20, 21, 22] show that induced hydraulic fracture presents three types of extensions when intersecting with natural fractures: crossing the natural fractures, extending along the natural fractures or crossing, and extending along at the same time. It was concluded that fracture network would highly form during fracturing process of naturally fractured formations [23]. Moreover, several laboratory experiments confirmed that fracture network exists [24, 25] and found that the fracture network would easily form under low fluid viscosity injection [26, 27]. Other observations proposed that multi-fracture networks in shale reservoirs area are key to increase stimulated reservoir volume (SRV) where treatment success relies on whether hydraulic fracture could extend to form multi-fracture network [28, 29, 30].
Understanding fracture initiation and propagation rules are the main issues faced when commencing hydraulic fracturing because several important geological and engineering factors affecting the multi-fracture network formation are to be considered [31].
Mineral composition. Brittleness is controlled by mineralogy as brittleness mineral concentration, the rock brittleness gets higher, and the development of natural fractures becomes better (mineral concentration increase/decrease).
Mechanical properties. Poisson’s ratio and Young’s modulus are combined to reflect the rock ability to fail under stress (Poisson’s ratio) and maintain a fracture (Young’s modulus) once the rock fractures. The lower Poisson’s ratio and higher Young’s modulus value, the more brittle the rock, and the fracture extends into fracture network.
Distribution of natural fractures. As natural fractures have great effect on hydraulic fracture extension, the more developed the natural fractures are, the more complex is the extension of hydraulic fracture.
Horizontal stress field. Multi-fracture network is controlled by intersecting intensity between induced fractures and natural fractures. Hydraulic fracture would propagate along natural fractures under low horizontal stress and cross natural fractures under high horizontal stress conditions.
Net fracturing pressure. Greater fracturing pressure would cause more complex fractures where it is possible to induce branches of hydraulic fracture to form a complex fracture network.
Fluid viscosity. The viscosity has an important influence on the complexity of fracture extension; from the laboratory experiments, it is obvious if the fluid viscosity gets higher; the complexity of fracture is significantly reduced. The injection of high viscosity fluid in field treating will reduce the complexity of fracture network [32, 33, 34, 35].
Fracturing scale. The impact of fracturing scale can be seen on the production scale, as large amounts of the fracturing fluid volume are pumped; the longer the total length of fracture network, the more complex the resulted fracture network, and the higher the corresponding well production. Using large fracturing scale is an important measure to increase the SRV, which is essential to improve stimulation effect in the shale fracturing, where the bigger the SRV is, the higher the production.
The essential goal for the treatment is to get the most out of each stage and each cluster in the fracturing network. The optimization of fracturing fluid and minding the aforementioned factors can help achieving even flow distribution and network efficiency, both of which can help contribute to increased production. The practices over have realized that, in most cases where it has been measured, only 30–60% of the fractured clusters in a wellbore are providing measurable production [36].
Unconventional reservoirs show significant decline rates after few months of production compromising the economics and imposing the need for increasing or stabilizing production. The decline in production from the unconventional reservoirs is attributed to the closure and damage of the fracture networks within the formations. Hence, re-fracturing as an emerging technology has become a viable option for sustaining production and increasing reserves. Re-fracturing is a preferred option over drilling and completing new horizontal wells as it can be carried at only a fractional cost of up to 25–40% [37], thus minimizing the related financial and safety risks.
Production decline rates from unconventional reservoirs are more rapid than those in conventional reservoirs because of the ultralow permeability, limited reservoir contact, and the original completion strategy. The ability of re-fracturing technology provides a potential to extend the productive life of the unconventional reservoirs beyond the normal and up to an additional 20–30 years [38]. Re-fracturing restores production from underperforming formations by increasing fracturing networks, replacing damaged proppant, bypassing skin zones, and connecting old and new fractures [39]. Successful re-fracturing can increase the estimated ultimate recovery (EUR), shorten the capital return time, and increase the net present value (NPV) of the unconventional reservoirs. Decline curve analysis (DCA) showed that re-fractured wells achieved an average of 60% increase in NPV [40]; therefore, re-fracturing application helps reduce the variability in the unconventional reservoir performance and considered the best option for tackling production declines.
Re-fracturing literally means a second hydraulic fracturing through same or new perforations to repair or recreate fracture networks within the same formation. If a re-fracturing treatment was carried out after a re-fracturing, then it would be considered a tri-fracturing [41].
Practically, re-fracturing is carried out when the initial hydraulic fracturing treatment was undersized or when suspected skin damage exists [42]. It is possible to use the existing fractures for the re-fracture and still generate a new fracture network sufficient to increase production. In a formation with its low in situ stress anisotropy, pressure can be created within the fracture itself to cause the reservoir to be fractured in new directions. Reusing the existed fractures helps control the cost of re-fracturing. Therefore, another approach for re-fracturing is to add perforations between the existing fractures to create additional fracturing networks as shown in Figure 4.
(left) a hydraulic fracturing stimulation created a fracture network (right) after re-fracturing, and additional complex fracture network has developed (Allison & Parker 2014 [38]).
There are many ways available to perform re-fracturing; however, three most common re-fracturing methods are selected for consideration, namely, the diversion method, the coiled tubing fracturing method, and the mechanical isolation method [43]:
Diversion: This method uses diverting agents to plug the existed fractures or perforations, allowing re-fracturing reallocation to new areas. However, it is difficult to control which segment of the lateral would be stimulated that is why it’s also known as a “pump and pray method.” Yet, this method is the most widely used in the industry likely because it is the most cost-effective.
Coiled tubing: This method utilizes resettable packers where re-fracturing is targeted. However, at low rates through coiled tubing, this method is considered inadequate for open-hole environments.
Mechanical isolation: This method typically uses expandable liners and plugs. However, it requires new hardware for re-fracturing which increase costs substantially because it would often need to use a full new liner.
As re-fracturing technology gains popularity in unconventional reservoirs, the ability to isolate reservoir access points and redirect the fracturing fluids and proppant to different parts of the reservoir is crucial to achieving a successful treatment. All known methods have advantages and disadvantages; however, the often selected method is based on their ease of use, cost-effectiveness, and environmental impact.
Many wells are drilled with outdated completion designs; for that, they aren’t efficiently producing the reservoir formations. These wells are specifically targeted when engaging re-fracturing because it is an economical practice to mitigate the flow rate decline and maximize reservoir deliverability [44].
The process of choosing which well to re-fracture is known as “candidate selection” [45], and the following are criteria which are often considered [46]:
Logs or tracers indicating unproductive sections of wellbore
Initial completion used wrong fracture fluid or proppant type
Degree of production depletion
Degradation in fracture conductivity or propped half-length
Productivity of the reservoir
Performance of other nearby wells
The selection methodology must be customized to fit the particular needs of a given field where substantial incremental reserves can be added if the correct candidate selection process is followed [47].
After re-fracturing, a well may experience increase in production due to new fractures or extension of existing fracture networks. The success of re-fracturing can be determined by empirical parameters such as production rate 30 days before and following re-fracturing, EUR ratio based on DCA [48].
Computer programs can simulate re-fracturing scenarios at a considerable degree of accuracy despite the fact that all predictive methods lack robustness that accounts for the original production depletion and the conditions after re-fracturing. However, as technology advances, well performed computer models are able to generate trustworthy forecasts that allow decision-makers to confidently evaluate the economic success or failure of re-fracturing.
Simultaneous fracturing or multiple fracturing (simul-frac) technology is the hydraulic fracturing technique that fractures multiple wells simultaneously. Simultaneous fracturing applies a shortest well-to-well distance to allow both the proppants and fracturing fluid flow through the porous medium from well to well under high pressure as shown in Figure 5. The purpose of the multiple simultaneous process is to increase the recovery efficiency and productivity, of the wells, by increasing the surface area subject to flow through the newly created dense fractures. The typical practice of simultaneous fracturing initiates with two horizontal wells of the same depth; however, currently up to four wells can be simultaneously fractured [46].
An example of simultaneous fracturing [49].
Many researchers have performed different field experiments to examine the simultaneous fracture multiple adjacent horizontal wells to create complex fracture networks. Even though field attempts have shown significant improvement with simul-frac instead of stand-along wells [50], microseismic information [51], and numerical simulations [52, 53, 54, 55, 56, 57, 58] also demonstrate a complex fracture network made through simul-frac. However, the reasons behind its success are not yet well understood. Multiple hydraulic fracture technique is a complex method that requires considering not only the hydraulic fracturing procedure but also fracture interaction between multiple fractures. The hydraulic fracturing treatment is a typical hydromechanical fracture coupling problem, wherein the following three basic processes involve in [59]:
Rock deformation made by fluid pressure applied on fracture surface
Fluid flow into the fractures
Fracture growth
The fracture interaction between multiple fractures would significantly result in stress shadow effects that can cause stress field and fracture geometry alterations.
With the advance of computer processes, more numerical tools have been developed to become reliable and convenient techniques to investigate the treatment methods of hydraulic fracturing. Moreover, the numerical technique of finite element [60] is a well-established scheme to study rock engineering issues, and also it is frequently used in the last three decades to simulate hydraulic fracture propagation [61]. However, there are many scientific articles published on different finite element methods to numerically study the process of hydraulic fracturing [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].
Horizontal well fracturing technology is the main technology promptly utilized to low permeability reservoirs. However, in deep shale reservoirs, the use of traditional single stimulation cannot meet the production requirements. Thus, a new technology of horizontal well pressure cracking has been introduced. Zebo et al. [83] found that, based on the process and concerned parameters of horizontal well fracturing, increasing technical problems during reservoir exploration and development, horizontal section becomes popular where sub-fractured horizontal well technique has wide application potentials. Furthermore, the sub-fracturing technology is an important tool in the technology of staged fracturing. Packer as a completion tool does not consist of multicolumn zones, and supporting tools are necessary for safety and to increase the possibility of successful fracturing treatment.
The success of horizontal well fracture is mainly due to the mechanical properties of the rock, stress, shaft stress fracture initiation, and elongation mechanism. Moreover, the horizontal well sub-fracturing should be considered to obtain better fracturing design and to ensure treatment success and efficiency. To achieve the expected outcomes from well completion of a fracturing job, certain issues must be monitored such as the borehole or near wellbore area, permeability anisotropy, blocking natural cracks, and stimulation failure. Up to date, the horizontal well fracturing technique has become one of the preferred tools to solve these problems. Thus, the main applied technology of horizontal well fracturing consists of limited flow fracturing technique and sub-fracturing process. The following section will describe these techniques.
This technique limits the number of perforations and their diameter while injecting a large volume of fracturing fluid that causes increasing the bottom hole pressure on a large scale. Therefore, the fracturing fluid is forced to shunt into limited entries creating new fractures as shown in Figure 6 [85, 86]. The main advantages of this technique are a relatively simple operation, short operation time, the fact that multi-fractures are created in a single operation which is environmentally favorable for reservoir protection. However, this technique has some limitations including high perforation back pressure, difficult to control any single fracture, and fractures which may not form in perforations of long interval horizontal well.
Technique of the limited entry fracturing of a horizontal well [84].
An example where limited entry fracturing technology was applied in horizontal well is Zhao 57-Ping 35 of Daqing Oil Field [84]. The well was divided into 4 sections each containing 19 perforations, and an isolating packer was set above the kickoff point. Using two simultaneous pumping facilities, a total fracturing fluid volume of 374.3m3 with an average sand ratio of 35.6% was injected at a rate of 7.5 m3/min. The fracture initiation pressure was 30.5 MPa, four fractures were created, and the total fracture span was 400 m. The entire operation took 79 minutes. This treatment achieved success allowing the production after fracturing to increase 20–30 times and reach the production level of 4 vertical wells.
As limited entry fracturing cannot operate on all the target layers at one time, staged fracturing technique is used when the horizontal section is long and many layers are targeted for fracturing. Staged fracturing creates many fractures by utilizing packers and/or other segmenting materials. Operating a section by section at the time, one fracture is created in every section. The key points to achieve staged fracturing are tools and technique that fulfill the treatment requirements.
There are three types of staged fracturing techniques often used: the bridge plug fracturing, through coiled tubing fracturing with straddle packer and gel complex-slug fracturing as shown in Figure 7. Contrary to packer separation, the gel complex-slug fracturing avoids the risk of downhole tool stuck, but in the latter, the fracture initiation points are difficult to control.
Staged fracturing mechanism of horizontal wells [84].
An example where gel staged fracturing technology was applied in well Saiping-1 of Changqing Oil Field where four fractures were created. The process is briefly described as the following: perforating the end of horizontal well section, followed by first fracturing treatment, running a production test, and temporary plugging the first section by sand filling gel plug and, next, repeating the process in perforating the second, third, and fourth sections followed by a formation pressure and production tests.
The first hydraulic fracturing treatment was implemented in Hugoton Gas Field in Grand County, state of Kansas, during 1947. By the end of 1952, many fracturing treatments were performed with refined and crude oils. Thus oil-based fluids were the first fracturing fluid utilized for this purpose due to their benefits which are cheap and permitting greater volumes at a lower cost. But due to the safety and environmental issues, which are associated with their applications, it was encouraged that the industry move toward in developing an alternative fluid. At the beginning of 1953, for the first time, water fluid was used as a fracturing fluid; and a number of gelling agents were developed. However, water-based fluids with water-soluble polymers mixed to prepare a viscous solution are commonly used in the fracturing treatment. Since the late 1950s, more than 50% of the fracturing treatments were performed with fluids consisting of guar gums, high-molecular-weight polysaccharides composed of mannose and galactose sugars, or guar derivatives [87].
In 1964, surfactant agents were added to reduce the emulsion formation when in contact with the reservoir fluid; however, potassium chloride was added to decrease the effect on clays and other water-sensitive formation components. Later, additional clay stabilizing agents were developed to enhance the potassium chloride, allowing the use of water in different geological formations. In the early 1970s, a major revolution in fracturing fluids introduced the use of metal-based cross-linking agents to improve the viscosity of gelled water-based fracturing fluids for extreme reservoir condition (i.e., high temperature). Later a critical development was made on gelling agent to achieve a preferred viscosity. Also guar-based polymers are still used in fracturing jobs at reservoir temperatures below 150°C. Other fluid improvements, foams, and the addition of alcohol have enhanced the use of water in more geological reservoir formations. Moreover, various aqueous fluids, such as acid, gas, water, and brines, are currently used as the base fluid in approximately 96% of all fracturing treatments employing a propping agent [87].
As the hydrocarbon drilling and production have moved toward deeper reservoirs with high pressure and temperature condition, more fracturing treatments have been developed to be compatible with these conditions. Therefore, gel stabilizers and thermally stable polymers have been developed in which gel stabilizers can be utilized with around 5% methanol, but synthetic polymers have shown a sufficient viscosity at temperatures up to 230°C [88]. After that, chemical stabilizers have been developed and possibly used with or without a methanol. The improvements, which are made in cross-linkers and gelling agents, have led to systems that can permit the fluid to reach the well bottomhole in high-temperature condition before cross-linking, therefore, reducing the effects of high shear in the production tubing. Recently, nanotechnology has been introduced in the design of new, efficient hydraulic fracturing fluids [88]. For example, nanolatex silica is used to reduce the concentration of boron found in conventional cross-linkers. Recent advancement in nanotechnology is the use of small-sized silica particles [20 nm] suspended in guar gels to improve fracturing treatment [89]. Therefore, the following section will discuss the use of CO2 and N2 as fracturing fluid to enhance the hydrocarbon fluid production and to store CO2 into the geological formation to minimize the greenhouse emission. Also it will provide a brief information on hydra-jet fracturing.
In the ordinary fracturing, large amounts of freshwater, sand, and chemicals are injected into the ground at high pressure. It has been reported that up to 9.6 million gallons of water on average are used for a single well fracturing; this lead to the use of more than 28 times the water for wells before fracturing, putting farming, and drinking sources at risk in arid regions, especially during drought [90]. Some of the water used for fracking is brought back to the surface and recycled, but the most of it is lost deep into the formations. Thus, fracking can increase demand for water by up to 30 percent, and this can be a major increase for groundwater consumption.
To solve the water scarcity problem, the fracturing using water, carbon dioxide, and nitrogen is commonly referred to the process in where substantial quantities of both nitrogen and carbon dioxide are incorporated into the fracturing fluid. Amounts of nitrogen and carbon dioxide are incorporated separately into an aqueous-based fracturing fluid to provide a volume ratio of nitrogen to carbon dioxide within an estimated range between 0.2 and 1.0 at wellhead conditions. The volume ratio for the total of both carbon dioxide and nitrogen to the aqueous phase of the aqueous fracturing fluid ranges between 1 and 4. The aqueous fracturing fluid that contains the nitrogen and carbon dioxide is injected in the well under conditions in which the pressure required is high enough to implement hydraulic fracturing of the subterranean formation undergoing treatment. In order to provide a viscous aqueous-based fracturing fluid, a thickening agent may be added into water. Additionally, a propping agent is to be incorporated into a portion of the fracturing fluid. Only then can carbon dioxide and nitrogen be added to the fluid. Carbon dioxide is incorporated in its liquid phase and the nitrogen in its gaseous phase. The use of carbon dioxide and nitrogen as fracturing fluids is discussed briefly in this essay.
Currently, carbon dioxide fracturing is one of the most effective and cleanest approaches available in order to increase oil and gas production. To produce the viscous aqueous-based fracturing fluid, carbon dioxide is injected in its liquid state using conventional frac pumps. Injection rates for it can be improved by incorporating booster capacity. An upside of using carbon dioxide in this process is that it can carry high concentrations of proppant in foam form due to its density and is compatible with all treating fluids (including acids). Because of that density, it is also not susceptible to gravity separation. Additionally, carbon dioxide can be pumped with synthetic and natural polymers, lease crude, or diesel as a foam or microemulsion, increasing the hydrostatic head to or greater than that of fresh water and decreasing the viscosity of the system. This feature of carbon dioxide results in vastly reducing horsepower costs and a decrease in the applied treating pressures. Another benefit of carbon dioxide is that it dissolves in water which causes it to form carbonic acid that dissolves the matrix in carbonate rocks. It buffers water-based systems to a pH of 3.2 which can also control clay swelling and iron and aluminum hydroxide precipitation. Known to act as a surfactant to significantly reduce interfacial tension and resultant capillary forces, carbon dioxide thus removes fracturing fluid, connate water, and emulsion blocks. In regard to it being one of the cleanest approaches in increasing gas and oil productions, carbon dioxide provides the energy to remove formations fines, crushed proppant, reaction products, and mud that is lost during drilling. In addition to that, swabbing of treating fluids can be greatly reduced which will allow for saving in associated treatment costs. Lastly, unlike other agents a carbon dioxide treatment with a 70 quality foam job allows low amounts of the water to contact the formation, roughly 30 percent compared to a gelled water fracturing. This decrease chances of clay swelling and inhibited production. All these benefits of using carbon dioxide as a fracturing fluid in wells with low bottomhole pressure or sensitivity to certain fluids make it a strong alternative candidate.
Although containing different properties, nitrogen similar to carbon dioxide comes with many benefits for fracturing fluids. Nitrogen for the fracturing fluids can be supplied by air products and provides both performance and cost advantages over certain formations of water-based fluids. Although water-based fracturing fluids are commonly used for hydraulic fracturing due to their advanced proppant transport into the fracture, they do also come with disadvantages. Because they can cause water saturation around the fracture and clay swelling which can result in hindering the mass transport of hydrocarbons from the fracture to the wellbore, water-based fluids are often unsuitable for water-sensitive formations. Nitrogen fracking fluids are an excellent alternative to water-based fluids in water-sensitive formations, depleted reservoirs, and shallow formations as they do not result in any water saturation.
Four main types of nitrogen fracturing fluids are used commercially: pure gas, foam, energized, and ultrahigh quality (mists). Foam fracturing fluids typically consist of a water-based system and a gas phase of nitrogen volume in the range of 53 to 95%. Below 53% nitrogen, the fracturing fluid is considered energized. Above 95 percent nitrogen, the fracturing fluid is considered a mist. Cryogenic liquid nitrogen fracking fluid is considered to be the fifth type of nitrogen fracturing fluids used. However, it is rarely employed for commercial operations due to material restrictions and equipment requirements.
The process of hydra-jet fracturing combines hydra-jetting with hydraulic fracturing and involves running a specialized jetting tool on conventional or coiled tubing. Dynamic fluid energy jets form tunnels in the reservoir rock at precise locations to initiate the hydraulic fracture which is then extended from that point outwards. By repeating the process, one can create multiple hydraulic fractures along the horizontal wellbore [91, 92, 93]. The idea of hydra-jet fracturing is not a new one. In fact, it was used a century ago with low-pressure jets [94] where waterjets with erosive materials were used to cut rock and glass. Because erosion does not involve a backflow hindering the sand cutting process, cutting steel plates, wellheads during the Iraqi war, and rock quarries tend to be easily be done. Hydra-jet cutting may be mistakenly claimed as a result of a perforating process which can be seen when used on the rocks sandstone and limestone.
For these two rocks, assume that the jet is used to perforate formation rock. Also assume that the jetting process creates a perforation with a larger inside diameter than the jet nozzle. The velocity of the fluid flowing into the perforation tunnel would be incredibly elevated. Near the bottom of the perforation, the velocity of the flowing fluid would dramatically decrease. If the flow area is sustained and there is no presence of friction, the fluid pressure will be equal to the original jet pressure per the example. However, this tends to be an unlikely happening because pressure losses are typically high. To further explain this, jet boundary friction works to convert kinetic energy to heat loss causing jet flaring. This drastically reduces jet velocity, which in turn reduces the pressure per unit area of impact. This results in a low-pressure transformation efficiency. More importantly, rocks can still be fractured when enough pressure is applied to the jets even at this low of a pressure efficiency rate. An important note is that laboratory tests have shown that rock fracturing is commonplace when jet pressures are high. However, when high-pressure and low-energy transformation efficiencies are used hand in hand, they are technically and economically impractical.
The desired objective of fracturing is to develop and effectively produce from a shale reservoir. To ensure a successful fracturing treatment, a proper fracturing technology must be utilized based on the reservoir characteristics as the reservoir mineral content, physical properties, and geological condition. The utilized formation fracturing technique has a different desired environment to achieve the maximal recovery. During the process of fracturing treatment, the content of a fracturing fluid should be checked based on the formation mineral content and physical properties to improve reservoir permeability and reduce formation damage.
The forming of multi-fracture network is the key to obtain an effective hydraulic fracturing treatment in shale reservoirs. If higher treating net pressure is achieved, lower fluid viscosity is used, and larger fracturing scale attempt would be more helpful to form a fully fracture network. The reservoir geological factors also have high attributes, where brittleness index, elastic characteristic of rock mechanical properties, horizontal stress, and existence of natural fractures are useful to obtain better results of fractures developing into multi-fracture network.
Re-fracturing has the potential to re-energize natural fractures and extend and replace low conductivity existing fracture network. Utilizing re-fracture treatment successfully depends on technology that allows access to larger volumes of unconventional reservoirs. Monitoring the effectiveness of well completions helps guide technologies and methods to gain control of the wellbore to maximize EUR and NPV. Re-fracturing treatments have significant impact on production, and economics of unconventional reservoir development and consideration should be taken to determine the best way to achieve successful re-fracturing as production starts to decline.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"168",title:"Biomedical Engineering",slug:"medicine-biomedical-engineering",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:23,numberOfAuthorsAndEditors:789,numberOfWosCitations:1214,numberOfCrossrefCitations:521,numberOfDimensionsCitations:1306,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9477",title:"Muscular Dystrophy",subtitle:"Research Updates and Therapeutic Strategies",isOpenForSubmission:!1,hash:"dd601de843019d51e1769a26cf7e1acc",slug:"muscular-dystrophy-research-updates-and-therapeutic-strategies",bookSignature:"Gisela Gaina",coverURL:"https://cdn.intechopen.com/books/images_new/9477.jpg",editedByType:"Edited by",editors:[{id:"242747",title:"Dr.",name:"Gisela",middleName:null,surname:"Gaina",slug:"gisela-gaina",fullName:"Gisela Gaina"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8134",title:"Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"2189275afd996cab432c0f5f7c5869f3",slug:"regenerative-medicine",bookSignature:"Mahmood S Choudhery",coverURL:"https://cdn.intechopen.com/books/images_new/8134.jpg",editedByType:"Edited by",editors:[{id:"187822",title:"Dr.",name:"Mahmood S",middleName:null,surname:"Choudhery",slug:"mahmood-s-choudhery",fullName:"Mahmood S Choudhery"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8093",title:"Xenotransplantation",subtitle:"Comprehensive Study",isOpenForSubmission:!1,hash:"16d2b84272592afd80dd2575eff0546b",slug:"xenotransplantation-comprehensive-study",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/8093.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7898",title:"Cartilage Tissue Engineering and Regeneration Techniques",subtitle:null,isOpenForSubmission:!1,hash:"cb87bdbe93f1269aae5c6c678c598ce7",slug:"cartilage-tissue-engineering-and-regeneration-techniques",bookSignature:"Dimitrios D. Nikolopoulos, George K. Safos and Kalpaxis Dimitrios",coverURL:"https://cdn.intechopen.com/books/images_new/7898.jpg",editedByType:"Edited by",editors:[{id:"228477",title:"Dr.",name:"Dimitrios D.",middleName:null,surname:"Nikolopoulos",slug:"dimitrios-d.-nikolopoulos",fullName:"Dimitrios D. Nikolopoulos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7926",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"8a84bfdf7cd30b440b339fc046b155f3",slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",bookSignature:"Mike Barbeck, Ole Jung, Ralf Smeets and Tadas Koržinskas",coverURL:"https://cdn.intechopen.com/books/images_new/7926.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6609",title:"Muscle Cell and Tissue",subtitle:"Current Status of Research Field",isOpenForSubmission:!1,hash:"522e700080f9e908b6b330587f0f381d",slug:"muscle-cell-and-tissue-current-status-of-research-field",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/6609.jpg",editedByType:"Edited by",editors:[{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6475",title:"Tissue Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"d5ed06a80f0205146aa90d158facefd1",slug:"tissue-regeneration",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/6475.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6052",title:"Cartilage Repair and Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"e4881b3685ffd70f3f4d3d2c49b1d7f6",slug:"cartilage-repair-and-regeneration",bookSignature:"Alessandro R. Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/6052.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5952",title:"Xenotransplantation",subtitle:"New Insights",isOpenForSubmission:!1,hash:"903df77921b8704466248d0ff5cbcdd9",slug:"xenotransplantation-new-insights",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/5952.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4610",title:"Muscle Cell and Tissue",subtitle:null,isOpenForSubmission:!1,hash:"f2719cb06d2a1327298528772eacec55",slug:"muscle-cell-and-tissue",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/4610.jpg",editedByType:"Edited by",editors:[{id:"173502",title:"Dr.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4486",title:"Cells and Biomaterials in Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"1c333e655d47208db36f2a886b49c160",slug:"cells-and-biomaterials-in-regenerative-medicine",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/4486.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:23,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9689,totalCrossrefCites:107,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"9798",doi:"10.5772/8581",title:"Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications",slug:"biomaterial-scaffold-fabrication-techniques-for-potential-tissue-engineering-applications",totalDownloads:14402,totalCrossrefCites:48,totalDimensionsCites:113,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"B. Subia, J. Kundu and S. C. Kundu",authors:null},{id:"23660",doi:"10.5772/25476",title:"Scaffolds for Tissue Engineering Via Thermally Induced Phase Separation",slug:"scaffolds-for-tissue-engineering-via-thermally-induced-phase-separation",totalDownloads:6195,totalCrossrefCites:6,totalDimensionsCites:32,book:{slug:"advances-in-regenerative-medicine",title:"Advances in Regenerative Medicine",fullTitle:"Advances in Regenerative Medicine"},signatures:"Carlos A. Martínez-Pérez, Imelda Olivas-Armendariz, Javier S. Castro-Carmona and Perla E. García-Casillas",authors:[{id:"63450",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Martínez-Pérez",slug:"carlos-alberto-martinez-perez",fullName:"Carlos Alberto Martínez-Pérez"},{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",slug:"perla-e.-garcia-casillas",fullName:"Perla E. García Casillas"},{id:"138316",title:"Dr.",name:"Imelda",middleName:null,surname:"Olivas-Armendariz",slug:"imelda-olivas-armendariz",fullName:"Imelda Olivas-Armendariz"},{id:"138317",title:"Dr.",name:"Javier S.",middleName:null,surname:"Castro-Carmona",slug:"javier-s.-castro-carmona",fullName:"Javier S. Castro-Carmona"}]}],mostDownloadedChaptersLast30Days:[{id:"60312",title:"The Role of Extracellular Matrix in Tissue Regeneration",slug:"the-role-of-extracellular-matrix-in-tissue-regeneration",totalDownloads:2209,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"tissue-regeneration",title:"Tissue Regeneration",fullTitle:"Tissue Regeneration"},signatures:"Dwi Liliek Kusindarta and Hevi Wihadmadyatami",authors:null},{id:"19013",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9692,totalCrossrefCites:109,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"47782",title:"Mass Production of Mesenchymal Stem Cells — Impact of Bioreactor Design and Flow Conditions on Proliferation and Differentiation",slug:"mass-production-of-mesenchymal-stem-cells-impact-of-bioreactor-design-and-flow-conditions-on-prolife",totalDownloads:4515,totalCrossrefCites:8,totalDimensionsCites:15,book:{slug:"cells-and-biomaterials-in-regenerative-medicine",title:"Cells and Biomaterials in Regenerative Medicine",fullTitle:"Cells and Biomaterials in Regenerative Medicine"},signatures:"Valentin Jossen, Ralf Pörtner, Stephan C. Kaiser, Matthias Kraume,\nDieter Eibl and Regine Eibl",authors:[{id:"52441",title:"Prof.",name:"Dieter",middleName:null,surname:"Eibl",slug:"dieter-eibl",fullName:"Dieter Eibl"},{id:"171203",title:"Prof.",name:"Ralf",middleName:null,surname:"Pörtner",slug:"ralf-portner",fullName:"Ralf Pörtner"},{id:"171347",title:"Prof.",name:"Regine",middleName:null,surname:"Eibl",slug:"regine-eibl",fullName:"Regine Eibl"},{id:"171348",title:"M.Sc.",name:"Valentin",middleName:null,surname:"Jossen",slug:"valentin-jossen",fullName:"Valentin Jossen"}]},{id:"34830",title:"Augmentation and Preservation of the Alveolar Process and Alveolar Ridge of Bone",slug:"augmentation-and-preservation-of-the-alveolar-process-and-alveolar-ridge-of-bone",totalDownloads:7854,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"bone-regeneration",title:"Bone Regeneration",fullTitle:"Bone Regeneration"},signatures:"Haim Tal, Zvi Artzi, Roni Kolerman, Ilan Beitlitum and Gal Goshen",authors:[{id:"97351",title:"Prof.",name:"Haim",middleName:null,surname:"Tal",slug:"haim-tal",fullName:"Haim Tal"},{id:"128141",title:"Prof.",name:"Zvi",middleName:null,surname:"Artzi",slug:"zvi-artzi",fullName:"Zvi Artzi"},{id:"129173",title:"Dr.",name:"Roni",middleName:null,surname:"Kolerman",slug:"roni-kolerman",fullName:"Roni Kolerman"},{id:"129175",title:"Dr.",name:"Ilan",middleName:null,surname:"Beitelthum",slug:"ilan-beitelthum",fullName:"Ilan Beitelthum"},{id:"129176",title:"Dr.",name:"Gal",middleName:null,surname:"Goshen",slug:"gal-goshen",fullName:"Gal Goshen"}]},{id:"9794",title:"High Resolution X-Ray Tomography - 3D Imaging for Tissue Engineering Applications",slug:"high-resolution-x-ray-tomography-3d-imaging-for-tissue-engineering-applications",totalDownloads:3678,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"Zehbe Rolf, Haibel Astrid, Schmidt Franziska, Riesemeier Heinrich, Kirkpatrick C. James, Schubert Helmut and Brochhausen Christoph",authors:null},{id:"44652",title:"Tissue Engineered Animal Sparing Models for the Study of Joint and Muscle Diseases",slug:"tissue-engineered-animal-sparing-models-for-the-study-of-joint-and-muscle-diseases",totalDownloads:1931,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Ali Mobasheri and Mark Lewis",authors:[{id:"53525",title:"Prof.",name:"Ali",middleName:null,surname:"Mobasheri",slug:"ali-mobasheri",fullName:"Ali Mobasheri"},{id:"163371",title:"Prof.",name:"Mark",middleName:null,surname:"Lewis",slug:"mark-lewis",fullName:"Mark Lewis"}]},{id:"65590",title:"Current Tissue Engineering Approaches for Cartilage Regeneration",slug:"current-tissue-engineering-approaches-for-cartilage-regeneration",totalDownloads:1239,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"cartilage-tissue-engineering-and-regeneration-techniques",title:"Cartilage Tissue Engineering and Regeneration Techniques",fullTitle:"Cartilage Tissue Engineering and Regeneration Techniques"},signatures:"He Huang, Hongyao Xu and Jianying Zhang",authors:[{id:"274274",title:"Associate Prof.",name:"Jianying",middleName:null,surname:"Zhang",slug:"jianying-zhang",fullName:"Jianying Zhang"},{id:"290437",title:"Dr.",name:"He",middleName:null,surname:"Huang",slug:"he-huang",fullName:"He Huang"},{id:"290447",title:"Dr.",name:"Hongyao",middleName:null,surname:"Xu",slug:"hongyao-xu",fullName:"Hongyao Xu"}]},{id:"65513",title:"Innovative Biomaterials for Tissue Engineering",slug:"innovative-biomaterials-for-tissue-engineering",totalDownloads:942,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Anna Dolcimascolo, Giovanna Calabrese, Sabrina Conoci and Rosalba Parenti",authors:[{id:"272544",title:"Prof.",name:"Rosalba",middleName:null,surname:"Parenti",slug:"rosalba-parenti",fullName:"Rosalba Parenti"},{id:"273282",title:"Dr.",name:"Anna",middleName:null,surname:"Dolcimascolo",slug:"anna-dolcimascolo",fullName:"Anna Dolcimascolo"},{id:"273283",title:"Dr.",name:"Giovanna",middleName:null,surname:"Calabrese",slug:"giovanna-calabrese",fullName:"Giovanna Calabrese"},{id:"283275",title:"Dr.",name:"Sabrina",middleName:null,surname:"Conoci",slug:"sabrina-conoci",fullName:"Sabrina Conoci"}]},{id:"66180",title:"Application of Bone Substitutes and Its Future Prospective in Regenerative Medicine",slug:"application-of-bone-substitutes-and-its-future-prospective-in-regenerative-medicine",totalDownloads:898,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Ujjwal Ranjan Dahiya, Sarita Mishra and Subia Bano",authors:[{id:"126760",title:"Prof.",name:"Bano",middleName:null,surname:"Subia",slug:"bano-subia",fullName:"Bano Subia"},{id:"272470",title:"Dr.",name:"Ujjwal",middleName:null,surname:"Dahiya",slug:"ujjwal-dahiya",fullName:"Ujjwal Dahiya"},{id:"272471",title:"Dr.",name:"Sarita",middleName:null,surname:"Mishra",slug:"sarita-mishra",fullName:"Sarita Mishra"}]},{id:"44120",title:"Naturally Derived Biomaterials: Preparation and Application",slug:"naturally-derived-biomaterials-preparation-and-application",totalDownloads:5584,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Tran Le Bao Ha, To Minh Quan, Doan Nguyen Vu and Do Minh Si",authors:[{id:"159197",title:"Ph.D.",name:"Tran",middleName:null,surname:"Le Bao Ha",slug:"tran-le-bao-ha",fullName:"Tran Le Bao Ha"},{id:"166753",title:"MSc.",name:"To Minh",middleName:null,surname:"Quan",slug:"to-minh-quan",fullName:"To Minh Quan"},{id:"166757",title:"BSc.",name:"Doan",middleName:null,surname:"Nguyen Vu",slug:"doan-nguyen-vu",fullName:"Doan Nguyen Vu"},{id:"166760",title:"Dr.",name:"Do",middleName:null,surname:"Minh Si",slug:"do-minh-si",fullName:"Do Minh Si"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/253334/alla-polulyakh",hash:"",query:{},params:{id:"253334",slug:"alla-polulyakh"},fullPath:"/profiles/253334/alla-polulyakh",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()