More than 60% of the world’s electricity is still produced from fossil-fired power plants. Recovering heat from flue gas, drained water, and exhaust steam which are discharged in power plants by organic Rankine cycles (ORCs) to generate power is an efficient approach to reduce fossil fuel consumption and greenhouse gas emissions. This chapter proposes conceptual ORC systems for heat recovery of drain from continuous blowdown systems, exhaust flue gas from boilers, and exhaust steam from turbines. The waste heat source temperatures range from 30 to 200°C. Environmentally friendly and nonflammable working fluids including R134a, R1234ze, R236ea, R245fa, R1233zd, and R123 were selected as the working fluids. The parameters of ORC systems were optimized, and the thermodynamic performance was analyzed. The suitable ORC layouts for various kinds of heat sources including drained water, flue gas, and steam were discussed with selecting the proper working fluids. The gross power output of a coal-fired power plant can be increased up to 0.4% by an ORC using the waste heat from the boiler flue gas. The ORCs using turbine exhaust steam with the cooling water as low as 5°C can generate 2–3% more power for a power unit.
Part of the book: Organic Rankine Cycles for Waste Heat Recovery