For over a decade, ionic liquids (ILs) have attracted enormous attention from scientists across the globe. The history of these compounds traces back to 1914 where the inception of the first IL with a melting point of 12°C was made. Years later, a progression of the remarkable related compounds have been discovered. Out of many analogous compounds realized from time to time, the imidazolium class of ionic liquid is the most studied because of their air and moisture stability. The physicochemical properties of ILs differ significantly depending on the anionic/cationic species and alkyl chain length. ILs have found application in many scientific fields the most recent being good solvents and stabilizing agents in the nanomaterial synthesis. Studies have showed that ILs not only stabilize as synthesized nanomaterials but also provide environmentally green routes towards nanomaterials engineering.
Part of the book: Recent Advances in Ionic Liquids
The chapter’s goal is to highlight how the reclamation of household and agricultural wastes can be used to generate biogas, biochar, and other energy resources. Leftover food, tainted food and vegetables, kitchen greywater, worn-out clothes, textiles and paper are all targets for household waste in this area. Agricultural waste includes both annual and perennial crops. Annual crops are those that complete their life cycle in a year or less and are comparable to bi-annual crops, although bi-annuals can live for up to two years before dying. The majority of vegetable crops are annuals, which can be harvested within two to three months of seeding. Perennials crops are known to last two or more seasons. Wastes from these sources are revalued in various shapes and forms, with the Green Engineering template being used to infuse cost-effectiveness into the process to entice investors. The economic impact of resource reclamation is used to determine the process’s feasibility, while the life cycle analysis looks at the process’s long-term viability. This is in line with the United Nations’ Sustainable Development Goals (SDGs), whose roadmap was created to manage access to and transition to clean renewable energy by 2030, with a target of net zero emissions by 2050.
Part of the book: Biogas