Blood count recovery in umbilical cord blood transplantation pilot study utilizing hyperbaric oxygen (HBO).
\r\n\tHydrogen gas is the key energy source for hydrogen-based society. Ozone dissolved water is expected as the sterilization and cleaning agent that can comply with the new law enacted by the US Food and Drug Administration (FDA). The law “FDA Food Safety Modernization Act” requires sterilization and washing of foods to prevent food poisoning and has a strict provision that vegetables, meat, and fish must be washed with non-chlorine cleaning agents to make E. coli adhering to food down to “zero”. If ozone dissolved water could be successively applied in this field, electrochemistry would make a significant contribution to society.
\r\n\r\n\t
\r\n\tOxygen-enriched water is said to promote the growth of farmed fish. Hydrogen dissolved water is said to be able to efficiently remove minute dust on the silicon wafer when used in combination with ultrasonic irradiation.
\r\n\tAt present researches on direct water electrolysis have shown significant progress. For example, boron-doped diamonds and complex metal oxides are widely used as an electrode, and the interposing polymer electrolyte membrane (PEM) between electrodes has become one of the major processes of water electrolysis.
\r\n\t
\r\n\tThe purpose of this book is to show the latest water electrolysis technology and the future of society applying it.
Allogeneic transplantation is the only curative approach for many hematologic malignant and nonmalignant disorders. Unfortunately, only 30% of patients will have a matched sibling donor [1]. However, well-matched donors (MUDs) are a suitable alternative for those who do not. In one study, well-matched MUDs were identified in 53% of those with Northern European ancestry, compared to only 21% of patients of other origin [2]. For patients without a histocompatible adult donor, transplant options include unrelated umbilical cord blood (UCB) transplantation or transplant from a haploidentical (haplo) donor [3]. Since the first successful UCB transplant in 1988 [4], UCB has been used as a graft source for over 40,000 patients with both malignant and nonmalignant diseases [5, 6].
\nAs a graft source for transplantation, UCB has several practical advantages including ease of procurement, absence of donor risks, reduced risk of transmissible infections, and availability for immediate use [7]. UCB is also associated with a lower incidence of graft-versus-host disease (GVHD) despite HLA disparity [8]. Therefore, UCB extends the application of allogeneic transplant to ethnic minority populations who are underrepresented in donor registries [9]. Additionally, UCB transplantation is associated with reduced leukemia relapse in patients with evidence of minimal residual disease at time of transplant, suggesting a strong graft-versus-leukemia effect [10]. However, UCB units in themselves are limited in cell doses available for optimal transplantation in adults. UCB stem cells also demonstrate defects in homing to the bone marrow (BM), implicating delayed recovery of neutrophil and platelet count and achieved engraftment, resulting in higher rates of graft failure [11]. This prolonged time to engraftment is also associated with delayed immune reconstitution after UCB transplantation [12, 13, 14], resulting in higher posttransplant infection rates [15]. Strategies to overcome these defects in homing and engraftment are clearly needed in order to make this potentially curative therapy more effective for patients. Additionally, such strategies might apply to other types of hematopoietic stem cell (HSC) transplantation, including autologous stem cell transplantation as well as allogeneic stem cell transplantation.
\nHoming is the first process by which circulating hematopoietic cells actively cross the blood/BM endothelium barrier to migrate into the BM compartment (Figure 1) [16]. This process is fairly rapid and occurs within hours and no longer than a day or two after stem cell infusion [16]. HSC homing is mediated in part by the binding of chemokine CXCR4 receptor on the surface of HSCs to their ligand, stromal cell-derived factor-1 (SDF-1) expressed by BM stromal cells [17]. Stem cell homing precedes engraftment, corresponding to proliferation and differentiation of hematopoietic stem cells (HSCs) to produce mature, functional hematopoietic cells within the BM [18]. One study claimed that only 18–20% of all intravenously transplanted stem cells, including different subsets, seeded in the BM, with UCB stem cell seeding even lower [19]. Another study demonstrated that human UCB stem cell seeding efficiency in NOD/SCID mice was found to be less than that for BM (4.4% versus 20%) [20].
\nHematopoietic stem/progenitor cell (HSPC) homing to the bone marrow. This process is mediated by CXCR4 receptors on the surface of HSPCs and stromal cell-derived factor-1 (SDF-1) in the bone marrow.
Due to the curative potential of UCB transplantation, several approaches have been investigated to improve UCB stem cell homing to the BM. In one study inhibition of CD26 peptidase activity by pretreating purified CD34+ human CB cells with Diprotin A significantly enhanced engraftment of HSCs from human UCB into NOD/SCID mice [21]. A CD26 peptidase inhibitor, sitagliptin, was investigated in a clinical trial with encouraging results in engraftment of adults with hematological malignancies after using a single unit UCB transplant [22]. Another strategy taken involved direct intrabone administration of cord blood cells into the superior-posterior iliac crest under rapid general anesthesia. Though this strategy produced impressive results in one study [23], another study showed contradictory results [24]. Therefore this procedure has not been widely accepted. In exploring further defects in cord blood stem cell homing, it was found that cord blood CD34+ cells have reduced alpha(1,3)-fucosyltransferase (FucT) expression and activity causing a depletion of cord blood stem cell surface ligands necessary for interaction with adhesion molecules at time of stem cell homing [25]. Forcing fucosylation was found to be clinically feasible with encouraging engraftment efficiency data in the double UCB transplant setting [26]. Some of these interventions require significant logistical support, and some require graft manipulation; accordingly, there is an urgent need to identify safe and practical interventions to enhance UCB homing and engraftment for patients with hematologic malignancies who are undergoing allogeneic stem cell transplantation.
\nPreviously published work implicating erythropoietin (EPO) in HSC homing led investigators to examine the role of EPO/EPOR signaling in HSC homing and engraftment in vitro and in vivo pre-clinical models. Gonzalez et al. demonstrated that circulating HSCs rapidly decline after birth [27]. Interestingly, the decline in HSCs correlated with low EPO blood concentration. Additionally, the decline in HSCs being attributed to HSC BM homing, these observations suggested a possible role for EPO in BM homing and clearance of HSCs from the infant’s circulation following birth. Investigators have pursued HBO as a potentially safe approach to effectively lower EPO as previously published [28]. The hypothesis was that lowering EPO at the time of hematopoietic stem/progenitor cell (HSPC) infusion will result in improved bone marrow homing and subsequent engraftment. Studies examining HBOT effects on hematopoietic stem cells are limited. On the other hand, HBOT has been shown to have minimal, if any, effects on blood counts during steady-state conditions [29]. The previously published and accumulated pre-clinical data that supports EPO’s role in UCB engraftment are summarized in the next section [30].
\nTo understand EPO effects on UCB CD34+, the expression of EPOR was assessed by flow cytometry. Analyses of 5 UCB units revealed that on average 6.5% of CD34+ UCB cells express EPOR [30]. A significantly higher percentage of EPOR positive cells (45.7 ± 1.4%, Figure 2) was observed within the HSC (Lin− CD34+ CD38− CD45RA− CD90+ CD49f+ cells) population. EPOR positive cells were less among multipotent progenitor (MPP) (Lin− CD34+ CD38− CD45RA− CD90− CD49f− cells, 22.2 ± 0.3%) or the broader progenitor pool (Lin−CD34+CD38+ cells, 25.1 ± 0.7%). To test whether a functional EPO-EPOR signaling cascade was activated in EPOR-expressing UCB CD34+ cells, EPOR expression was depleted via RNA interference (RNAi), and the erythroid differentiation potential after culture in methylcellulose culture medium was compared to UCB CD34+ cells without EPOR depletion. Depletion of EPOR expression by RNAi greatly reduced the size of erythroid colonies and UCB CD34+ differentiation potential toward the erythroid lineage, indicating that EPO promotes functional EPO-EPOR signaling response in these cells [30].
\nErythropoietin receptor expression on umbilical cord blood CD34+ cells and subsets (unpublished data).
As earlier studies potentially implicated EPO signaling in hematopoietic stem/progenitor cell (HSPC) homing [27], investigators tested if there were EPO-EPOR signaling effects on SDF-1-induced migration of UCB CD34+ HSPC, by examining UCB CD34+ CD38− cell transmigration toward an SDF-1 gradient after a preexposure of the cells to different concentrations of EPO. Exposure of UCB CD34+ CD38− to EPO significantly reduced their SDF-1-induced directional migration. Blocking EPO signaling by anti-EPOR or anti-EPO antibodies rescued SDF-1-induced migration of UCB CD34+ cells for both CD34+ CD38− and CD34+ CD38+ populations [30].
\nHBO treatment has been shown to reduce systemic EPO levels in healthy volunteers [28]. As previous in vitro studies indicated that EPO-EPOR signaling inhibits SDF-1-induced migration of UCB CD34+ cells, investigators examined whether HBO pre-treatment of mice prior to cell infusion enhances BM homing. First, investigators measured serum EPO levels in their murine transplant model 7 hours after HBO exposure (or 3 hours post UCB CD34+ infusion). HBO exposure significantly reduced serum EPO levels compared to controls (p < 0.0001). In addition, a higher percentage of the UCB CD34+ cells was seen in the BM of HBO-treated mice 3 hours posttransplant [30].
\nIn the same murine model, investigators evaluated the impact of HBO treatment on peripheral blood, BM, and spleen retention at early time points (24–72 hours), which correlates with BM homing, and up to 4.5 months, which correlates with long-term engraftment. Efficient support of human cell engraftment has been reported in 6–8-week-old female NSG mice NOD/SCID/IL-2Rgcnull [31] model. Briefly, sublethally irradiated NSG mice, after 24 hours, were treated with HBO for 2 hours (HBO) or without HBO in the control group. Next, approximately 105 CD34-selected UCB cells were infused into each mouse 6 hours following the start of HBO. Mice were euthanized at different time points; peripheral blood, BM, and spleen tissue were harvested; and engraftment was analyzed by flow cytometry. The degree of engraftment was determined by measuring the percentage of human CD45-expressing cells. For HBO therapy, 100% oxygen was delivered at 2.5 atmospheres absolute (ATA) in a single-place chamber. In murine in vivo model, HBO-treated mice had significantly improved BM (p = 0.0067), peripheral blood (p = 0.0131), and spleen (p = 0.0293) engraftment [32], the impact of which was more pronounced toward later time points at 3 and 4 months.
\nEPO has been shown to impact hematopoietic progenitor cells differentiation [33]. Because HBOT lowers EPO levels in posttransplant, the impact of a low EPO environment induced by HBO on human UCB CD34+ cell differentiation was examined. HBO mice demonstrated significantly lower numbers of burst-forming unit-erythroid (BFU-E) (p = 0.043) and increasing numbers of colony-forming unit-granulocyte/macrophage (CFU-G/M) (p = 0.05) 1 week following transplant. Interestingly, despite reduced BFU-E in the in vivo experiments, investigators observed a favorable trend in red blood cell (RBC) time to transfusion independence (TTI) in their pilot study.
\nThese findings suggest that lowering the recipient EPO levels favors UCB CD34+ engraftment by affecting two important HSC functions: BM homing and HSPC differentiation (Figure 3). Lower recipient EPO at the time of UCB CD34+ cell infusion results in less early erythroid differentiation of infused progenitor cells. This leads to early homing of undifferentiated UCB CD34+ cells to the BM, thus improving long-term multi-lineage engraftment. In confirmatory experiments utilizing RNA-seq for transcriptional assessment, investigators found that EPO treatment of UCB CD34+ cells enriches CD71+ early erythroid cells, consistent with early erythroid commitment (Figure 4). In the same data set, EPO treatment was associated with signal transducer and activator of transcription 3 (STAT3) pathway activation (Figure 4). Importantly, signal transducer and activator of transcription 3 (STAT3) is a known downstream effector of EPOR signal transduction [34, 35, 36, 37].
\nThe mechanisms by which hyperbaric oxygen therapy (HBO) affects hematopoietic stem/progenitor cell engraftment.
Gene expression data analysis evaluating erythropoietin (EPO) treatment effects on UCB CD34+ cells. EPO treatment enriches CD71+ early erythroid cells (A) and correlates with active STAT3 signaling (B) (unpublished data).
To date, two pilot clinical trials exploring HBO in UCB transplantation as well as autologous hematopoietic cell transplantation (HCT) have been completed. In both studies HBO was given in standard fashion at least 6 hours prior to HSCP infusion on day 0 of their transplant (Figure 5). The first aim of these studies is to examine the safety and tolerability of HBO in the setting of HCT. In addition, these studies explored the impact of HBO on blood count recovery as well as EPO levels posttransplant. Details of HBO therapy and the results of these studies are being summarized in the next three paragraphs.
\nClinical trial schema incorporating hyperbaric oxygen (HBO) into hematopoietic cell transplantation.
After receiving routine clinical care on day 0 (the day of HSPC infusion), subjects were exposed to HBO for a total of 90 min after compression to 2.5 atmosphere absolutes (ATA) in a monoplace hyperbaric chamber (Model 3200/3200R, Sechrist Industries, Inc., USA), breathing 100% oxygen. The subjects spent 10–15 min during the compression and decompression phases and 10 min room air breaks for every 30 min of HBO treatment.
\nBased on the previously mentioned pre-clinical data, a pilot clinical trial investigating the safety of HBO in UCB transplant was initiated. Patients considered for either standard myeloablative conditioning (MAC) (higher intensity chemotherapy and radiation) or standard reduced intensity conditioning (RIC) (lesser intensity chemotherapy and radiation) UCB transplantation were enrolled. In this study, HBO treatment was administered on day 0 of the transplant. The treatment consisted of exposure to 100% oxygen at 2.5 ATA for a total of 2 hours, in a single see-through hyperbaric chamber. Six hours from the start of HBO, single or double UCB units are infused, and patients are followed daily for toxicity and blood count recovery. In addition to safety, neutrophil and platelet recovery and engraftment were investigated as efficacy end points. A total of 15 subjects have been treated; all have tolerated the procedure very well except for 1 patient who did not finish the last 10 min of therapy because of nausea thought to be secondary to a concomitant medication. In terms of efficacy, final data from the study indicate an encouraging median time to neutrophil recovery of 14 days compared to 20.5 in historic data (n = 48) and a median time to platelet count recovery of 37.5 compared to 38 in historic data (Table 1). HBO also resulted in improved day 100 survival (p = 0.051) and in improvement in the percentage of patients who demonstrated Neutrophil recovery was not significant platelet count recovery (p = 0.013). HBO also resulted in statistically significant reduction in median EPO level from baseline (−30.37 mU/ml+/−31.68, p = 0.004).
\n\n | HBO (n = 15) | \nHistoric (n = 48) | \np value | \n|
---|---|---|---|---|
Neutrophil recovery (n/%) | \nNo | \n0% | \n6 (12%) | \nNS | \n
Yes | \n15 (100%) | \n42 (82%) | \n||
Platelet recovery (n/%) | \nNo | \n0% | \n15 (31%) | \n0.013 | \n
Yes | \n15 (100%) | \n33 (69%) | \n||
Median time to neutrophil recovery (range) | \n14 (6–45) | \n20.5 (571) | \nNS | \n|
Median time to platelet recovery (range) | \n37.5 (0–85) | \n38 (0–161) | \nNS | \n
Blood count recovery in umbilical cord blood transplantation pilot study utilizing hyperbaric oxygen (HBO).
In a follow-up study, the long-term outcome of patients in this pilot HBO study in UCB transplantation was examined. Patients’ outcome was compared to a historic control group. The 6-month survival in the HBO group was 100%, compared to 67.0% in the control group (95% CI 50.1–79.4%, p < 0.0001) [38]. HBO-treated patients had on average lower relapse and non-relapse mortality rates, and less chronic graft-versus-host disease (GVHD), but had increased acute GVHD. However, these differences were not statistically significant, probably because of the small sample size. In the HBO-treated cohort, immune-reconstitution analysis showed significant improvement in early B-cell recovery, with a trend toward improvement in early NK cell recovery. The ratio of 8 hours to baseline EPO levels was examined. A nonsignificant trend toward lower EPO values was found in those who did not relapse or die in year 1 than those who did die or relapse. Disease progression-free survival was also improved in those who had more than 80% reduction in EPO levels in response to HBO. This study highlights the long-term safety of HBO therapy when used prior to UCB transplantation. It also shows a relationship between HBO-induced EPO reduction, early NK cell recovery and posttransplant disease progression. Since lower rates of relapse have been reported in association with higher early NK cell recovery [39], it was hypothesized that by reducing EPO, HBO improves early NK cell recovery, and improved NK cell recovery slows down disease progression.
\nEncouraged by the results of HBO in UCB transplantation, the same group conducted a pilot study in Auto-HSPC transplantation. A total of 20 patients were treated on the Auto-HSPC transplant study. HBO therapy was very well tolerated as 19 completed full therapy [40]. For efficacy comparison, HBO subjects were matched to historical controls from the same institution based on gender, age (within 5 years), disease type (multiple myeloma or lymphoma), and preparative regimen. The median time to neutrophil count recovery was 11 days in both cohorts, the HBO and control cohorts. However, time to neutrophil recovery was approximately 1 day sooner for HBO than historical controls taking into account the full distribution estimates of Kaplan-Meier estimator (log rank p = 0.005). The median time to platelet count recovery was 16 versus 18 days for the HBO and control cohorts, respectively (log rank p < 0.0001).
\nIn a separate analysis, HBO effects on other outcomes of post-autologous transplantation were evaluated. In this analysis, the HBO cohort patients who completed HBO therapy (n = 19) were compared with historic patients (n = 225) [40]. The average days of GCSF use were 6 days in the HBO cohort compared to 8 days in controls (p < 0.01). Also, HBO patients had significantly less mucositis (26.3 versus 64.2%, p < 0.01).
\nIn the previous section, the effects of HBO on stem cell homing and engraftment posttransplant were reviewed. Interestingly, HBO can also help with stem cell/progenitor cell mobilization from the bone marrow [41]. However, the mobilized stem/progenitor cells exhibited characteristics of endothelial progenitor cells [42].
\nIncorporating HBO into HCT backbone represents a new direction in the field of HCT aiming at improving the outcome of HCT by improving HSPC homing and subsequent engraftment. Accumulated data suggest improvement in immune reconstitution too. Targeting EPO at the time of HSPC infusion represents a new understanding of EPO role in basic HSCP functions, including cell differentiation, transmigration, homing, and engraftment. Though these studies represent an early attempt at understanding EPO role in HSCP biologic functions and HBO’s role in blocking EPO/EPOR signaling in HCT transplantation, the accumulated data seem to be promising. Currently, a phase II study investigating HBO in Auto-HCT is open for enrollment (
An additional area for future investigation is defining the optimal HBO schedule to effectively block EPO/EPOR signaling during HCT. In a previous study, one single HBO treatment 6 hours prior to HSPC infusion was used. It was noticed that EPO level rebounds as early as 24 hours after HBO treatment [30]; accordingly additional HBO therapy might keep EPO levels low for 48 hours, which is the duration during which homing occurs. To accomplish that, investigators will have to treat the recipients 24 hours after HSPC infusion, which means the infused HSPCs will be exposed to hyperbaric conditions. In their experience, direct CD34+ cell exposure to HBO reduced their proliferation, impaired their in vitro transmigration, and reduced their erythroid differentiation [43]. These effects were statistically significant, but the biological effects were minimal which in theory should not influence UCB CD34+ cell behavior significantly. Additionally, these direct HBO effects on UCB CD34+ cells are desirable when it comes to the HSPCs that have already homed to the bone marrow as these effects might help with HSPC retention in the bone marrow.
\nFinally, in addition to reducing EPO and affecting EPO/EPOR signaling, HBO might have additional effects beyond EPO/EPOR signaling that might impact HSPC biologic functions.
\nTargeting EPO using HBO in hematopoietic cell transplantation is a new direction in the HCT field which will potentially have major impact on the outcome of HCT. By improving HSPC homing, engraftment, and immune reconstitution, HBO therapy will have the potential to improve the outcome of HCT by improving patient recovery and by reducing posttransplant complications related to infections. Overall, that might reduce the cost of HCT. Though data from pre-clinical and pilot clinical studies are encouraging, data from current and future phase II studies might show more definitive data in support of this application. Also future studies will be needed to examine HBO effects on bone marrow microenvironment elements.
\nNo conflict of interest to declare.
Halocynthia roretzi, which is a solitary ascidian and of the class Ascidiacea (the subphylum Tunicata and the phylum Chordata) in marine habitats, is entirely covered with the tissue called tunic. An example of Halocynthia roretzi is shown in Figure 1A. The tunic, where blood vessels and various cells including hemocytes have been observed [1, 2, 3], shows the system to keep its thickness by continuous removal and secretion [1] and defense system by the secreted substances of the hemocytes [4, 5, 6, 7, 8, 9, 10, 11]. While it has been reported that the species in Tunicata has cellulose in its tunic [12], whose elastic modulus is 143 GPa [13], cellulose Iβ in the tunic of Halocynthia roretzi shows pure and highly crystalline form [14]. Also, sulfated chitin, which is biocompatible as well as biodegradable [15], has been observed in the tunic [16, 17]. In addition to the aforementioned components, α-smooth muscle actin and elastic fiber, which are expected to directly influence the mechanical properties of the tunic, and nervous systems, have been observed [18]. In the meantime, the active deformation in the tunic of Halocynthia roretzi, caused by acetylcholine (neurotransmitter) [18], mechanical stimuli [18, 19], electric stimuli [20] and enzyme (α-chymotrypsin) [20], has been reported. The active deformation responding to the mechanical environment has been associated with change in mass of the tunic [21]. Because the change in mass of the tunic agreed with that in water content of the tunic, influx and efflux of water would be involved with the tunic deformation [21]. When the tunic sample was put into the seawater, the absorbance at 220 nm and 250–350 nm [22, 23, 24, 25, 26, 27], which is influenced by the concentrations of nitrate and dissolved organic matter, was changed so that the substances released from the tunic would be added to the seawater [21, 28].
Sample of Halocynthia roretzi. A, entire image; B, the tunic sample in each category (siphon, M1 (tunic with spines), M2 (tunic without a spine) and bottom (thickest part)).
As Figure 1 shows, the tunic tissue can be categorized by characteristics in shape: siphon, tubular parts where seawater is passing through; M1, tunic with spines; M2, tunic without a spine; and bottom, thickest part. While the mechanical stimuli caused a decrease in mass in every category, the tunic in the seawater at 5°C indicated an increase in the mass of the tunic, which became smaller as the position was closer to bottom [21]. While the outer layer and collapse of blood vessels could cause the difference in change of mass [21], the cells extracted from the tunic by centrifugation, kept in the seawater at 5°C for 10 days, showed motility [28] so that these cells would also influence change in mass. While the absorbance at 220 nm and 250–350 nm in the seawater used for keeping the tunic at 5°C was decreased after the removal of the tunic samples [28], the influence of the tunic category has been barely examined. Also, whether or not the cells in the tunic are obtained from all the tunic categories by centrifugation at the same degree has not been clear. If the effect of centrifugation on separating the cells from the tunic tissue is dependent on the tunic category, the characteristics of the tunic structure would be diverse and influence mass transfer.
In this chapter, why the tunic category, composed of siphon, M1, M2 and bottom, could influence the active deformation was examined. The absorbance of the seawater, which kept the tunic sample in each category separately, was evaluated by spectroscopic analysis in order to examine the change in the components of the seawater. The seawater after removing the tunic sample was also evaluated in the same way. In the meantime, the hemocytes in each category of the tunic, which would secrete halocyamines (antimicrobial substance) [5] and hemagglutinin [10], were obtained by centrifugation to examine the influence of the tissue category on separating the cells from the tunic.
The samples of Halocynthia roretzi were obtained from Yamanaka Inc. and Marutaki Suisan (Miyagi, Japan) (n = 3). The tunic was removed from other organs and cut into samples in each category (siphon, M1, M2 and bottom) by tweezers and trimming blades (feather trimming blade; Feather Safety Razor, Co. Ltd., Osaka, Japan) as Figure 1B shows. The sample in each category was put into the artificial seawater (Reef Crystals, Aquarium Systems, Sarrebourg, France) separately, and kept at 5°C for 10 days (Day 10) or 15 days (Day 15). The mass of the tunic, which was wrapped by paper (Kimwipe; Nippon Paper Crecia, Tokyo, Japan) for 10 s to remove water on the surface, was measured with the balance (UW420S; Shimadzu Corporation, Kyoto, Japan), in order to check whether or not the change in mass of the tunic sample agreed with that in the previous report [21]. After removing the tunic sample, two types of the seawater samples, filtrated (1001-150 (Whatman); GE Healthcare Japan, Tokyo, Japan) and not filtrated, were prepared. The two types of seawater samples were kept at 5°C for 10 days, 17 days or 30 days. The absorbance of the seawater at 190–1100 nm was measured by the spectrometer (UV-1280; Shimadzu Corporation, Kyoto, Japan) before and after removing the tunic sample. The absorbance at 220 nm and mean absorbance at 250–350 nm, which are influenced by the concentrations of nitrate and dissolved organic matter [21, 22, 23, 24, 25, 26, 27], and the peak absorbance around 970 nm, which was clearly observed, were used to evaluate the characteristics of the seawater. For the evaluation in the shape of the absorbance curve at 220–350 nm, the standard deviation of the absorbance at 250–350 nm, divided by the mean absorbance at the same range, and the mean absorbance at 250–350 nm, divided by the absorbance at 220 nm, which is named shape index, were used. Shape index was also used for estimating the change in the component ratio of the seawater.
While there are several types of hemocytes in Halocynthia roretzi [11], the hemocyte secreting halocyamines and hemagglutinin could be obtained by the centrifugation (1000 G, 7 min) of hemolymph [5, 10]. Considering that effect of centrifugal force on separating the hemocyte from the tunic could be a parameter to evaluate the characteristics of the tunic structure, the tunic samples in each category were centrifuged in the previous report [5, 10] (n = 5). During the centrifugation, the tunic sample was put into the artificial seawater (Suprema21; Tomy, Tokyo, Japan). After removing the supernatant and tunic sample, the cells were obtained. Because the cells seemed damaged during counting the number by hemocytemeter, the number of the obtained cells was estimated by observation under the microscope (CX41-31PHP; Olympus, Tokyo, Japan).
An example of a change in mass of the tunic sample is shown in Figure 2. The tunic bottom underwent smaller changes than those in other categories. The tendency, which was observed in all the samples, agreed with that in the previous report [21].
Change in the mass of the tunic sample kept in the seawater at 5°C up to 10 days (day 10). A, normalized by the mass before the immersion; B, deviation from the normalized mass in bottom. All the samples indicated the same tendency.
An example of the absorbance at 190–1100 nm is shown in Figure 3. The shape of the absorbance curve is almost the same in all the samples. The absorbance at the characteristic wavelength and related parameter, shape index, and their changes, caused by the adjacent process, in each seawater sample are shown in Figure 4. Considering the influences of the tunic sample categories (siphon, M1, M2 and bottom) on the absorbance, the absorbance and related parameter are indicated in each sample category. The mean value and change between the adjacent processes and their ranges through all the processes are indicated in Figures 5 and 6, respectively. As Figures 4–6 show, the absorbance values at the characteristic wavelength and related parameters were changed by the tunic category as well as the presence and removal of the tunic samples. While the change in shape index between the adjacent processes was zero or less, other absorbance values and parameters increased before the removal of the tunic samples, and decreased after the removal, in all the tunic categories, as Figure 5B shows. Because the presence and absence of the tunic samples in the seawater directly influenced these parameters, and change in the component ratio of the seawater was kept through the processes, the substances released from the tunic sample would be partially degradable with progress in the change of the component ratio in the seawater. But the influences of the tunic category and process in other results were so complicated that they could be hardly explained in such a simple way. These results indicated that each category might have different systems to control its active deformation.
Absorbance for the seawater containing the tunic sample (siphon) for 10 days at 5°C (190–1100 nm). This absorbance at 190–1100 nm was one of the results. A, entire range; B, around 1000 nm.
Absorbance at the characteristic wavelength and related parameter. The absorbance at each wavelength and related parameter (A1–A5, left), and their change between the adjacent processes (B1–B5, right): before adding, keeping and removing the tunic samples in the seawater. The seawater samples labelled as follows: reference, without usage; day i (i = 10, 15), keeping the tunic sample at 5°C for i days; day i–j (F or N) (i = 10, 15, j = 10, 17, 30), keeping the tunic sample at 5°C for i days and kept at 5°C after removing the tunic samples for j days with filtration (F), or without filtration (N).
Mean absorbance and related parameter. The parameter of absorbance (A) and its change between the adjacent processes (B), before and after the removal of the tunic samples in the seawater, are shown.
Range of the parameter and change through all the processes. The range of the parameter (A) and change through all the processes from reference (B) are shown.
Figure 7 shows the cells from M1 by centrifugation (1000 G, 7 min). The cells were also obtained from the tunic samples of siphon and M2, but barely from bottom. Considering blood vessels in bottom and open circulation in the entire body, few cells in bottom would be hardly expected. Hence, there might be the characteristics of the tissue structure in bottom, which would cause cells to be hardly separated by an external force, but not in other categories of the tunic, siphon, M1 and M2.
Cells from M1. These cells were obtained by centrifugation (1000 G, 7 min). Scale bar, 20 μm.
In this chapter, the difference in the tunic categories, which are siphon, M1, M2 and bottom, was investigated to examine the system for active deformation in the tunic. Considering that influx and efflux from the tunic, which are associated with the active deformation of the tunic, would bring some components to the seawater, change in the components of the seawater was evaluated by the absorbance at the characteristic wavelength and related parameters. In all the tunic categories, these parameters, except shape index, which continuously decreased, were increased by keeping the tunic in the seawater and decreased by removing them. These results indicated that the substances, released from the tunic, would disappear without continuous supply and keep the change in the component ratio of the seawater. The released substances would be degradable partially as well as reactive, associated with the change of the component ratio of the seawater. In the meantime, the influence of each tunic category on these parameters was complicated. Hence, the active deformation would be controlled by two types of substances, which would be in every category of the tunic sample, and specific in each category. The details of the substances will be investigated in the future.
In the meantime, the cells were obtained from siphon, M1 and M2 by centrifugation, but not from bottom. Considering the open circulation system and blood vessels in bottom, bottom would have cells, which would be hardly separated from the surrounding by centrifugation because of the characteristics in the tissue structure of bottom, different from those in other tunic categories. The result that change in mass of the tunic was smallest at bottom would agree with this unique feature of bottom. Why the cells in bottom are hardly obtained by centrifugation and how the cells in bottom can be obtained will be investigated in the future.
In this chapter, the active deformation of the tunic in Halocynthia roretzi, a solitary ascidian, was investigated by the substances released from the tunic, and cells obtained from the tunic by centrifugation. The absorbance at the characteristic wavelength and related parameter, except shape index, in the seawater were enhanced by keeping the tunic samples and decreased by removing them while shape index was continuously decreased. Hence, the substances released from all the tunic categories would be partially degradable, and reactive enough to stable change in the component ratio of the seawater. The difference in the influences of the tunic category on these parameters, which was complicated, would contribute to a difference in the active deformation in each tunic category. The cells in bottom were hardly obtained by centrifugation although those in other categories were successfully obtained. Hence, bottom would have the specific characteristics in the tissue structure that would keep the cells in the tunic firmly. Also, these characteristics in bottom would prevent change in mass of the tunic at bottom.
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"289905",title:"Dr.",name:null,middleName:null,surname:"Inamuddin",slug:"inamuddin",fullName:"Inamuddin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289905/images/system/289905.jpeg",biography:"Dr. Inamuddin is currently working as an assistant professor in the Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, and more specifically, renewable energy and the environment. He has published 127 research articles in international journals of repute and 18 book chapters in knowledge-based book editions published by renowned international publishers. He has published 39 edited books with Springer, United Kingdom, Elsevier, Nova Science Publishers, Inc. USA, CRC Press Taylor & Francis, Asia Pacific, Trans Tech Publications Ltd., Switzerland, and Materials Science Forum, USA. He is a member of various editorial boards serving as associate editor for journals such as Environmental Chemistry Letter, Applied Water Science, Euro-Mediterranean Journal for Environmental Integration, Springer-Nature, Scientific Reports-Nature, and the editor of Eurasian Journal of Analytical Chemistry.",institutionString:"King Abdulaziz University",institution:{name:"King Abdulaziz University",country:{name:"Saudi Arabia"}}},{id:"99002",title:"Dr.",name:null,middleName:null,surname:"Koontongkaew",slug:"koontongkaew",fullName:"Koontongkaew",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thammasat University",country:{name:"Thailand"}}},{id:"156647",title:"Dr.",name:"A K M Mamunur",middleName:null,surname:"Rashid",slug:"a-k-m-mamunur-rashid",fullName:"A K M Mamunur Rashid",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"MBBS, DCH, MD(Paed.), Grad. Cert. P. Rheum.(UWA, Australia), FRCP(Edin.)",institutionString:null,institution:{name:"Khulna Medical College",country:{name:"Bangladesh"}}},{id:"234696",title:"Prof.",name:"A K M Mominul",middleName:null,surname:"Islam",slug:"a-k-m-mominul-islam",fullName:"A K M Mominul Islam",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8dpQAC/Co2_Profile_Picture-1588761796759",biography:"Prof. Dr. A. K. M. Mominul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that, he joined as Lecturer of Agronomy at Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, and became Professor in the same department of the university. Dr. Islam did his second Master’s in Physical Land Resources from Ghent University, Belgium. He is currently serving as a postdoctoral researcher at the Department of Horticulture & Landscape Architecture at Purdue University, USA. Dr. Islam has obtained his Ph.D. degree in Plant Allelopathy from The United Graduate School of Agricultural Sciences, Ehime University, Japan. The dissertation title of Dr. Islam was “Allelopathy of five Lamiaceae medicinal plant species”. Dr. Islam is the author of 38 articles published in nationally and internationally reputed journals, 1 book chapter, and 3 books. He is a member of the editorial board and referee of several national and international journals. He is supervising the research of MS and Ph.D. students in areas of Agronomy. Prof. Islam is conducting research on crop management, bio-herbicides, and allelopathy.",institutionString:"Bangladesh Agricultural University",institution:{name:"Bangladesh Agricultural University",country:{name:"Bangladesh"}}},{id:"214531",title:"Mr.",name:"A T M Sakiur",middleName:null,surname:"Rahman",slug:"a-t-m-sakiur-rahman",fullName:"A T M Sakiur Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Rajshahi",country:{name:"Bangladesh"}}},{id:"66545",title:"Dr.",name:"A. F.",middleName:null,surname:"Omar",slug:"a.-f.-omar",fullName:"A. F. Omar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. A. F. Omar obtained\nhis Bachelor degree in electrical and\nelectronics engineering from Universiti\nSains Malaysia in 2002, Master of Science in electronics\nengineering from Open University\nMalaysia in 2008 and PhD in optical physics from Universiti\nSains Malaysia in 2012. His research mainly\nfocuses on the development of optical\nand electronics systems for spectroscopy\napplication in environmental monitoring,\nagriculture and dermatology. He has\nmore than 10 years of teaching\nexperience in subjects related to\nelectronics, mathematics and applied optics for\nuniversity students and industrial engineers.",institutionString:null,institution:{name:"Universiti Sains Malaysia",country:{name:"Malaysia"}}},{id:"191072",title:"Prof.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191072/images/system/191072.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph D degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was “Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 98 articles published in nationally and internationally reputed journals, 11 book chapters and 3 books. He is a member of editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar and research Secretary of JICA Alumni Association of Bangladesh and member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 Ph D students. Prof. Islam currently supervising research of 5 MS and 3 Ph D students in areas Plant Breeding & Seed Technologies. Conducting research on development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"322225",title:"Dr.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph.D. degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was 'Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 99 articles published in nationally and internationally reputed journals, 11 book chapters, 3 books, and 20 proceedings and conference paper. He is a member of the editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar, and research Secretary of JICA Alumni Association of Bangladesh and a member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 PhD students. Prof. Islam currently supervising the research of 5 MS and 3 PhD students in areas Plant Breeding & Seed Technologies. Conducting research on the development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"91977",title:"Dr.",name:"A.B.M. Sharif",middleName:null,surname:"Hossain",slug:"a.b.m.-sharif-hossain",fullName:"A.B.M. Sharif Hossain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"97123",title:"Prof.",name:"A.M.M.",middleName:null,surname:"Sharif Ullah",slug:"a.m.m.-sharif-ullah",fullName:"A.M.M. Sharif Ullah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/97123/images/4209_n.jpg",biography:"AMM Sharif Ullah is currently an Associate Professor of Design and Manufacturing in Department of Mechanical Engineering at Kitami Institute of Technology, Japan. He received the Bachelor of Science Degree in Mechanical Engineering in 1992 from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. In 1993, he moved to Japan for graduate studies. He received the Master of Engineering degree in 1996 from the Kansai University Graduate School of Engineering in Mechanical Engineering (Major: Manufacturing Engineering). He also received the Doctor of Engineering degree from the same institute in the same field in 1999. He began his academic career in 2000 as an Assistant Professor in the Industrial Systems Engineering Program at the Asian Institute of Technology, Thailand, as an Assistant Professor in the Industrial Systems Engineering Program. In 2002, he took up the position of Assistant Professor in the Department of Mechanical Engineering at the United Arab Emirates (UAE) University. He was promoted to Associate Professor in 2006 at the UAE University. He moved to his current employer in 2009. His research field is product realization engineering (design, manufacturing, operations, and sustainability). He teaches design and manufacturing related courses at undergraduate and graduate degree programs. He has been mentoring a large number of students for their senior design projects and theses. He has published more than 90 papers in refereed journals, edited books, and international conference proceedings. He made more than 35 oral presentations. Since 2005, he directs the advanced manufacturing engineering research laboratory at Kitami Institute of Technology.",institutionString:null,institution:{name:"Kitami Institute of Technology",country:{name:"Japan"}}},{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Anna University, Chennai",country:{name:"India"}}},{id:"172688",title:"Prof.",name:"A.V.",middleName:null,surname:"Salker",slug:"a.v.-salker",fullName:"A.V. Salker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Goa University",country:{name:"India"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:10241},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!0,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1254",title:"Mobile Robot",slug:"android-science-mobile-robot",parent:{title:"Android Science",slug:"android-science"},numberOfBooks:1,numberOfAuthorsAndEditors:59,numberOfWosCitations:48,numberOfCrossrefCitations:29,numberOfDimensionsCitations:52,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"android-science-mobile-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1881",title:"Mobile Robots",subtitle:"Current Trends",isOpenForSubmission:!1,hash:"6f1ee45d3e50f6d5295a1d8c190b646c",slug:"mobile-robots-current-trends",bookSignature:"Zoran Gacovski",coverURL:"https://cdn.intechopen.com/books/images_new/1881.jpg",editedByType:"Edited by",editors:[{id:"89211",title:"Dr.",name:"Zoran",middleName:null,surname:"Gacovski",slug:"zoran-gacovski",fullName:"Zoran Gacovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"22300",doi:"10.5772/26512",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22305",doi:"10.5772/25497",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22308",doi:"10.5772/25936",title:"Design and Prototyping of Autonomous Ball Wheel Mobile Robots",slug:"design-and-prototyping-of-autonomous-ball-wheel-mobile-robots",totalDownloads:2415,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"H. Ghariblu, A. Moharrami and B. Ghalamchi",authors:[{id:"65019",title:"Dr.",name:"Hashem",middleName:null,surname:"Ghariblu",slug:"hashem-ghariblu",fullName:"Hashem Ghariblu"},{id:"72044",title:"Ms.",name:"Ali",middleName:null,surname:"Moharrami",slug:"ali-moharrami",fullName:"Ali Moharrami"},{id:"72048",title:"Ms.",name:"Behnam",middleName:null,surname:"Ghalamchi",slug:"behnam-ghalamchi",fullName:"Behnam Ghalamchi"}]}],mostDownloadedChaptersLast30Days:[{id:"22298",title:"Mobile Platform with Leg-Wheel Mechanism for Practical Use",slug:"mobile-platform-with-leg-wheel-mechanism-for-practical-use",totalDownloads:3178,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Shuro Nakajima",authors:[{id:"63562",title:"Prof.",name:"Shuro",middleName:null,surname:"Nakajima",slug:"shuro-nakajima",fullName:"Shuro Nakajima"}]},{id:"22292",title:"Autonomous Mobile Robot Emmy III",slug:"autonomous-mobile-robot-emmy-iii",totalDownloads:2069,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Cláudio Rodrigo Torres, Jair Minoro Abe, Germano Lambert-Torres and João Inácio da Silva Filho",authors:[{id:"65919",title:"Dr.",name:"Claudio",middleName:"Rodrigo",surname:"Torres",slug:"claudio-torres",fullName:"Claudio Torres"},{id:"112971",title:"Prof.",name:"Germano",middleName:null,surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"},{id:"137199",title:"Dr.",name:"Jair Minoro",middleName:null,surname:"Abe",slug:"jair-minoro-abe",fullName:"Jair Minoro Abe"},{id:"137200",title:"Dr.",name:"João Inácio",middleName:null,surname:"da Silva Filho",slug:"joao-inacio-da-silva-filho",fullName:"João Inácio da Silva Filho"}]},{id:"22293",title:"Mobile Robotics in Education and Research",slug:"mobile-robotics-in-education-and-research",totalDownloads:5113,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Georgios A. Demetriou",authors:[{id:"66153",title:"Dr.",name:"Georgios A.",middleName:null,surname:"Demetriou",slug:"georgios-a.-demetriou",fullName:"Georgios A. Demetriou"}]},{id:"22300",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22294",title:"The KCLBOT: A Framework of the Nonholonomic Mobile Robot Platform Using Double Compass Self-Localisation",slug:"the-kclbot-a-framework-of-the-nonholonomic-mobile-robot-platform-using-double-compass-self-localisat",totalDownloads:1861,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Evangelos Georgiou, Jian Dai and Michael Luck",authors:[{id:"63454",title:"MSc.",name:"Evangelos",middleName:null,surname:"Georgiou",slug:"evangelos-georgiou",fullName:"Evangelos Georgiou"},{id:"68156",title:"Prof.",name:"Jian",middleName:null,surname:"Dai",slug:"jian-dai",fullName:"Jian Dai"},{id:"68157",title:"Prof.",name:"Michael",middleName:null,surname:"Luck",slug:"michael-luck",fullName:"Michael Luck"}]},{id:"22307",title:"The Development of the Omnidirectional Mobile Home Care Robot",slug:"the-development-of-the-omnidirectional-mobile-home-care-robot",totalDownloads:1994,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Jie-Tong Zou",authors:[{id:"67765",title:"Prof.",name:"Jie-Tong",middleName:"Tong",surname:"Zou",slug:"jie-tong-zou",fullName:"Jie-Tong Zou"}]},{id:"22299",title:"A Micro Mobile Robot with Suction Cups in the Abdominal Cavity for NOTES",slug:"a-micro-mobile-robot-with-suction-cups-in-the-abdominal-cavity-for-notes",totalDownloads:1890,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Chika Hiroki and Wenwei Yu",authors:[{id:"48648",title:"Prof.",name:"Wenwei",middleName:null,surname:"Yu",slug:"wenwei-yu",fullName:"Wenwei Yu"},{id:"71018",title:"Ms.",name:"Chika",middleName:null,surname:"Hiroki",slug:"chika-hiroki",fullName:"Chika Hiroki"}]},{id:"22301",title:"Development of Mobile Robot Based on I2C Bus System",slug:"development-of-mobile-robot-based-on-i2c-bus-system",totalDownloads:3123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Surachai Panich",authors:[{id:"5704",title:"Dr.",name:"Surachai",middleName:null,surname:"Panich",slug:"surachai-panich",fullName:"Surachai Panich"}]},{id:"22305",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22295",title:"Gaining Control Knowledge Through an Applied Mobile Robotics Course",slug:"gaining-control-knowledge-through-an-applied-mobile-robotics-course",totalDownloads:1938,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Lluís Pacheco, Ningsu Luo, Inès Ferrer, Xavier Cufí and Roger Arbuse",authors:[{id:"30281",title:"Dr.",name:"Lluís",middleName:null,surname:"Pacheco",slug:"lluis-pacheco",fullName:"Lluís Pacheco"},{id:"32046",title:"Dr.",name:"Ningsu",middleName:null,surname:"Luo",slug:"ningsu-luo",fullName:"Ningsu Luo"},{id:"118672",title:"Dr.",name:"Xavier",middleName:null,surname:"Cufí",slug:"xavier-cufi",fullName:"Xavier Cufí"},{id:"137380",title:"Dr.",name:"Inès",middleName:null,surname:"Ferrer",slug:"ines-ferrer",fullName:"Inès Ferrer"},{id:"137381",title:"Mr.",name:"Roger",middleName:null,surname:"Arbuse",slug:"roger-arbuse",fullName:"Roger Arbuse"}]}],onlineFirstChaptersFilter:{topicSlug:"android-science-mobile-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/244496/nilce-ortiz",hash:"",query:{},params:{id:"244496",slug:"nilce-ortiz"},fullPath:"/profiles/244496/nilce-ortiz",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()