TiO2 nanotube arrays (TNA) have attracted scientific interest due to the combination of functional material properties with controllable nanostructure. Superior properties of TNA, including vectorial pathway of e− transport, minimized e− recombination, and high specific surface area render them as the most promising candidate for environment remediation, energy conversion and biocompatibility applications. The superior properties and efficacy of the TNA in various applications influenced by structural characteristics such as pore size, length and wall thickness. Therefore in this chapter the effect of various electrochemical parameters such as applied voltage, anodization time, electrolyte composition on the formation of controlled dimension of TNA in aqueous and organic electrolytes are reviewed.
Part of the book: Titanium Dioxide