Part of the book: Impact of Thermal Conductivity on Energy Technologies
The dynamical structure factor [S(k,ω)] gives the information about static and dynamic properties of complex dusty plasma (CDPs). We have used the equilibrium molecular dynamic (EMD) simulations for the investigation of S(k,ω) of strongly coupled CDPs (SCCDPs). In this work, we have computed all possible values of dynamical density with increasing and decreasing sequences of plasma frequency (ωp) and wave number (k) over a wide range of different combinations of the plasma parameters (κ, Γ). Our new simulation results show that the fluctuation of S(k,ω) increases with increasing Г and it decreases with an increase of κ and N. Moreover, investigation shows that the amplitude of S(k,ω) increases by increasing screening (κ) and wave number (k), and it decreases with increasing Г. Our EMD simulation shows that dynamical density of SCCDPs is slightly dependent on N; however, it is nearly independent of other parameters. The presented results obtained through EMD approach are in reasonable agreement with earlier known results based on different numerical methods and plasma states. It is demonstrated that the presented model is the best tool for estimating the density fluctuation in the SCCDPs over a suitable range of parameters.
Part of the book: Plasma Science and Technology
Transport properties of complex system under various conditions are of practical interest in the field of science and technology. Homogenous nonequilibrium molecular dynamics (HNEMD) simulations have been employed to calculate the thermal conductivity (λ) of three-dimensional (3D) strongly coupled complex nonideal plasmas (SCCNPs) over a suitable range of plasma parameters (Γ, κ). New investigations show that the λ depending on plasma parameters and minimum value of λ exists at nearly same plasma states. In the present case, the non-Newtonian behavior is checked with different system sizes and it is found that the λ behavior is well matched with earlier numerical work. It is demonstrated that the present outcomes are more consistent than those obtained earlier known simulations. It is revealed that our outcomes can be acceptable for a low range of force field in order to find out the size of linear ranges, and it explains the nature of nonlinearity of SCCNPs. It has been shown that the measured outcomes at steady states of external field of F* (=0.005) are in acceptable agreement with previous numerical outcomes, and it showed that the deviations are within less than 12% for most of the data and depend on plasma states.
Part of the book: Non-Equilibrium Particle Dynamics