In this chapter, commercial single-walled carbon nanotubes (SWCNTs) were purified by standard methods and functionalized with borane (BH3). The morphology, presence of elements and vibrations of different functional groups are probed by transmission electron microscopy (TEM), energy dispersive (ED) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), respectively. A Sievert-like hydrogenation setup has been designed and is employed for hydrogenating the functionalized SWCNTs for different time durations. The amount of hydrogen stored in the functionalized SWCNTs has been quantified using elemental analysis, carbon, hydrogen, nitrogen, sulfur (CHNS) combined with thermal (TG/TDS) measurements. A maximum of 4.77 wt.% of hydrogen has been stored at 50°C and the samples become dehydrogenated in the temperature range 90–125°C. From the experiments, it has been found that the amount of hydrogen stored in functionalized SWCNTs increases with increasing hydrogenation duration. Moreover, the entire hydrogenation and dehydrogenation process was examined by Raman, thermal, and elemental analyses together. During the experiments, hydrogenation and dehydrogenation processes were stabilized and were found to be repeatable. Overall, the achieved hydrogen storage capacity of SWCNTS functionalized with BH3 is close to the US DOE target.
Part of the book: Carbon Nanotubes