Showing world production of phosphate in 2015 and 2016.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"436",leadTitle:null,fullTitle:"Symptoms of Parkinson's Disease",title:"Symptoms of Parkinson's Disease",subtitle:null,reviewType:"peer-reviewed",abstract:"This book about Parkinson's disease provides a detailed account of various aspects of this complicated neurological condition. Although most of the important motor and non-motor symptoms of Parkinson's disease have been discussed in this book, but in particular a detailed account has been provided about the most disabling symptoms such as dementia, depression, and other psychiatric as well as gastrointestinal symptoms. The mechanisms responsible for the development of these symptoms have also been discussed. Not only the clinicians may benefit from this book but also basic scientists can get enough information from the various chapters which have been written by well known faculty.",isbn:null,printIsbn:"978-953-307-464-1",pdfIsbn:"978-953-51-6502-6",doi:"10.5772/953",price:119,priceEur:129,priceUsd:155,slug:"symptoms-of-parkinson-s-disease",numberOfPages:214,isOpenForSubmission:!1,isInWos:1,hash:"805ae63ffdfeba4251d3f3e9433338cf",bookSignature:"Abdul Qayyum Rana",publishedDate:"September 22nd 2011",coverURL:"https://cdn.intechopen.com/books/images_new/436.jpg",numberOfDownloads:23444,numberOfWosCitations:4,numberOfCrossrefCitations:3,numberOfDimensionsCitations:7,hasAltmetrics:0,numberOfTotalCitations:14,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 14th 2010",dateEndSecondStepPublish:"November 11th 2010",dateEndThirdStepPublish:"March 18th 2011",dateEndFourthStepPublish:"April 17th 2011",dateEndFifthStepPublish:"June 16th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",middleName:null,surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:'Dr. Abdul Qayyum Rana is a Canadian neurologist who specializes in the field of Parkinson’s disease and Movement Disorders. He is a fellow of the Royal College of Physicians and Surgeons of Canada. After completing his neurology residency training, Dr. Rana undertook a clinical fellowship in Parkinson’s disease and Movement Disorders at the University of Ottawa, Canada. He is currently the director of the Parkinson’s Clinic of Eastern Toronto and Movement Disorders Centre located in Toronto, Canada. He is also founder of World Parkinson’s Program. He is the author of “Frequently Asked Questions About Parkinson’s Disease”, which is a series of thirteen brochures about Parkinson’s disease, translated in many languages and used in several countries around the world. Dr. Rana has also written the following books: “Neurological Emergencies in Clinical Practice\\", “An Aid to Neuro-ophthalmology “, “An introduction to Essential Tremor”, “50 Ways Parkinson’s Could Affect You”, \\" Differential Diagnosis of Movement Disorders in Clincal Practice\\" ,\\" Neuroradiology in Clinical Practice\\", \\" 99 Faces of Parkinson\\\'s disese\\" and “What is Parkinson’s disease in Arabic?”. He is the editor-in-chief of the Journal of Parkinsonism and RLS. Dr.Rana was Awarded an honorary FRCP by the Royal College of Physicians of U.K. Dr. Rana was also awarded Wayne-Hening Award for his research on Restless Legs Syndrome and Parkinson\\\'s disease. Dr.Rana has published extensively in the field of Neurolgoy, Parkinson\\\'s disease and Movement Disorders.',institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1056",title:"Neurology",slug:"neurology"}],chapters:[{id:"20688",title:"Cognitive Dysfunction in Parkinson’s Disease",doi:"10.5772/17864",slug:"cognitive-dysfunction-in-parkinson-s-disease",totalDownloads:1348,totalCrossrefCites:2,totalDimensionsCites:1,signatures:"Sara Varanese, Bernardo Perfetti and Alessandro Di Rocco",downloadPdfUrl:"/chapter/pdf-download/20688",previewPdfUrl:"/chapter/pdf-preview/20688",authors:[{id:"29661",title:"Dr.",name:"Sara",surname:"Varanese",slug:"sara-varanese",fullName:"Sara Varanese"},{id:"39902",title:"Dr.",name:"Bernardo",surname:"Perfetti",slug:"bernardo-perfetti",fullName:"Bernardo Perfetti"},{id:"39903",title:"Dr.",name:"Alessandro",surname:"Di Rocco",slug:"alessandro-di-rocco",fullName:"Alessandro Di Rocco"}],corrections:null},{id:"20689",title:"Cognition and Gait Disturbances in Parkinson's Disease",doi:"10.5772/18204",slug:"cognition-and-gait-disturbances-in-parkinson-s-disease",totalDownloads:2187,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Samo Ribarič",downloadPdfUrl:"/chapter/pdf-download/20689",previewPdfUrl:"/chapter/pdf-preview/20689",authors:[{id:"30734",title:"Prof.",name:"Samo",surname:"Ribaric",slug:"samo-ribaric",fullName:"Samo Ribaric"}],corrections:null},{id:"20690",title:"Nocturnal Disturbances in Patients with Parkinson’s Disease",doi:"10.5772/21476",slug:"nocturnal-disturbances-in-patients-with-parkinson-s-disease",totalDownloads:3022,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Keisuke Suzuki, Tomoyuki Miyamoto, Masayuki Miyamoto, Masaoki Iwanami and Koichi Hirata",downloadPdfUrl:"/chapter/pdf-download/20690",previewPdfUrl:"/chapter/pdf-preview/20690",authors:[{id:"32999",title:"Prof.",name:"Tomoyuki",surname:"Miyamoto",slug:"tomoyuki-miyamoto",fullName:"Tomoyuki Miyamoto"},{id:"41714",title:"Dr.",name:"Masayuki",surname:"Miyamoto",slug:"masayuki-miyamoto",fullName:"Masayuki Miyamoto"},{id:"43228",title:"Dr.",name:"Keisuke",surname:"Suzuki",slug:"keisuke-suzuki",fullName:"Keisuke Suzuki"},{id:"43229",title:"Dr.",name:"Masaoki",surname:"Iwanami",slug:"masaoki-iwanami",fullName:"Masaoki Iwanami"},{id:"43230",title:"Prof.",name:"Koichi",surname:"Hirata",slug:"koichi-hirata",fullName:"Koichi Hirata"}],corrections:null},{id:"20691",title:"Neuropsychological Deficits in Initial Parkinson’s Disease",doi:"10.5772/16977",slug:"neuropsychological-deficits-in-initial-parkinson-s-disease",totalDownloads:2973,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Raquel Rodriguez Fernandez and Jose Antonio Muñiz Casado",downloadPdfUrl:"/chapter/pdf-download/20691",previewPdfUrl:"/chapter/pdf-preview/20691",authors:[{id:"26859",title:"Dr.",name:"Raquel",surname:"Rodríguez Fernández",slug:"raquel-rodriguez-fernandez",fullName:"Raquel Rodríguez Fernández"},{id:"39872",title:"Mr.",name:"Jose Antonio",surname:"Muñiz Casado",slug:"jose-antonio-muniz-casado",fullName:"Jose Antonio Muñiz Casado"}],corrections:null},{id:"20692",title:"Pathophysiology of Drug-Induced Dyskinesias",doi:"10.5772/17248",slug:"pathophysiology-of-drug-induced-dyskinesias",totalDownloads:1946,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Christopher A. Lieu, Vikram Shivkumar, Timothy P. Gilmour, Kala Venkiteswaran, Mark J. Nolt, Milind Deogaonkar and Thyagarajan Subramanian",downloadPdfUrl:"/chapter/pdf-download/20692",previewPdfUrl:"/chapter/pdf-preview/20692",authors:[{id:"27755",title:"Dr.",name:"Thyagarajan",surname:"Subramanian",slug:"thyagarajan-subramanian",fullName:"Thyagarajan Subramanian"},{id:"41013",title:"BSc.",name:"Christopher",surname:"Lieu",slug:"christopher-lieu",fullName:"Christopher Lieu"},{id:"41015",title:"Dr.",name:"Vikram",surname:"Shivkumar",slug:"vikram-shivkumar",fullName:"Vikram Shivkumar"},{id:"41016",title:"MSc.",name:"Timothy",surname:"Gilmour",slug:"timothy-gilmour",fullName:"Timothy Gilmour"},{id:"41017",title:"Dr.",name:"Kala",surname:"Venkiteswaran",slug:"kala-venkiteswaran",fullName:"Kala Venkiteswaran"},{id:"41018",title:"Dr.",name:"Mark",surname:"Nolt",slug:"mark-nolt",fullName:"Mark Nolt"},{id:"41019",title:"Dr.",name:"Milind",surname:"Deogaonkar",slug:"milind-deogaonkar",fullName:"Milind Deogaonkar"}],corrections:null},{id:"20693",title:"Preclinical Solutions for Insight in Premotor Parkinson",doi:"10.5772/20667",slug:"preclinical-solutions-for-insight-in-premotor-parkinson",totalDownloads:1373,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Ingrid H.C.H.M. Philippens and Peternella S. Verhave",downloadPdfUrl:"/chapter/pdf-download/20693",previewPdfUrl:"/chapter/pdf-preview/20693",authors:[{id:"40001",title:"Dr.",name:"Ingrid",surname:"Philippens",slug:"ingrid-philippens",fullName:"Ingrid Philippens"},{id:"80785",title:"Dr.",name:"Nelleke",surname:"Verhave",slug:"nelleke-verhave",fullName:"Nelleke Verhave"}],corrections:null},{id:"20694",title:"Cognitive and Psychiatric Aspects of Parkinson’s Disease",doi:"10.5772/21171",slug:"cognitive-and-psychiatric-aspects-of-parkinson-s-disease",totalDownloads:1397,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Caspar Stephani",downloadPdfUrl:"/chapter/pdf-download/20694",previewPdfUrl:"/chapter/pdf-preview/20694",authors:[{id:"42080",title:"Dr.",name:"Caspar",surname:"Stephani",slug:"caspar-stephani",fullName:"Caspar Stephani"}],corrections:null},{id:"20695",title:"The Psychosocial Impact of Parkinson’s Disease on the Wider Family Unit: A Focus on the Offspring of Affected Individuals",doi:"10.5772/18886",slug:"the-psychosocial-impact-of-parkinson-s-disease-on-the-wider-family-unit-a-focus-on-the-offspring-of-",totalDownloads:3258,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"David Morley",downloadPdfUrl:"/chapter/pdf-download/20695",previewPdfUrl:"/chapter/pdf-preview/20695",authors:[{id:"32892",title:"Dr.",name:"David",surname:"Morley",slug:"david-morley",fullName:"David Morley"}],corrections:null},{id:"20696",title:"The Negative Impact of Apathy in Parkinson’s Disease",doi:"10.5772/19662",slug:"the-negative-impact-of-apathy-in-parkinson-s-disease",totalDownloads:1800,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Iracema Leroi",downloadPdfUrl:"/chapter/pdf-download/20696",previewPdfUrl:"/chapter/pdf-preview/20696",authors:[{id:"35743",title:"Dr.",name:"Iracema",surname:"Leroi",slug:"iracema-leroi",fullName:"Iracema Leroi"}],corrections:null},{id:"20697",title:"Gastrointestinal Dysfunction in Parkinson’s Disease",doi:"10.5772/17606",slug:"gastrointestinal-dysfunction-in-parkinson-s-disease",totalDownloads:4144,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Klaus Krogh",downloadPdfUrl:"/chapter/pdf-download/20697",previewPdfUrl:"/chapter/pdf-preview/20697",authors:[{id:"28856",title:"Dr.",name:"Klaus",surname:"Krogh",slug:"klaus-krogh",fullName:"Klaus Krogh"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"435",title:"Diagnosis and Treatment of Parkinson's Disease",subtitle:null,isOpenForSubmission:!1,hash:"ead2d09d678e2b48f9c6f072ddf1f4b3",slug:"diagnosis-and-treatment-of-parkinson-s-disease",bookSignature:"Abdul Qayyum Rana",coverURL:"https://cdn.intechopen.com/books/images_new/435.jpg",editedByType:"Edited by",editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3813",title:"A Synopsis of Parkinson's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b5fc375cb827d3a63f62daf11b480641",slug:"a-synopsis-of-parkinson-s-disease",bookSignature:"Abdul Qayyum Rana",coverURL:"https://cdn.intechopen.com/books/images_new/3813.jpg",editedByType:"Edited by",editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"438",title:"Etiology and Pathophysiology of Parkinson's Disease",subtitle:null,isOpenForSubmission:!1,hash:"baad4bf7bcb36df5620d9fea1b92bf07",slug:"etiology-and-pathophysiology-of-parkinson-s-disease",bookSignature:"Abdul Qayyum Rana",coverURL:"https://cdn.intechopen.com/books/images_new/438.jpg",editedByType:"Edited by",editors:[{id:"32584",title:"Dr.",name:"Abdul Qayyum",surname:"Rana, Md, Frcpc, Frcp (hon)",slug:"abdul-qayyum-rana-md-frcpc-frcp-(hon)",fullName:"Abdul Qayyum Rana, Md, Frcpc, Frcp (hon)"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1191",title:"Neuromuscular Disorders",subtitle:null,isOpenForSubmission:!1,hash:"6f634511340dcd5fe321e13e83a62531",slug:"neuromuscular-disorders",bookSignature:"Ashraf Zaher",coverURL:"https://cdn.intechopen.com/books/images_new/1191.jpg",editedByType:"Edited by",editors:[{id:"66392",title:"Prof.",name:"Ashraf",surname:"Zaher",slug:"ashraf-zaher",fullName:"Ashraf Zaher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"745",title:"Neurodegenerative Diseases",subtitle:"Processes, Prevention, Protection and Monitoring",isOpenForSubmission:!1,hash:"3d5795dad33257368f0b7848c22d5dd4",slug:"neurodegenerative-diseases-processes-prevention-protection-and-monitoring",bookSignature:"Raymond Chuen-Chung Chang",coverURL:"https://cdn.intechopen.com/books/images_new/745.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3278",title:"Neurodegenerative Diseases",subtitle:null,isOpenForSubmission:!1,hash:"aa717c2801cf98db641d48414cef8ced",slug:"neurodegenerative-diseases",bookSignature:"Uday Kishore",coverURL:"https://cdn.intechopen.com/books/images_new/3278.jpg",editedByType:"Edited by",editors:[{id:"155691",title:"Dr.",name:"Uday",surname:"Kishore",slug:"uday-kishore",fullName:"Uday Kishore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3296",title:"Understanding Alzheimer's Disease",subtitle:null,isOpenForSubmission:!1,hash:"b040d696d429a2a6dc90cd236f160778",slug:"understanding-alzheimer-s-disease",bookSignature:"Inga Zerr",coverURL:"https://cdn.intechopen.com/books/images_new/3296.jpg",editedByType:"Edited by",editors:[{id:"26013",title:"Prof.",name:"Inga",surname:"Zerr",slug:"inga-zerr",fullName:"Inga Zerr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"434",title:"Alzheimer's Disease Pathogenesis",subtitle:"Core Concepts, Shifting Paradigms and Therapeutic Targets",isOpenForSubmission:!1,hash:"49f4c7dbf69e8a9eaf780e37f4aae1ab",slug:"alzheimer-s-disease-pathogenesis-core-concepts-shifting-paradigms-and-therapeutic-targets",bookSignature:"Suzanne De La Monte",coverURL:"https://cdn.intechopen.com/books/images_new/434.jpg",editedByType:"Edited by",editors:[{id:"29111",title:"Dr.",name:"Suzanne",surname:"De La Monte",slug:"suzanne-de-la-monte",fullName:"Suzanne De La Monte"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3437",title:"Mood Disorders",subtitle:null,isOpenForSubmission:!1,hash:"62c54b70da87ce48e712c07601105311",slug:"mood-disorders",bookSignature:"Nese Kocabasoglu",coverURL:"https://cdn.intechopen.com/books/images_new/3437.jpg",editedByType:"Edited by",editors:[{id:"91417",title:"Prof.",name:"Nese",surname:"Kocabasoglu",slug:"nese-kocabasoglu",fullName:"Nese Kocabasoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1062",title:"Dystonia",subtitle:"The Many Facets",isOpenForSubmission:!1,hash:"81069e5ab5b7c4bb52cf7bd16d0c4cb2",slug:"dystonia-the-many-facets",bookSignature:"Raymond L. Rosales",coverURL:"https://cdn.intechopen.com/books/images_new/1062.jpg",editedByType:"Edited by",editors:[{id:"70147",title:"Prof.",name:"Raymond",surname:"Rosales",slug:"raymond-rosales",fullName:"Raymond Rosales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66063",slug:"corrigendum-to-introductory-chapter-historical-perspective-and-brief-overview-of-insulin",title:"Corrigendum to: Introductory Chapter: Historical Perspective and Brief Overview of Insulin",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66063.pdf",downloadPdfUrl:"/chapter/pdf-download/66063",previewPdfUrl:"/chapter/pdf-preview/66063",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66063",risUrl:"/chapter/ris/66063",chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar Sarwar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-sarwar-zaman",fullName:"Gaffar Sarwar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar Sarwar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Sarwar Zaman",slug:"gaffar-sarwar-zaman",email:"gffrzaman@gmail.com",position:null,institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}}]}},chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar Sarwar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-sarwar-zaman",fullName:"Gaffar Sarwar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar Sarwar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Sarwar Zaman",slug:"gaffar-sarwar-zaman",email:"gffrzaman@gmail.com",position:null,institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}}]},book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar Sarwar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-sarwar-zaman",fullName:"Gaffar Sarwar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10918",leadTitle:null,title:"Digital Economy",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dbdfd9caf5c4b0038ff4446c7bc6a681",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10918.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 16th 2020",dateEndThirdStepPublish:"February 14th 2021",dateEndFourthStepPublish:"May 5th 2021",dateEndFifthStepPublish:"July 4th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39774",title:"Finite Element Analysis of Stationary Magnetic Field",doi:"10.5772/50846",slug:"finite-element-analysis-of-stationary-magnetic-field",body:'Computer-aided analysis of field distribution for evaluating electromagnetic device or component performance has become the most advantageous way of design. Analytical methods have limited uses and experimental methods are time intensive and expensive (Morozionkov et al., 2008).
The problems of magnetic fields calculation are aimed at determining the value of one or more unknown functions for the field considered, such as magnetic field intensity, magnetic flux density, magnetic scalar potential and magnetic vector potential. As the field has infinite points, the function values are in infinite number.
Physical phenomena of electromagnetic nature are described by Maxwell’s equations from the mathematical point of view. These are differential equations with the given boundary conditions. By means of them, the exact solution of the problem is obtained. In this way, the value of function or functions in any point of the studied range is calculated. This represents the analytical way for solving the problems.
Analytical methods (conformable representation method, method of separation of the variables, Green function method) are applied to solve relatively simple problems. Problems which occur in practice are often complex concerning the geometric construction, material heterogeneity, loading conditions, boundary conditions, so that the integration of differential equations is difficult or sometimes impossible. In this case, the analytical solution can be carried out only by creating a simplified model so that the integration of differential equations is possible. Therefore, an exact solution for a simplified model can be obtained (Gârbea, 1990).
It is sometimes preferable to obtain, instead of the exact solution of the simplified model, an approximate solution of the real problem. Approximate solutions which are obtained by numerical methods reflect better the reality than exact solutions of a simplified model.
The software package ANSYS can be used for investigation of the magnetic field distribution (the magnetic flux density, the magnetic field intensity and the magnetic vector potential) and basic electromagnetic characteristics (inductance and electromagnetic force). A typical magnetic field problem is described by defining the geometry, material properties, currents, boundary conditions, and the field system equations. The computer requires the input dates, the numerical solution of the field equation and output of desired parameters. If the values are found unsatisfactory, the design modified and parameters are recalculated. The process is repeated until optimum values for the design parameters are obtained.
The ANSYS program is based on the finite element method (FEM) for solving Maxwell’s equations and can be used for electromagnetic field modeling, where the field is electrostatics, magnetostatics, eddy currents, time-invariant or time-harmonic and permanent magnets (ANSYS Documentation).
The finite elements method assures sufficient accuracy of electromagnetic field computation and very good flexibility when geometry is modeled and field sources are loaded.
In this section, we discuss the particular forms of the electromagnetic field theory laws for the magnetic stationary field. We consider the models of the magnetic induction versus magnetic field intensity (B-H) relation, passing conditions through discontinuity surfaces, the enunciation of stationary magnetic field (the sources of the field, boundary conditions), the enunciation of scalar magnetic potential - magnetostatic field problems (Dirichlet conditions, Neumann conditions) and the enunciations using the magnetic vector potential (stationary magnetic field problems). The general formulation of the uniqueness conditions gets particular forms, adapted to some geometrical configurations (plane-parallel fields, with rotation symmetry, etc.).
Depending on the relation between the magnetic induction and the intensity of the magnetic field, a few types of materials are distinguished, the most important being linear and isotropic materials, linear and non-isotropic materials, linear and non-isotropic materials, non-linear and isotropic materials, without permanent magnetization, non-linear and non-isotropic materials, materials with hysteresis.
Non-linear and isotropic materials, without permanent magnetization, are ferromagnetic materials, which are frequently used in the production of electric equipment.
The stationary magnetic field is established by non-moving, permanently magnetized bodies and by non-moving connecting wires crossed by direct current (Mocanu, 1981). Fundamental magnetic field relationships result by customizing the general laws and material laws of the electromagnetic field in the following conditions: bodies are non-moving
the magnetic circuit law (Ampre’s theorem)
the magnetic flux law (local form)
the connection law in magnetic field
the temporary magnetization law
Here,
Magnetostatics is the branch in electromagnetism that studies the stationary magnetic states that do not accompany the conduction electric currents. This magnetic field is produced by permanent magnets (
Depending on the relation between the magnetic induction
The most important type of materials consists of the linear and isotropic materials, in which:
where
where
In the absence of permanent magnetization (
The quantity
In these materials, the
For some crystalline materials, the dependence between
The relation between them can be written, in the absence of permanent magnetization, under the form:
where
The permittivity matrix is symmetrical (
In these materials, the
This is, usually, the behavior of ferromagnetic materials, which are frequently used in the production of electric equipment.
In hysteresis materials, the instantaneous value of the magnetic induction depends not only on the value of the intensity of the magnetic field, but also on the previous evolution of these quantities.
Assume that the magnetic field intensity is gradually reduced after following the first magnetization curve OA, corresponding to a value +Hmax (Figure 1).
The B-H relation for a hysteresis material
The curve obtained during the magnetic field intensity reduction differs from the first magnetization curve. When H is null, the magnetic induction has a value different from zero called the residual magnetic induction:
where Mr is the residual magnetization.
For further reduction of the magnetic induction, the sense of magnetic field intensity is changed (as well as the sense of magnetization current), with respect to the initial one.
The magnetic field intensity necessary to compensate the magnetic induction is called the coercitive field Hc. Increasing the field in the contrary sense to –Hmax and then returning to the values of H up to Hmax, the hysteresis cycle is obtained. By repeating several times the magnetization cycle between the limits +Hmax and -Hmax, a closed curve and a stabilized cycle are obtained, with the reversal points A and A\' symmetrical with respect to the origin of the coordinate system.
It is important to mention that in the case of a periodic magnetization, the existence of the hysteresis cycle leads to energy losses that occur in the ferromagnetic core as heat. These energy losses are called the hysteresis iron losses (Şora, 1982).
In these materials, the
The magnetic vector potential is a vector field, which does not have a specific physical meaning. Its utilization allows simplification of the mathematical approach of many physical problems.
The condition
The potential vector
If the calculation of the magnetic flux through an open surface is expressed by means of magnetic induction, then the magnetic vector potential must be taken into account by the Stokes\' theorem (Moraru, 2002).
The magnetic flux through a surface SΓ bounded by a contour Γ can be computed as a contour integral of the vector potential:
The magnetic flux through the surface SΓ is equal to the line integral of the magnetic vector potential along the contour Γ on which this surface is supported. Equation (16) relieves the fact that the value of a magnetic flux does not depend on the surface shape, as it is computed only by considering the contour on which that surface is supported. Let us consider a material with linear magnetic properties and without permanent magnetization, for which
In linear and homogeneous mediums, where µ is constant:
the magnetic vector potential verifies the Poisson’s vector equation:
and if
Solving Equations (19) and (20) requires the boundary condition to be known. The vector equations are divided after the Cartesian coordinates in scalar equations of Poisson type
respectively, scalar equations of Laplace type
The integral of Equation (19) in all space is determined by using the scalar forms (21).
The magnetic vector potential of the filiform circuit with current i is expressed as:
Biot–Savart–Laplace relation for filiform conductors
The magnetic field intensity is (Figure 2):
The Biot-Savart-Laplace relation becomes:
The magnetic field is not irrotational for a circuit with current flow, therefore this can be deduced fom a scalar potential. But the rotor of magnetic field intensity is equal to zero if there is no current which flows,
Therefore,
where is
In the presence of some conductors crossed by electric current, the scalar magnetic potential is not uniform:
For uniformity, a cut can be introduced an arbitrary surface bounded by the contour crossed by current (Figure 3).
Cut in order to uniform the scalar magnetic potential
In the absence of permanently magnetized bodies, the partial derivative equation of the scalar magnetic potential is deducted from the magnetic flux law:
In homogeneous materials (where =cost), the Laplace equation is obtained:
This expression is used to determine the scalar magnetic potential of the magnetic field produced by a filiform circuit crossed by electric current.
Applying the magnetic circuit law for a closed curve which surrounds the conductor, the scalar magnetic potential is written as:
where is the solid angle under which the contour is seen from the point where the field is calculated:
In this case, the magnetic field intensity
Magnetic energy is located in a magnetic field with a volume density
If the medium is linear (µ=constant), then:
In this case, the following expressions are obtained:
Assuming that inside the field limited by a closed surface Σ and considering an isotropic medium, the magnetic energy can be written as:
taking into account the vector operation.
In other words, the magnetic energy is:
Applying the Gauss-Ostrogradski\'s theorem to the first term on the right-hand side, the following expression is obtained:
In the case of the stationary magnetic field, the general expressions of the generalized forces Xk associated to a generalized coordinate xk are given by one of the two generalized forces theorems in a stationary magnetic field (Timotin, 1970):
in which the transformations are supposed to be done at constant fluxes on any surface, respectively to constant currents through any conducting contour.
In stationary magnetic field problems, the electric currents distribution (the
In magnetostatic field problems, the sources of the field are represented by the distribution of the permanent magnetization (
In conformity to the general uniqueness theorem of the solutions of the stationary magnetic fields equations, the solution of the electromagnetic field equations in a domain D bounded by closed surface =SHSB is uniquely determined by the following uniqueness conditions:
The electric currents distribution in the domain:
The distribution of the permanent magnetization:
Boundary conditions, that can be of the following types (Figure 4):
tangent component of the magnetic field intensity on the surface SH:
normal component of the magnetic induction on the surface SB:
The uniqueness theorem for the stationary magnetic field (Andrei et al. 2012)
The theorem stands for linear materials, or for non-linear materials, but having B-H monotone magnetization characteristics. The case of materials which have hysteresis is not included. Particular forms can be deducted from this general formulation, expressed by field potentials.
In magnetostatic regime problems, the sources of the magnetic field are represented by the permanent magnetization of the bodies (Andrei et al., 2012).
The boundary conditions, expressed by the scalar magnetic potential, are of the following types:
Dirichlet Conditions, which consist of imposing values for the scalar magnetic potential at the points on the surface, denoted by SD:
These conditions imply knowing the value of the tangent component of the intensity of the magnetic field in the respective points, which is equal to the derivative by the tangent direction of the scalar magnetic potential (Flueraşu & Flueraşu, 2007).
Neumann Conditions, which consist of imposing the values of the derivative of the scalar magnetic potential iny the direction of the normal to the surface, denoted by SN.
Practically, this type of conditions imposes the normal component of the magnetic induction in the respective points on the surface:
mixed conditions, that consist of imposing a condition in the form of a linear combination between the two above condition types, on a portion SM of the surface.
The first step in solving the problems using the Finite Element Method (FEM) begins by dividing the analysis area in finite elements, as well as the choice of the finite element type. Currently, a wide range of finite elements is used, but their classification, their description, as well as their criteria presentation for choosing adequate finite element types does not represent the subject of this chapter. In the presented application, the triangular finite element with three nodes is used. At the same time with the choice of finite element type, the shape functions are chosen, so that the description of finite elements is followed by the associated shape function presentation. Concerning the shape functions, the interpolating polynomials are mainly used due to the facility in their derivation and their integration. The interpolation on a triangle supposes a shape or interpolating function which links the nodal values (triangle vertices). An approximation of the solution of the magnetic vector potential
The triangular element „e”
The shape function coefficients ak, bk, and ck are called the generalized coordinates. These coefficients are constant because they depend on the constant coordinates of the nodes only.
The values of the shape functions vary between 0 and 1. They are equal to 1 in node k and liniarly decrease in the elements adjacent to this node, being null in the rest of the nodes and elements (Figure 6). Thus:
Graphical representation of the shape function
The shape function
The shape function coefficients are:
where:
\n\t\t\t\tand the index i takes the values by circular permutations in nodal set of an element „e”, in clockwise order. Writing with Se, the area of element „e”:
Considering:
The magnetic vector potential in an arbitrary point (x,y,z) is obtained with the following equation:
where:
Finite element methods (FEM) use most of the times a variation principle. According to the variation computation, solving a differential equation in a field and under certain boundary conditions is equivalent with minimizing, in that field, a functional corresponding to the differential equation with its boundary conditions. A functional integral is an integral expression, a function that depends on the unknown functions. The functional integral has a finite value.
The problem concerning solving the system of differential equations of the electromagnetic field with some boundary conditions is equivalent with the problem of finding a function which gives the integral minimum by which the energy system is expressed.
Let’s consider the energy functional associated with the arbitrary three-dimensional field D:
where
The first parenthesis of the integrand represents the difference between the volume density of the electric and magnetic energy. The second parenthesis represents the difference between the volume density of interaction energies between the conduction current and magnetic field, as well as between the electric charge and the electric field. The interaction energies are equal to the work done by the field forces in order to bring the current density, respectively electric charge, from infinity, where the potentials are considered
The electromagnetic potentials
and
The energy functional associated with the stationary magnetic field produced by the direct currents and in case by permanent magnets is expressed as:
Two-dimensional problems of stationary magnetic field are by definition problems in which the unknown, the vector magnetic potential
2D problems in Cartesian coordinates (x,y,z) are called parallel-plane. The current density
The square of magnetic induction is:
The magnetic vector potential
In the case of stationary magnetic field, the functional is related to the physical size of a known issue, such as the total energy of the magnetic field inside the domain D:
The magnetic energy is located in the magnetic field with the volume density
Eckhardt describes in detail the solution to this problem. The magnetic field density is reduced to the following scalar equation (Stammberg, 1995; Eckhardt, 1978):
In the case of the parallel-plane fileds, the boundary conditions are:
where Eq. (68) represents the Dirichlet boundary conditions on the boundary CD and Eq. (69) represents the Neumann boundary conditions on the boundary CN. The unknown function
The domain of computation for a two-dimensional problem (Andrei et al. 2012)
where the function
Therefore, the following equations system is obtained:
Ai is the magnetic vector potential of the node i of the element z.
The differentials involved in Eq. (71) are written according to the shape functions and have the following expressions (Stammberg, 1995; Eckhardt, 1978):
A homogeneous medium is considered, thus the magnetic permittivity µ is constant for each finite element, being independent of the x and y coordinates:
where D is the determinant computed according to Eq.(56).
Eq. (79) can be written under matrix form as:
The functional is sum of contributions other than the „ne” finite elements. Stationarization of the functional requires (Stammberg, 1995; Silvester & Ferrari, 1996):
where „ne” is the total number of finite elements.
The term
Direct current (DC), which was one of the main means of distributing electric power, is still widespread today in the electrical plants supplying particular industrial applications. The advantages in terms of settings, offered by the applicants of DC motors and by supply through a single line, make direct current supply a good solution for railway and underground systems, trams, lifts and other transport means. Current-limiting circuit breakers play an important role in electrical low-voltage circuits. Due to the high short-circuit currents it is necessary a very short time to switch off the faulted branch. For this reason the current limiting circuit breakers are conceived as elaborated solutions especially for the arc quenching system, meaning the path of current and the arcing chamber (Vîrjoghe, 2010).
This section presents the calculation of the magnetic field in the arcing chamber of a current-limiting d.c. circuit breaker of 1250 A, 750 V, and in a DC circuit breaker-separator of 3150 A, 1000 V. The authors present few optimization solutions of some quenching systems which will lead to more performing constructive choices. Two-dimensional (2D) and three-dimensional (3D) problems of stationary magnetic field are addressed.
The finite element software package ANSYS is used for calculation of the magnetic field components. This tool includes three stages: preprocessor, solver and postprocessor. The procedure for carrying out a static magnetic analysis consists of following main steps: create the physics environment, build and mesh the model and assign physics attributes to each region within the model, apply boundary conditions and loads (excitation), obtain the solution, and review the results (ANSYS Documentation).
A typical magnetic field problem is described by defining its geometry, material properties, currents, boundary conditions, and the field system equations. The computer requires the input data and provides the numerical solution of the field equation and the output of desired parameters. If the values are found unsatisfactory, the design is modified and parameters are recalculated. The process is repeated until optimum values for the design parameters are obtained.
In order to define the physics environment for an analysis, it is necessary to enter in the ANSYS preprocessor (PREP7) and to establish a mathematical simulation model of the physical problem. In order to this, the following steps are presented below: set GUI Preferences, define the analysis title, define the element types and options, define the element coordinate systems, set real constants and define a system of units, and define the material properties (ANSYS Documentation).
The Global Cartesian coordinate system is the default. A different coordinate system can be specified by the user by indicating its origin location and orientation angles. The coordinate system types are Cartesian, cylindrical (circular or elliptical), spherical, and toroidal.
Some materials with magnetic properties are defined in the ANSYS material library. The materials can be modified to correspond more closely to the analysed problem and to be loaded in the ANSYS database. The copper property shows temperature which depends on resistivity and relative permeability. All other properties are described in terms of B-H curves. Most of the materials included in ANSYS are used for modeling the electromagnetic phenomenon. The element types are used to establish the physics of the problem domain. Some element types and options are defined to represent the different regions in the model. If some laminated materials are aligned in an arbitrary form, the element coordinate system or systems have to be identified and used. The applications presented in this chapter use the PLANE53 element in the two-dimensional problem and the SOLID97 element for the three-dimensional problem.
In order to obtain the magnetic field values, the Maxwell’s equations are solved by using the imput data. The nodal values of the magnetic vector potential are considered as main or primary unknows. Their derivatives (e.g., flux density) are the secondary unknows. After this, it is possible to choose the type of solver to be used. The available options include Sparse solver (default), Frontal solver, Jacobi Conjugate Gradient (JCG) solver, JCG out-of-memory solver, Incomplete Cholesky Conjugate Gradient (ICCG) solver, Preconditioned Conjugate Gradient solver (PCG), and PCG out-of-memory solver (ANSYS Documentation).
The results of the calculations are shown in the postprocessing phase, which is a graphical program. Here, it can be observed if the applied loads affect the design, if the finite element mesh is good, and so on. The resulting fields in the form of contour and density plots are displayed by this praphical program. The analysis of the field at arbitrary points, the evaluation of a number of different integrals, and the plot of some quantities along pre-defined contours are also made with this program. The plotted results are saved in the Extended Metafile (EMF) format.
The problem of magnetic field distribution in the arc chamber of DC a circuit breaker with rated current 1250A was numerically solved. The conductor where a current of 1250 A flows is located in the immediate vicinity of a ferromagnetic profile. This has the role of enhancing and orienting the magnetic field in the arc-quenching chamber for obtaining a strong force that moves the arc up inside the extinction chamber (Vîrjoghe, 2004).
It is considered the plane parallel model, whose cross section is shown in Figure 8. This model is an I shaped ferromagnetic profile, with cross section in the vertical plane and the dimmensions of 60x3 mm2. The cross section of copper conductor is 5x15 mm2. The conductor is surrounded by a slider with U shaped cross section and a thickness of 1mm.
The physical model in the area with ramp, slider and ferromagnetic profile
For numerical computation the PLANE53 element was chosen, which allows two-dimensional modeling of the magnetic field in plane parallel and axisymmetric problems. This element is based on the magnetic vector potential formulation with Coulomb calibration. This element is also applicable to the stationary magnetic field with the possibility of modeling the magnetic nonlinearities. The material used for other two ferromagnetic profiles is a steel chosen from the ANSYS library and having the properties in the emagM3.SI_MPL folder. The material is M3 steel and its magnetization curve is shown in Figure 9. This domain was discretized in a number of 2436 triangular finite elements uniformly distributed (Vîrjoghe, 2004).
The boundary conditions and loads are applied to a 2-D static magnetic analysis either on the solid model (key points, lines, and areas) or on the finite element model (nodes and elements). The loads applied to the solid model to the mesh during solution are automatically transferred by ANSYS (ANSYS Documentation).
To observe the influence of the ferromagnetic slider and of the ferromagnetic plate on the magnetic fied distribution, the magnetic induction is computed and the magnetic flux lines are drawn. The slider and the ferromagnetic plate case were studied independently of each other.
The magnetization characteristic for the M3 steel
Figure 10 and Figure 11 respectively show the magnetic induction spectrum and the magnetic field lines only, for the case of ferromagnetic slider.
The magnetic induction spectrum in the presence of the ferromagnetic slider
Figure 12 and Figure 13 respectively show the magnetic induction spectrum and the magnetic field lines only, for the case of I shaped ferromagnetic profile. Figure 14 and Figure 15 respectively show the magnetic induction spectrum and the magnetic field lines when using the ferromagnetic profile and the ferromagnetic slider (Vîrjoghe, 2004).
Analyzing these simulations, a strong influence of the ferromagnetic slider on the orientation of the magnetic field was observed. When using only the ferromagnetic slider, a shielding of the field lines is observed, and the maximum values of the magnetic induction is 0.907 T. The I shaped ferromagnetic profile makes a good shielding of the field lines obtaining the maximum values of magnetic induction of 0.153 T. If both methods of magnetic field orientation are used together then a maximum value of magnetic induction of 0.947 T is obtained. To obtain the system optimization in this area, the simulations for a thickness of 2 mm have been repeated.
The magnetic equipotential lines in the presence of the ferromagnetic slider
The magnetic induction spectrum in the case with the ferromagnetic profile
Thus, the obtained results are plotted in comparison with those presented for the slider of 1 mm (Figure 16). For the slider with the thickness of 2 mm, the values of magnetic induction are lower (up to 0.5 T). Using the slider of 1 mm thickness a better orientation of the field lines, as well as a better arc transmission toward arc-quenching chamber are observed. The path for the displayed charts is chosen between two points placed symmetrically one from another in the middle of a figure which contains the conductor, slider and ferromagnetic profile (Vîrjoghe, 2004).
The magnetic equipotential lines in the presence of the ferromagnetic profile
The magnetic induction spectrum in the area with ramp, slider and ferromagnetic profile.
The magnetic equipotential lines in the area with ramp, slider and ferromagnetic profile.
Magnetic induction variation depending on the thickness of the slider.
The physical model of the arc-quenching chamber in case of a DC circuit breaker-separator of 3125 A having the ramps-ferromagnetic profiles is shown in Figure 17. In this model, two profiles composed of a ferromagnetic material are presented. The magnetization curve of the two profiles is shown in Figure 9.
The DC circuit breaker-separator model with a current of 3125A.
These profiles form a rectangular prism with length of 150 mm, height of 100 mm and thickness of 5 mm. The electric arc ramps 1 and 2 are made of copper and have width of 10mm and thickness of 2.5 mm. The left ramp is inclined to the vertical with an angle of 45º.
The arc chamber model together with ramps 1 and 2 are incorporated in a boundary volume, where the air is defined as material. In order to achieve the circuit continuity, two ramps have been unified with a bar 3 having the same dimensions of the ramps (Figure 18).
In the preprocessing phase, the materials are defined and chosen. For the current path, consisting of two ramps and the connecting bar, the copper was chosen. For the two ferromagnetic plates, from ANSYS library a M3 steel is chosen, having the properties contained in the emagM3.SI_MPL file (ANSYS Documentation). The next step in the preprocessor phase is the mesh generation and load application upon the elements (Figure 19). In this application, for modeling the three-dimensional stationary magnetic field a SOLID97 element is chosen. For the numerical computation of the stationary magnetic field, the model of the DC circuit-breaker together with the boundary volume is discretized in a number of 1268 nodes and 3623 triangular elements (Vîrjoghe, 2004).
In the postprocessing phase is also applied the load on elements and boundary conditions.
The load on elements is represented by the conduction current density. For 3D analysis, a positive value indicates current flowing in the +Z direction in the plan case and the -Z (loop) direction in the asymmetrical case. The current density is directly applied on the finite elements which form the conductors and its value is 125.106 A/m2. As boudary conditions the Dirichlet condition, A=0, is applied.
The current path for DC circuit breaker – separator of 3125 A
The discretized model of the DC circuit breaker-separator of 3125 A
The Maxwell’s equations solver is based on the Finite Element Method (FEM). The results are the nodal values of the primary unknowns (magnetic vector potential) and derivatives of these values for obtaining the secondary unknowns (magnetic induction).
In the postprocessing phase, the tool allows visualization of magnetic induction spectrum, determination of magnetic sizes in arbitrarily chosen points, as well as the evaluation of the different charts. Figure 20 shows the magnetic induction spectrum in the arc-quenching chamber of DC circuit breaker-separator of 3125 A. A maximum value of magnetic induction 2.149 T is obtained.
The DC circuit breaker-separator is designed as a particularly elaborated solution for the current path and the arc-quenching chamber. It is widely known that in electromechanic design of a switching device, the arc-quenching chamber together with current paths and contacts represent the essential element due to their switching performances in normal operating conditions and in abnormal conditions. An optimization criterion of this arc-quenching chamber concerns the ferromagnetic material used in the construction of the ferromagnetic profiles. Simulation was performed for three different steels. For the two ferromagnetic plates, three different steels from ANSYS library are chosen, namely (ANSYS Documentation):
carpenter (silicon) steel with material properties contained in emagSilicon.SI_MPL file;
iron cobalt vanadium steel with material properties contained in the emagVanad.SI_MPL file;
SA1010 steel with material properties contained in the emagSa1010.SI_MPL file.
It was established that in the case of steel EmagSilicon utilization, the maximum value of magnetic induction is 1.883 T, in the case of EmagVanad the maximum value of magnetic induction is 1.975 T and in the case of EmagSa1010 the maximum value of magnetic induction is 1.44 T. Hence, the optimal material for construction of these profiles is EmagVanad. Although the steel with vanadium is an expensive material, it assures an optimal value of magnetic induction. The high price is compensated by improving the arc-quenching chamber performance and thus increase the breaking capacity of the device (Vîrjoghe, 2004).
The magnetic induction spectrum in arc-quenching chamber of DC circuit breaker-separator of 3125 A
Magnetic induction distribution for the ferromagnetic material EmagSilicon
Magnetic induction distribution for the ferromagnetic material EmagVanad
Magnetic induction distribution for the ferromagnetic material EmagSa1010
It is well known that in electromechanical construction of a switching device, the arcing chamber along with current paths and contacts represents the all-important elements concerning switching performances of these in normal operating conditions as well as in operation under faults (Truşcă & Truşcă, 2001).
Comparing the magnetic flux density spectrums in the three cases it can be observed that the maximum arc-quenching effect is obtained by using EmagVanad for the ferromagnetic shapes. For this material an optimal distribution for the magnetic field in the circuit breaker arcing chamber is obtained, which leads to a rapid movement of the electric arc towards the ferromagnetic plates. Arc quenching and arc voltage limiting occur in base of the niche effect principle along with the electrode effect (Hortopan, 1996).
0.12% of earth crust is made up of phosphorus mineral. P is a nonrenewable natural resource present in all types of rock and soils, in all living cells, and however can form complex compounds. Mineral deposits are the major supply of phosphorus. All phosphate mineral was derived from apatite by weathering. Mostly phosphate is found in different forms like quartz, calcite, dolomite, apatite, Fe-oxide minerals and clay minerals. Apatite mineral is used for manufacturing fertilizers. Extraction of phosphorus depends on the physical properties of the rocks and its geological setting.
Since ancient times man used natural resources such as manures, vegetables material, and bones as fertilizers. In 1840 Liebig, the German chemist, suggested the formation of superphosphate by dissolving bones in sulfuric acid that made the P more available to plants. This practice becomes so popular that bone supply is restricted in a very short time. To overcome this problem, some workers started extraction of phosphorus from rocks; in 1847 the first commercial production of P rocks from the mining of coprolites began in Suffolk in Great Britain and peaked in 1876 when about 25,000 metric tons were mined.
Presently all the Phosphate reserves that are found all over the world are not “mineable” deposits, as mining of them are not economically feasible. The United States is the highest phosphate-producing country in the world, while Morocco and China are the second and third countries with respect to phosphate production. Australia and Canada are recently known sites of phosphorus mining. There are rich deposits of phosphate found in Mongolia and Peru that will fulfill the need in the future. Florida phosphate industry becomes one of the major producer and exporter of phosphate fertilizer due to good transportation and industrial infrastructure facility in America and also because a substantial layer of phosphate is only 15 to 50 feet below a soft overburden. The phosphate mining in Central Florida overshadowed other sources because of low cost of mining, large deposits and the good quality of phosphate content of Florida rock. Florida is presently providing approximately 75% of the nation’s supply of phosphate fertilizer and about 25% of the world supply. In 2000, mining operations began in Ontario, Canada, of North America. Florida’s phosphate is part of a deposit that stretches across the state and up the coast to the Chesapeake Bay. The phosphate mining is expanded from Central Florida to Polk and Hillsborough counties, south, to Hardee, DeSoto, Manatee and Sarasota counties. In Northern Florida phosphate deposits are present in Hamilton, Columbia and Suwannee counties.
Some three decades ago in 1880, Dr. C. A. Simmonsin of England, who owned a rock quarry for building stone in Hawthorne, sends some of his rocks to Washington, DC, for analysis. The analysis determined the presence of phosphate in the rock samples, and in 1883 he made the first attempt for mining phosphate in Florida. But it was in 1889 by Albertus Vogt and others in Marion County who began the production of the first hard rock by the Marion Phosphate Company. This was later in 1890 followed by the Dunnellon Phosphate Company, in which Vogt had ownership interest, and in this way the area was flooded by thousands of prospectors, and the great Florida phosphate boom had begun. By 1894 more than 215 phosphate mining companies were operating statewide. The boom brought wealth. But in 1900 due to consolidation and capitalization, this number had dwindled to about 50. In 1881, Captain J. Francis LeBaron, chief engineer of the US Army Corps, during his survey of Peace River of Polk County, analyzed river pebbles and confirmed the presence of phosphate, but at that time this discovery did not catch much attention. In 1886 John C. Jones and Captain W. R. McKee, of Orlando, discovered high grade phosphate along the Peace River which led to the formation of an association known as the Peace River Phosphate. Mining activity along the Peace River proceeded both in the river itself and on the adjacent land. The so-called river pebble mining was the first to be exploited. In 1888, the first shipment of Peace River phosphate pebble was launched by Arcadia Phosphate Company about a year ahead of the Peace River Phosphate Company. This phosphate discovery was kept relatively quiet. Rumors of no phosphate in Central Florida spread as a result; Polk County’s phosphate deposit took a back seat the first 15 years to the hard rock region to the north. The Florida Phosphate Company and the Pharr Phosphate Company were the two phosphate mining plants found in pebble district till 1890. In 1891 Pharr started shipment of land pebble for the first time; due to this there occurred a boom in the rate of river pebble production in 1893. Phosphate mining came to North Florida in the 1960s when Occidental Petroleum Company was looking for a way to get into the fertilizer business to get profit. Occidental went north and opened a mine in White Springs where it mined phosphate until 1995, when the Potash Corporation of Saskatchewan (PCS) purchased the operation. Nowadays Mosaic and PCS Phosphate, White Springs, are the two phosphate mining companies in Florida, and the third one are US Agri-Chemicals which produce phosphate fertilizers in Central Florida.
A blanket of phosphate deposits covers much of the Peninsular Florida has a large phosphate deposits which consists of approximately equal parts phosphate rock, clay and sand, averages 12 to 15 feet in thickness. The matrix is buried beneath a soil that is 15–30 feet deep. By the end of 1999, approximately 300,000 acres of land, or more than 460 square miles, had been mined in Florida. Polk County is the heart of the Bone Valley mining region, and the mineable deposit in this area stretches to Hillsborough, Hardee, Manatee, and DeSoto counties. The large depositions were also found in mining in North Florida’s Hamilton County from a mineable area that extends into Columbia and Suwanee counties. Similar deposition is found in both the areas. Mining in Central Florida has been moving south. As sites mine out, the draglines move to where the contiguous deposit of phosphate pebble is found. Toward the south the quality of rock decreases which brings technological challenges for the mining industries. During the past years, mining is slowed down in Polk County’s southern fringe. In 2000 closing of IMC Clear Springs and Noralyn mines conveyed a close to active. Currently phosphate mining companies has opened new mining sites in Manatee, DeSoto and Hardee counties.
The fertilizer that quickly became the item of commerce as most widely used by the growers today, and it had the highest concentration of phosphate and nitrogen at 18 N–46P2O5–0K2O.
This fertilizer is essentially the same as DAP, but it has a lower concentration of nitrogen at 11 N–52P2O5–0K2O. It is completely water soluble and has granular material; it mixes well and frequently serves as an ingredient in bulk-blended fertilizers.
It is very similar to the superphosphate fertilizer that provides 46% P2O5, some calcium and sulfur to plants. GTSP is formed by reaction of phosphate rock with phosphoric acid.
It’s an acid used to make a concentrated or fluid fertilizer. PCS is the acid produced only by Florida Company in North Florida.
Phosphoric acid is used in granulation plants where ammonia is added to phosphoric acid to produce the ammoniated phosphate fertilizer. Purified food-grade phosphoric acid is used in making soft drinks.
Defluorinated phosphate rock or phosphoric acid is used to make animal feed supplements by combining phosphate rock with phosphoric acid, sodium carbonate and then calcine or react it with lime to get dicalcium phosphate.
Sulfuric acid
This acid is used to produce phosphoric acid after reacting with phosphate rocks at phosphate plants.
Sedimentary marine phosphorites are the principle resources of phosphate rock. The world’s largest sedimentary reservoirs are found in North Africa, China, the Middle East, and the United States. Valuable igneous sedimentary reservoirs are also found in Brazil, Canada, Finland, Russia, and South Africa. Substantially large phosphate deposits have been spotted near the Atlantic Ocean and the Pacific Ocean shown in Table 1 and Figure 1. World resources of phosphate rock are more than 300 billion tons. There are no imminent shortages of phosphate rock.
Phosphate rock production worldwide in 2017, by country (in 1000 metric tons).
It was observed that applications of H3PO3 and phosphite (Phi) were less effective as compared to phosphoric acid (H3PO4) and its derivatives on the first crop. With increasing rates of phosphite (Phi), phytotoxic effects were detected on the crop yield. However, nutritive role of Phi in growth response was evident when compared to the zero-P control. Whereas researchers found Phi and H3PO3 treatments beneficial to the second crop, this was due to probable conversion of Phi to phosphate in the soil. In general, better yield was obtained when Phi materials were used on soils with limestone. Further scientific studies related with the significance of H3PO3 and its salts in agriculture did not occur for nearly 30 years, but rather their performance against plant diseases was mentioned [1]. During the disease control analysis, many incidents related to the plant’s physical and chemical mobility were observed when the plants were treated with H3PO3 or its salts in the absence of plant pathogens, some of which are described below. Ouimette and Coffey [2] reported that the Phi were more readily absorbed into plant tissues than phosphates—very important in crops with leaf surfaces that resist foliar spray uptake. In a comprehensive review given by Guest and Grant [3] related with the complex action of phosphonates, several unique features of this chemical group were recounted. For example, Phi is a rapidly absorbing nutrient, which translocates from xylem to phloem according to normal source-sink relationships for nutrient element materials. Guest and Grant [3] reported that the Phi is more persistent as it metabolized slowly in plant tissue as compared with phosphate and does not participate in all the same biochemical pathways as phosphate. Adam and Conrad and Casida [4, 5] confirmed their results through experiments where bacterium Pseudomonas fluorescens 195 showed the ability to oxidize Phi and also discharge it in the growth medium as phosphate. Malacinski and Konetzka [6] repeated the same work and reported that a short adaptive period was required before oxidation of Phi by organisms, and this whole process took 14–15 weeks. Bezuidenhout et al. [7] during their study reported first time that the Phi can also be converted microbially to phosphate within plant tissues and identified three genera of bacteria (Alcaligenes, Pseudomonas and Serratia). These findings complemented the previous observations given by Rothbaum [8] that elemental P in soil was oxidized non-enzymatically under particular temperature and water. Busman et al. [9] reported that the phosphate fertilizer applied to the soil will not be utilized by the crop in the first season. Rothbaum and Baillie [8, 10] observed that Phi was less adsorbed than phosphate by the same soil. This lower ‘phosphate fixation’ improved growth of Phi-treated soil, with a period gap, as compared to phosphate-treated soil. Rhone-Poulenc Ag Company of the United States expressed concern to the US Environmental Protection Agency (EPA) about classifying a fungicide based on H3PO3 salts as a biochemical pesticide and affirmed the non-enzymatic oxidation of Phi to phosphate occur naturally over time. Lovatt [11] discovered that foliar application of K3PO3 to P-deficient citrus seedlings restored plant growth. This demonstrated that through metabolic processes, Phi was readily taken up by plant leaves and replaced phosphate as a source of Frazier and Waerstad [12] tested the composition and solubility of Phi to analyze the potential of this class of materials for increasing the plant nutrient element content of liquid fertilizers. Albrigo [13] reported the positive response of Phi on winter pre-bloom foliar of Valencia oranges which were increased flower number, fruit set and yield, plus increased total soluble solids. Additional studies by Lovatt [14] on foliar fertilization of citrus showed that application of K3PO3 in May and July to navel orange significantly increased the number of large-size fruit, total soluble solids and the ratio of soluble solids to acid, compared to control fruit. Biagro Western Sales, Inc., Visalia, CA, took the lead in commercialization of Phi-supplying fertilizer products patented by the University of California Anon and Lovatt [15, 16]. Today farmers are well educated and formed community of producers; they analyze themselves the effect of new Phi products on both soil and crop. In a practical sense, acceptance by discriminating growers is strong evidence that the benefits of H3PO3-derived fertilizers are standing up to their ultimate test—the real world of agricultural crop production.
Rock phosphate is one of the basic raw materials needed in the manufacture of phosphatic fertilizers like single superphosphate, diammonium phosphate, nitrophosphates, etc. Commercial rock phosphate occurs in nature as deposits of apatites (bearing minerals) along with other accessory minerals such as quartz, silicates, carbonates, sulfates, sesquioxides, etc. Four types of rock phosphate minerals are carbonate apatite [3Ca3(PO4)2.CaCO3], fluorapatite [3Ca3 (PO4)2.CaF2], hydroxyapatite [3Ca3(PO4)2.Ca(OH)2], and sulpho apatite [3Ca3 (PO4)2.CaSO4]. Because of their well-developed crystalline formation property, the apatites of igneous and metamorphic origin are generally regarded as less reactive. However, the apatites of sedimentary rock deposits are soft minerals possessing microcrystalline structure and are of major commercial importance for direct application in the soil [17].
The classification of reserves of indigenous rock phosphate as done by the Indian Bureau of Mines, and the purpose for which each grade can be used is given in Table 2.
Countries | Mine production | |
---|---|---|
2015 | 2016 | |
United States | 27,400 | 27,800 |
Algeria | 1400 | 1500 |
Australia | 2500 | 2500 |
Brazil | 6100 | 6500 |
China | 120,000 | 138,000 |
Egypt | 5500 | 5500 |
India | 1500 | 1500 |
Israel | 3540 | 3500 |
Jordan | 8340 | 8300 |
Kazakhstan | 1840 | 1800 |
Mexico | 1680 | 1700 |
Morocco and Western Sahara | 29,000 | 30,000 |
Peru | 3880 | 4000 |
Russia | 11,600 | 11,600 |
Saudi Arabia | 4000 | 4000 |
Senegal | 1240 | 1250 |
South Africa | 1980 | 1700 |
Syria | 750 | — |
Togo | 1100 | 900 |
Tunisia | 2800 | 3500 |
Vietnam | 2500 | 2800 |
Other countries | 2470 | 2410 |
World total (rounded) | 241,000 | 261,000 |
Showing world production of phosphate in 2015 and 2016.
Grade | P2O5 (%) | Reserve (mt) | Remarks |
---|---|---|---|
High | +30 | 15.27 | Considered for wet production of fertilizers |
Medium | 25–30 | 18.95 | Considered mainly for partially acid rock phosphate and for processed phosphates after less beneficiation |
Low | 11–25 | 55.22 | Approx. 20% P2O5 grade and relatively more reactive material may be considered for partially acidulated rock phosphate production and others for direct application |
Unclassified | 170.04 | ||
Total | 259.48 |
Classification of known reserves of indigenous rock phosphate in India.
Including all grades and types of rock phosphate, the known global resources are in the order of 163,000 million tons. Though globally adequate, rock phosphate is inequitably geographically distributed. Africa holds about 41%, the United States has 21%, former USSR 13%, the Middle East 10%, Asia 8%, and South America 3%, while Australia, New Zealand and Oceania together reported for only 2% and Europe >1%. Phosphate rock resources in India is, however, not very comfortable as it possesses a resource of only 260 million tons (0.19% of the world) of rock phosphate of all types and grades, catering the agricultural needs of 1/6 of the population of the world. Out of the total rock phosphate resource, the country has a predominance of low grade rock phosphate having only 15.27 million tons reserve of high grade rock phosphate (Table 1), and the remaining low grade rock phosphate is unacceptable to P fertilizer industry due to its very low P2O5 and high CaCO3 content [18]. The current annual domestic demand of high grade rock phosphate is of the order of 4 million tons. Out of which 95% is consumed in agriculture sector as a source of P fertilizer. The domestic production of about 1.4 million tons/year of rock phosphate could hardly meet 35% of the total demand, and the remaining (65%) demand is met through imports. P fertilizer industry largely depends on sulfur, phosphoric acid, and ammonia besides rock phosphate. India imports around 1.7 million tons of sulfur, 2–4 million tons of phosphoric acid, 1.5 million tons of NH3 and 4.9 million tons of rock phosphate for phosphate industry which constitutes a substantial part of our international trade in fertilizer raw material. Thus, the rapidly increasing price of soluble phosphatic fertilizer has raised interest in cheaper alternatives. Under such conditions, we must explore new methodologies for the utilization of indigenous low grade rock phosphate by converting it into a potential resource of P for direct application to the soil. The direct utilization of indigenous rock phosphate deposits could only alleviate the dependence of the country on foreign suppliers.
Soils has an eminent reserve of total P, but very little amount of P is actually available to the plants to support their growth to fulfill the requirement; continuous application of phosphate fertilizers is essential for increasing crop yield. Water solubility of phosphate fertilizers depends on both acidic and neutral to alkaline conditions. Several factors that influence the application of rock phosphate as P fertilizer are rate of dissolution, soil characteristics, plant species and fertilizer.
Factors which determine rock phosphate dissolution rate are its lattice composition, accessory mineral type and particle size. Solubility of apatites increased by substituting CO32− for PO43− in the lattice structure due to decrease a-dimension of the unit cell, and crystal instability [19]. Silverman et al. [20] reported Calcium carbonate as the soluble apatite as compared to other apatites. Rate of its dissolution increases with the concentration of Ca2+ and pH at the surface of apatite, and therefore it reduces the rate of rock phosphate dissolution in soil. The rate of dissolution reduced under field conditions due to leaching or plant uptake of calcium ions. The rate of dissolution increases as the particle size decreases; this might be because fine particle size has greater degree of contact between rock phosphate and soil.
The rate of dissolution of rock phosphate also depends on the chemical properties and type of soil to which it is applied. As compared to other parameters, pH buffering capacity was very important in soil. Earlier studies indicated that the amount of rock phosphate-P decreased with the increase in soil pH. The rate of dissolution of rock phosphate was highly sensitive to Ca2+ activity in the soil solution. A linear relationship between the log of Ca2+ activity and log of P in soil solution has been reported by Robinson and Syers [21]. Phosphate retention capacity and soil moisture also affect rock phosphate dissolution of the soil to retain P. Wet soil enhances the rate of phosphate dissolution by allowing the dissolution products. The product transported away from the surface of the rock phosphate particles and recognized the positive effect of organic matter on rock phosphate dissolution.
Ability of plants to extract P from rock phosphates was recognized by Merril, quoted in Flach et al. [22]. Plants affect the dissolution by the secreting acid or alkali, through Ca uptake, production of chelating organic acids such as citric, malic and 2-ketogluconic acids which complex Ca and deplete P in the soil. Roots of the plants induced change in rhizosphere pH which causes imbalance in the proportion of anionic (usually NO3−, H2PO4−, SO42− and Cl−) and cationic nutrient (K+, Ca2+, Mg2+ and Na+) uptake by the plants. The imbalance in the rhizosphere is maintained by the release of either H+ or OH−/HCO3−, thus balancing the pH of the rhizosphere. Acidic soil enhances the rate of rock phosphate dissolution. Effective rock phosphate utilization by plant species such as e.g., buckwheat and rapeseed has been responsible for their high Ca uptake. Flach et al. [22] assessed the ability of maize, pearl millet and finger millet to utilize P from rock phosphates by a pot experiment and concluded that plant species influence P dissolution; therefore, choice of crop is very important to maximize the solubility of rock phosphate.
Today growing extraction and consumption of phosphate is exhausting existing deposits, and therefore the rate of P reserves depleting. This means that at a certain point time comes when all the phosphorus reached to the alarming peak and that condition is called ‘peak phosphorus’ according to literatures. This condition will be calculated on the basis of phosphate rock reserves. Since no consensus was there on the size of these reserves, so nobody knows when will be the peak phosphorus stage will occur. Peak phosphorus has been calculated by the Global Phosphorus Research Initiative (GPRI). In 2009 the GPRI estimated that phosphorus production would peak around the year 2033 and that afterward production will continuously decrease until reserves are depleted within the next 50-100 years. The US Geological Survey (USGS) re-estimated reserves at 60,000 mmt up from previous estimates of 16,000 mmt; the IFDC stated that ‘there is no indication of “peak phosphorus” event within the next 20–25 years. The concept of peak phosphorus itself is contested; the main fault in the calculations of peak phosphorus is based on phosphate rock reserves not resources which provide the basis for estimation of static ranges. Phosphate rock reserve data explained by national geological surveys do not point out the absolute quantity of an element which is available for extraction, as the static paradigm would suggest. According to the ‘dynamic adaptive paradigm’, due to changes in economic feasibility, scarcity in the production of phosphate rock occurs. This paradigm led to scarcity which is a permanent feature of human existence: minerals become scarce as long as they are immensely valued in the society, and how much time and effort it takes to extract them, and they are related to all other goods and services in the society. Shortage of phosphate rock is an important issue when observed from a different angle that is other than relative availability. One of the reasons of fall in phosphate rock exports is the geopolitical turmoil in supplier regions. Scarcity may also result by lack of water available to the mining industry. Price inelasticity of supply, time and investments are the limiting factors which can lead to scarcity of phosphorous rock.
Nowadays the good news is that crisis can be averted. Almost 4/5 of the phosphorus mined for food production never actually reaches the food on our forks. We can therefore invest in renewable phosphate fertilizers or innovations in on-farm efficiency to safeguard our farmers, our agriculture and food consumers. In every sector recycling of phosphorous is efficiently taking place from agriculture and mining to sanitation sector to changing diet (Figure 2) [23]. To meet long-term phosphorous demand of society, we have to face the technical and institutional challenges for implementing practical solutions. An integrated, context-specific approach should be developed over partial measures. Technologies and practices with effective policy instruments (regulatory, economic, facilitation) are required to encourage and bear such measures.
Sustainable phosphorus measures: Efficiency, recycling and changing diets.
Food demand is rising globally with no slowing down in sight. Especially in China and other rapidly growing economies, more demand for meat and dairy means more demand for fertilizers, while human body only needs around 0.4 kg of P each year. 22.5 kg of phosphate rocks are mined to meet the requirement of phosphate for each person’s diet. For growing population water and energy are considered as critical for meeting future demands of food for increasing population. However, there is no approximated value of phosphorus scarcity in future as a limiting factor. Thus far we can say that without phosphorus, there would be no food and life on earth. There is no single international body responsible for managing global P resources currently in the long term, unlike oil, water and nitrogen.
Phosphorus can be recovered and used over and over again if present in sufficient concentrations dissimilar to oil, which is lost once it is used. Between the phosphate reserves and the food which we eat, up to 80% of P is lost in the process from production of fertilizers, application of phosphate on fields, in food processing and final consumption. With the increasing efficiency of phosphorous, we have to carry on recovery process of P from residues of crops, waste food items in dumpsters, manure, human excreta, struvite and other sources such as bone meal, ash and algae. A key opportunity to meeting the goal of global food security lies in the often overlooked link between addressing hunger and sanitation. In agriculture P plays a critical role as a nutrient, and but on the other hand, it is also considered as an environmental pollutant due to sewage emerging from human settlements. Human activities produce 3 million tons of P each year. If this P is recirculated back in agriculture fields from where they first came, we can maintain balance in sustaining food production in the decoupled communities which are dependent on globalized P fertilizer markets.
It may be concluded that evolution of phosphorous acid (H3PO3) and its salts as fertilizers owes much to both the early investigators searching for phosphate replacements and to the many scientists who later sorted out the relevant facts about plant response to Phi through phytopathological research. In recent years, scientific aroused their interest in the nutrient properties of H3PO3-derived products which stimulate their commercialization of H3PO3 as fertilizers. Trails of these fertilizers on crops have given fruitful results. The nutritive properties of Phi products proved to be a useful addition to producers’ resources. Phi fertilizers elicit positive responses to crop like it enhances flowering and fruit set in cirrus and are converted to phosphate through oxidation process. H3PO3 derivatives give similar responses as that of orthophosphate in fertilization of crops, despite sometimes delayed. Phosphorus acid-derived fertilizers provide a more readily available source of P than that which occurs in soil. Phi products provide more phosphorus to plants as compared to phosphate fertilizers due to their high efficacy of phosphorus uptake through plant foliage. Earlier concept of not using phi as P fertilizers is now changed due to positive results recorded by the scientist about the use of these products as fertilizers. Thus we can reduce a lot of financial burden from our economy by reducing the import of rock phosphate and other by-products required in the manufacture of commercial P fertilizer.
The authors are grateful to section of Ecology and Environmental Botany, Department of Botany, A.M.U, Aligarh.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"24"},books:[{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Dr. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10964",title:"Wearable Technologies",subtitle:null,isOpenForSubmission:!0,hash:"0981ee7867892cc6e0a4edd65b792ac9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10964.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"278",title:"Social Psychology",slug:"social-psychology",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:4,numberOfAuthorsAndEditors:59,numberOfWosCitations:9,numberOfCrossrefCitations:15,numberOfDimensionsCitations:29,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-psychology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7818",title:"Social Isolation",subtitle:"An Interdisciplinary View",isOpenForSubmission:!1,hash:"db3b513d7d35476f333a0d4a3147935b",slug:"social-isolation-an-interdisciplinary-view",bookSignature:"Rosalba Morese, Sara Palermo and Raffaella Fiorella",coverURL:"https://cdn.intechopen.com/books/images_new/7818.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8262",title:"The New Forms of Social Exclusion",subtitle:null,isOpenForSubmission:!1,hash:"29bf235aa7659d3651183fe9ea49dc0d",slug:"the-new-forms-of-social-exclusion",bookSignature:"Rosalba Morese and Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/8262.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5761",title:"Quality of Life and Quality of Working Life",subtitle:null,isOpenForSubmission:!1,hash:"f6000bc0eeed7fcf0277a2f8d75907d9",slug:"quality-of-life-and-quality-of-working-life",bookSignature:"Ana Alice Vilas Boas",coverURL:"https://cdn.intechopen.com/books/images_new/5761.jpg",editedByType:"Edited by",editors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"55323",doi:"10.5772/intechopen.68873",title:"Positive Psychology: The Use of the Framework of Achievement Bests to Facilitate Personal Flourishing",slug:"positive-psychology-the-use-of-the-framework-of-achievement-bests-to-facilitate-personal-flourishing",totalDownloads:1046,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Huy P. Phan and Bing H. Ngu",authors:[{id:"196435",title:"Prof.",name:"Huy",middleName:"P",surname:"Phan",slug:"huy-phan",fullName:"Huy Phan"}]},{id:"55349",doi:"10.5772/intechopen.68596",title:"The Development of a Human Well-Being Index for the United States",slug:"the-development-of-a-human-well-being-index-for-the-united-states",totalDownloads:1485,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"J. Kevin Summers, Lisa M. Smith, Linda C. Harwell and Kyle D. Buck",authors:[{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers"},{id:"197486",title:"Ms.",name:"Lisa",middleName:null,surname:"Smith",slug:"lisa-smith",fullName:"Lisa Smith"},{id:"197487",title:"Ms.",name:"Linda",middleName:null,surname:"Harwell",slug:"linda-harwell",fullName:"Linda Harwell"},{id:"197488",title:"Dr.",name:"Kyle",middleName:null,surname:"Buck",slug:"kyle-buck",fullName:"Kyle Buck"}]},{id:"66422",doi:"10.5772/intechopen.85463",title:"Vulnerability and Social Exclusion: Risk in Adolescence and Old Age",slug:"vulnerability-and-social-exclusion-risk-in-adolescence-and-old-age",totalDownloads:548,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"the-new-forms-of-social-exclusion",title:"The New Forms of Social Exclusion",fullTitle:"The New Forms of Social Exclusion"},signatures:"Rosalba Morese, Sara Palermo, Matteo Defedele, Juri Nervo and Alberto Borraccino",authors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"},{id:"218983",title:"BSc.",name:"Juri",middleName:null,surname:"Nervo",slug:"juri-nervo",fullName:"Juri Nervo"},{id:"218984",title:"MSc.",name:"Matteo",middleName:null,surname:"Defedele",slug:"matteo-defedele",fullName:"Matteo Defedele"},{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"},{id:"266453",title:"Prof.",name:"Alberto",middleName:null,surname:"Borraccino",slug:"alberto-borraccino",fullName:"Alberto Borraccino"}]}],mostDownloadedChaptersLast30Days:[{id:"72834",title:"Introductory Chapter: Sex, Sexuality and Ethics - An Indian Perspective",slug:"introductory-chapter-sex-sexuality-and-ethics-an-indian-perspective",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psycho-social-aspects-of-human-sexuality-and-ethics",title:"Psycho-Social Aspects of Human Sexuality and Ethics",fullTitle:"Psycho-Social Aspects of Human Sexuality and Ethics"},signatures:"Dhastagir Sultan Sheriff",authors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}]},{id:"55530",title:"Quality of Life and Physical Activity: Their Relationship with Physical and Psychological Well-Being",slug:"quality-of-life-and-physical-activity-their-relationship-with-physical-and-psychological-well-being",totalDownloads:1343,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Arantzazu Rodríguez-Fernández, Ana Zuazagoitia-Rey-Baltar and\nEstibaliz Ramos-Díaz",authors:[{id:"90485",title:"Dr.",name:"Arantzazu",middleName:null,surname:"Rodriguez-Fernández",slug:"arantzazu-rodriguez-fernandez",fullName:"Arantzazu Rodriguez-Fernández"},{id:"205182",title:"Dr.",name:"Ana",middleName:null,surname:"Zuazagoitia-Rey-Baltar",slug:"ana-zuazagoitia-rey-baltar",fullName:"Ana Zuazagoitia-Rey-Baltar"},{id:"205183",title:"Dr.",name:"Estibaliz",middleName:null,surname:"Ramos-Díaz",slug:"estibaliz-ramos-diaz",fullName:"Estibaliz Ramos-Díaz"}]},{id:"71723",title:"Characterizing Rapists and Their Victims in Select Nigeria Newspapers",slug:"characterizing-rapists-and-their-victims-in-select-nigeria-newspapers",totalDownloads:448,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"psycho-social-aspects-of-human-sexuality-and-ethics",title:"Psycho-Social Aspects of Human Sexuality and Ethics",fullTitle:"Psycho-Social Aspects of Human Sexuality and Ethics"},signatures:"Oludayo Tade and Collins Udechukwu",authors:[{id:"316697",title:"Dr.",name:"Oludayo",middleName:null,surname:"Tade",slug:"oludayo-tade",fullName:"Oludayo Tade"},{id:"318220",title:"Dr.",name:"Collins",middleName:"Obinna",surname:"Udechukwu",slug:"collins-udechukwu",fullName:"Collins Udechukwu"}]},{id:"72050",title:"Political Gender Gap and Social Dominance Orientation",slug:"political-gender-gap-and-social-dominance-orientation",totalDownloads:206,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psycho-social-aspects-of-human-sexuality-and-ethics",title:"Psycho-Social Aspects of Human Sexuality and Ethics",fullTitle:"Psycho-Social Aspects of Human Sexuality and Ethics"},signatures:"Minou Ella Mebane, Antonio Aiello and Donata Francescato",authors:[{id:"149375",title:"Prof.",name:"Donata",middleName:null,surname:"Francescato",slug:"donata-francescato",fullName:"Donata Francescato"},{id:"261445",title:"Prof.",name:"Minou Ella",middleName:null,surname:"Mebane",slug:"minou-ella-mebane",fullName:"Minou Ella Mebane"},{id:"318392",title:"Prof.",name:"Antonio",middleName:null,surname:"Aiello",slug:"antonio-aiello",fullName:"Antonio Aiello"}]},{id:"54653",title:"Quality of Life, Well-Being and Social Policies in European Countries1",slug:"quality-of-life-well-being-and-social-policies-in-european-countries1",totalDownloads:877,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Ángel Carrasco‐Campos, Almudena Moreno and Luis‐Carlos\nMartínez",authors:[{id:"196212",title:"Prof.",name:"Almudena",middleName:null,surname:"Moreno Minguez",slug:"almudena-moreno-minguez",fullName:"Almudena Moreno Minguez"},{id:"196411",title:"Dr.",name:"Angel",middleName:null,surname:"Carrasco Campos",slug:"angel-carrasco-campos",fullName:"Angel Carrasco Campos"},{id:"196412",title:"Dr.",name:"Luis Carlos",middleName:null,surname:"Martínez Fernández",slug:"luis-carlos-martinez-fernandez",fullName:"Luis Carlos Martínez Fernández"}]},{id:"56529",title:"Well-being and Quality of Working Life of University Professors in Brazil",slug:"well-being-and-quality-of-working-life-of-university-professors-in-brazil",totalDownloads:1200,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Alessandro Vinicius de Paula and Ana Alice Vilas Boas",authors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"},{id:"196534",title:"Dr.",name:"Alessandro Vinicius",middleName:null,surname:"De Paula",slug:"alessandro-vinicius-de-paula",fullName:"Alessandro Vinicius De Paula"}]},{id:"54807",title:"Understanding the Concept of Life Quality within the Framework of Social Service Provision: Theoretical Analysis and a Case Study",slug:"understanding-the-concept-of-life-quality-within-the-framework-of-social-service-provision-theoretic",totalDownloads:864,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Zuzana Palovičová",authors:[{id:"196861",title:"Associate Prof.",name:"Zuzana",middleName:null,surname:"Palovicova",slug:"zuzana-palovicova",fullName:"Zuzana Palovicova"}]},{id:"73087",title:"Experiences of Sexual and Reproductive Healthcare Professionals Working with Migrant Women Living with Female Genital Cutting in Western Australia",slug:"experiences-of-sexual-and-reproductive-healthcare-professionals-working-with-migrant-women-living-wi",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"psycho-social-aspects-of-human-sexuality-and-ethics",title:"Psycho-Social Aspects of Human Sexuality and Ethics",fullTitle:"Psycho-Social Aspects of Human Sexuality and Ethics"},signatures:"Darlene Ndasi and Kwadwo Adusei-Asante",authors:[{id:"324900",title:"Dr.",name:"Kwadwo",middleName:null,surname:"Adusei-Asante",slug:"kwadwo-adusei-asante",fullName:"Kwadwo Adusei-Asante"},{id:"324932",title:"Ms.",name:"Darlene",middleName:null,surname:"Ndasi",slug:"darlene-ndasi",fullName:"Darlene Ndasi"}]},{id:"54833",title:"Professional Pride and Dignity? A Classic Grounded Theory Study among Social Workers",slug:"professional-pride-and-dignity-a-classic-grounded-theory-study-among-social-workers",totalDownloads:913,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Heidi Branta, Tina Jacobson and Aida Alvinius",authors:[{id:"145558",title:"Associate Prof.",name:"Aida",middleName:null,surname:"Alvinius",slug:"aida-alvinius",fullName:"Aida Alvinius"},{id:"199969",title:"BSc.",name:"Heidi",middleName:null,surname:"Branta",slug:"heidi-branta",fullName:"Heidi Branta"},{id:"199970",title:"BSc.",name:"Tina",middleName:null,surname:"Jacobson",slug:"tina-jacobson",fullName:"Tina Jacobson"}]},{id:"55349",title:"The Development of a Human Well-Being Index for the United States",slug:"the-development-of-a-human-well-being-index-for-the-united-states",totalDownloads:1483,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"J. Kevin Summers, Lisa M. Smith, Linda C. Harwell and Kyle D. Buck",authors:[{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers"},{id:"197486",title:"Ms.",name:"Lisa",middleName:null,surname:"Smith",slug:"lisa-smith",fullName:"Lisa Smith"},{id:"197487",title:"Ms.",name:"Linda",middleName:null,surname:"Harwell",slug:"linda-harwell",fullName:"Linda Harwell"},{id:"197488",title:"Dr.",name:"Kyle",middleName:null,surname:"Buck",slug:"kyle-buck",fullName:"Kyle Buck"}]}],onlineFirstChaptersFilter:{topicSlug:"social-psychology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/231253/lucrecia-llerena",hash:"",query:{},params:{id:"231253",slug:"lucrecia-llerena"},fullPath:"/profiles/231253/lucrecia-llerena",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()