Natural compounds, especially polyphenols have become a popular area of research mainly due to their apparent health benefits. Increasing the phenolic content of a diet, apart from its antioxidant benefit, has a beneficial effect on signaling molecules involved in carbohydrate and lipid metabolism. These effects could potentially protect against metabolic syndrome, a cluster of metabolic complications such as obesity, insulin resistance and type 2 diabetes that is characterized by a dysregulated carbohydrate, and lipid metabolism. Research continues to investigate various natural compounds for their amelioration of impaired signaling mechanisms that may lead to dysregulated metabolism to find means to improve the life expectancy of patients with metabolic syndrome. In this chapter, a systematic search through major databases such as MEDLINE/PubMed, EMBASE, and Google Scholar of literature reporting on the ameliorative potential of commonly investigated natural products that target skeletal muscle to ameliorate metabolic syndrome associated complications was conducted. The selected natural products that are discussed include apigenin, aspalathin, berberine, curcumin, epigallocatechin gallate, hesperidin, luteolin, naringenin, quercetin, resveratrol, rutin, and sulforaphane.
Part of the book: Muscle Cell and Tissue
The rapid rise in the prevalence of obesity and diabetes has significantly contributed to the increasing global burden of noncommunicable diseases. Insulin resistance is a major underpinning etiology of both obesity and type 2 diabetes. Insulin resistance is characterized by a reduced response of skeletal, liver, and fat tissues to the actions of insulin hormone. Although detailed mechanisms implicated in the development of insulin resistance remain plausible, skeletal muscles have been identified to play an integral role in the improvement of insulin sensitivity in the diseased state. The effective modulation of glucose and fatty acid metabolism in the skeletal muscle through exercise or by certain therapeutics has been associated with reversal of insulin resistance and amelioration of diabetes associated complications such as inflammation and oxidative stress. This chapter will briefly discuss the role of glucose and fatty acid metabolism in the development of insulin resistance in the skeletal muscle.
Part of the book: Muscle Cell and Tissue