\r\n\tThe objective of this book is to provide a state-of-the-art review of the use of timber in building construction from various perspectives, including manufacturing, fabrication, modeling, design, and construction of residential and other types of buildings. Of special interest will be contributions related to new developments in timber technologies, design, construction, testing, sustainability, LCA, building envelope, and the performance of timber buildings in natural and man-made hazard conditions.
",isbn:"978-1-83768-263-8",printIsbn:"978-1-83768-262-1",pdfIsbn:"978-1-83768-264-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"356565153fc7e43f1bf0cb7ba5e7b28a",bookSignature:"Prof. Ali M. Memari",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12057.jpg",keywords:"Wood, Lumber, Timber Industry, Home Building, Glue-Laminated Wood, Cross-Laminated Timber, Plywood, Fire Resistance, Sustainability, Fabrication, Panelized/Modular, Material Properties",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 31st 2022",dateEndSecondStepPublish:"June 28th 2022",dateEndThirdStepPublish:"August 27th 2022",dateEndFourthStepPublish:"November 15th 2022",dateEndFifthStepPublish:"January 14th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Memari is a Professor and Bernard and Henrietta Hankin Chair in Residential Building Construction in the Departments of Architectural Engineering and Civil and Environmental Engineering. During his 30 years of teaching in structural engineering, his research focused on the behavior of structural, architectural, and enclosure components of residential and commercial buildings under natural hazard loading and environmental conditions. He has published over 300 publications.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"252670",title:"Prof.",name:"Ali",middleName:null,surname:"M. Memari",slug:"ali-m.-memari",fullName:"Ali M. Memari",profilePictureURL:"https://mts.intechopen.com/storage/users/252670/images/system/252670.jpg",biography:"Dr. Memari is a Professor and Bernard and Henrietta Hankin Chair in Residential Building Construction in the Departments of Architectural Engineering and Civil and Environmental Engineering at Penn State, and Director of The Pennsylvania Housing Research Center. During his 30 years of teaching and research experience, he has taught various courses related to structural\r\nengineering. He has focused his research on full-scale laboratory testing characterization and evaluation of residential and commercial buildings with respect to structural, architectural, and envelope components under gravity and lateral loads that simulate natural hazards (earthquakes/wind-storms), as well as environmental effects involving building science aspects (heat transfer, air leakage and moisture transport) through building enclosure. He has over 300 publications, including papers in journals and conference proceedings, book chapters, edited books, magazine articles, and research reports.",institutionString:"Pennsylvania State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Pennsylvania State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71217",title:"Wood Adhesive Fillers Used during the Manufacture of Wood Panel Products",doi:"10.5772/intechopen.91280",slug:"wood-adhesive-fillers-used-during-the-manufacture-of-wood-panel-products",body:'
1. Introduction
Fillers are solid additives that are primarily used to lower the cost and give body to liquid adhesives or reduce undesired flow or overpenetration into wood. This leads to an improvement in properties of the adhesives and gives rise to new functions [1]. Fillers usually increase the rigidity of cured adhesives. They may also modify the coefficient of thermal expansion of a film to approximately that of the adjacent adherends. This can reduce thermal stresses in the joint generated during cooling following heat-curing conditions or when thermally cycled during service. Fillers, normally, are neutral or weakly alkaline compounds and do not chemically react with adhesives, curing agents, or other components in wood adhesive system.
2. Filler species
There are many kinds of adhesives for manufacturing of wood panel products, and the type and the amount of filler greatly affect its performance [2]. The choice of filler depends on the materials and application, making fillers one of the most important components of adhesives during the production of wood-based boards. Adding an appropriate filler to an adhesive can reduce the amount and cost of glue and also improve the performance of the adhesive. Commonly used adhesive fillers are organic, such as flour, soybean powder, wood powder, and bark powder or other agroindustrial wastes (Table 1), such as palm kernel and starch material, etc. In addition, inorganic materials such as metal powders, metal oxides, and minerals, have also been used as adhesive fillers, typically to improve compression strength and dimensional stability.
Types
Amounts (%)
Function
Main application in wood adhesive
Application fields
Flour, wood powder, soybean powder, bark powder
10–30
Decrease cost, increase ductile behavior, avoid overpenetration and heterogeneous spread
The types, amount, and function of fillers in wood adhesives.
According to their color, fillers can be divided into white fillers and color fillers. They can also be divided according to their preparation method into natural fillers and synthetic fillers. They can be divided according to their function into temperature-resistant fillers, conductive fillers, and anti-sink fillers. According to their particle sizes, they can be divided into natural fillers, ultra-fine fillers, and nano-scale fillers. According to their composition, they can be divided into compound fillers and mixture fillers.
3. The advantages of fillers for wood adhesives
The adhesive composition mainly includes a matrix material, curing agent, toughening agent, diluent, filler, and modifier. However, fillers are solid materials that do not chemically react with the adhesive component but can change its performance [3, 4]. The main functions are summarized in Table 1 and further discussed in this section.
3.1 Increase the mechanical properties of the adhesive
Many polymers have weak intermolecular interactions and low cohesive energies, so their mechanical properties are inferior to other materials. Fillers with an appropriate particle size can enhance the adhesive strength, and the active surface of filler particles can be used to cross-link several large molecular chains to form a network structure. When one molecular chain is stressed, the stress can be dispersed and transferred to other molecules through cross-linking. Even if one chain fractures, the other chains remain intact, and it is unlikely that the entire structure will immediately fracture, leading to a substantial improvement in the mechanical properties of adhesives. Commonly used fillers, such as flour, metal powders, and metal oxides, can improve the compression strength of adhesives and their dimensional stability. Adding carbon black, silica, or calcium carbonate into silicone and rubber glue can improve the tensile strength, hardness, and wear resistance, etc.
3.2 Give new functions of adhesives
Conductive and magnetic adhesives are obtained by the addition of silver powder and carbon-based iron powder into adhesives, respectively. The thermal conductivity of adhesives can be improved using copper powder, aluminum powder, alumina, and magnesium oxide as fillers. The thermal conductivity adhesives can be widely used in microelectronic assembly and bonding electronic products instead of spot welding. The magnetic adhesives can be improved production efficiency because of simple operation process in electrical machinery bonding field. In epoxy resins, zinc chromate and Zr(SiO3)2 can help retain strength and reduce water absorption. Flame retardant powders such as aluminum hydroxide can improve the flame retardancy of an adhesive. Some fillers can also improve the resistance of adhesive joints to moisture and heat aging and salt spray.
3.3 Reduce joint stress
Fillers can prevent local overheating near the bonding interface because the curing reaction is exothermic. In most cases, the curing shrinkage of wood adhesives often occurs during the glue bonding process, but filler can be used to adjust the shrinkage rate. The addition of wheat flour can reduce cracking, which is caused by curing shrinkage of urea-formaldehyde resins. The proper selection of filler can reduce the difference between the thermal expansion coefficient and the expansion rate between adhesives and bonded materials. Additionally, it can reduce the internal stress of joints, the thermal expansion coefficient, and curing shrinkage ratio of adhesives.
Colloids form during the curing process due to chemical reactions and cause volume shrinkage. Thermal shrinkage will also occur due to the different thermal expansion coefficient of the adhesive. These two types of shrinkage will produce internal stresses in the rubber layer, resulting in stress concentration, cracking, or joint damage of the rubber layer, which directly affects the service life of rubber joints. Filler can be used to adjust shrinkage during curing, reduce the difference of thermal expansion coefficients between the wood adhesive and the object being glued, and can also prevent cracks from extending. Thus, fillers can significantly improve the bonding strength, especially the shear strength at high temperatures.
3.4 Improve operation process
Fillers in adhesives can adjust the curing speed, prolong the pot life, and facilitate manufacturing. During plywood manufacturing, wheat flour added into urea-formaldehyde resin can increase the viscosity of an adhesive to prevent it from excessively penetrating into wood pores. Fillers can also improve the thixotropy of liquid glues to control their fluidity, adjust the curing speed, extend the service life, and facilitate operation and construction.
Normally, adhesive bonding strength, adhesion, and heat resistance significantly increase when a certain amount of filler is added, especially polar fillers, such as metal powders, metal oxides, and minerals. This reduces adhesive curing shrinkage and coefficients of thermal expansion.
The addition of asbestos wool and glass fiber has been shown to improve the impact strength. Quartz, porcelain, and iron powders can increase the hardness and compression resistance of adhesives, while graphite and talcum powders can improve wear resistance. Alumina and titanium dioxide can increase the bonding strength. Flour is the most widely used filler in wood adhesives in the wood panel industry and is used to improve the mechanical properties, shrinkage, expansion behaviors, and other physical performances at the glue-wood interface. Most importantly, the use of flour reduces the cost.
An appropriate proportion of filler should be used to provide the desired function and to ensure the overall superior performance of an adhesive. A high proportion of filler will increase the viscosity of the adhesive, making it difficult to control and stir, leading to inferior wettability and a low bonding strength. It may also reduce the de-lamination strength and increase wood failure. Overall, the purpose of fillers is to enhance the physical and mechanical properties of wood-based panels.
Filler selection should meet the following requirements:
Non-toxic
Unreactive toward other components in the wood adhesive system
In a specific physical state, such as uniform particle size
Low-cost, a wide range of sources, and convenient processing
Should not contain moisture, grease, or harmful gases; moisture absorption is not easily changed
Easily dispersed and has good lubrication with adhesive
Should meet the specific requirements of the adhesive, such as electrical conductivity, heat resistance, etc.
The selection of appropriate fillers in wood adhesive systems is important because different fillers have different effects, as show in Table 1 and Figure 1.
Figure 1.
The function and selection of fillers.
4. Applications of fillers
There are many different types of fillers, which have different applications. The most widely used fillers include natural calcium carbonate, barite powder, quartz powder, talc powder, kaolin, mica powder, attapulgite (aluminum-silicon-magnesite containing water), and flours of different renewable biomaterials.
Nanomaterials have quantum size effects, small size effects, surface effects, and macroscopic quantum effects. The addition of small amounts of nanoscale powders into an adhesive can significantly increase its viscosity, improve the bonding strength, and prevent caking. For example, it was found that nanoscale calcium carbonate prolonged the curing time of resin and the content of free formaldehyde decreased as the amount of calcium carbonate increased. Nanoscale montmorillonite was also shown to increase mechanical properties and reduce formaldehyde emission [5, 6, 7].
4.1 Calcium carbonate
Calcium carbonate (CaCO3) is an odorless white powder and is one of the most widely used fillers [8]. Lightweight precipitated calcium carbonate can be synthesized by a chemical method with a whiteness of 90% and a relative density of 2.6 g/cm3. Heavy calcium carbonate is composed of natural calcite, limestone, chalk, and shells, which are ground to certain fineness by a mechanical method.
In the adhesives industry, calcium carbonate is widely used as a filler because of its low price, non-toxicity, white color, abundant resources, easy mixing in formulas, and stable performance. The addition of nanoscale calcium carbonate to an adhesive can enhance the mechanical strength and increase the transparency, thixotropy, and spreading smoothness. Additionally, the adhesive easily provides a shielding effect, leading to an anti-UV aging effect, as well as an improvement in its mechanical strength.
4.2 Kaolin
Kaolin, usually called clay or china clay, has a main mineral component of kaolinite, which is a variety of crystal rock with the molecular formula Al2O3·SiO2·nH2O. Kaolinite has a flake structure and can be divided into calcined kaolin and washed kaolin. Calcined kaolin generally has a higher oil absorption, opacity, porosity, hardness, and whiteness than washed kaolin.
Kaolin normally forms an unstable structure in water because of its charge distribution, with positively charged sheet edges and a negatively charged surface. If the kaolin dosage is high, it will form a gel, preventing an adhesive from flowing [9]. Clay is sometimes added to epoxy resins to thicken or modify coefficients of thermal expansion.
4.3 Renewable bio-based materials
Flour and other renewable bio-based materials include wood powder, starch, protein, and lignocellulose as well as the agroindustrial wastes. Adding a small amount of starch into wood adhesives can significantly increase the viscosity and effectively improve the solid content and initial viscosity of the adhesive [10, 11, 12]. Oxidized starch and palm kernel can also neutralize excess acidic substances in the rubber layer, prevent excessive decomposition of the cured rubber layer, and improve the aging resistance of urea-formaldehyde and melamine-urea-formaldehyde resin adhesives [13, 14]. It was also concluded that the stability and initial viscosity of a resin, its pre-compression behavior, and the bonding strength of adhesive products were improved. Walnut shell flour is a filler that is incorporated in urea or resorcinol adhesives to improve spreading or reduce penetration into open wood pores [15, 16, 17]. In addition, sorghum flour, protein, bark, and lignin, these kinds of agricultural, forestry, and industrial wastes as fillers have been used in plywood adhesives system [18, 19, 20, 21].
In general, different fillers have different advantages. Although kaolin has better properties than flour and calcium carbonate, flour is renewable and sustainable. Most importantly, it is much cheaper, resulting in broader applications in the wood panel industry.
5. Conclusions
Fillers are low-cost additives for wood adhesives during the manufacture of wood composites. They undergo no chemical reactions with the components of wood adhesive systems and can improve some properties or even provide new functions. In the wood panel industry, almost all factories use kaolin clay or flour blended with other components in wood adhesive systems to reduce undesired flow and overpenetration into wood pores in the glue interphase. With the development of society, low-carbon economy, energy conservation, and environmental issues will drive future adhesive developments. Thus, we can predict that future fillers will be functional, differentiated, refined, nanosized, dust-free, and environmentally benign.
Acknowledgments
This work is supported by the following grants and programs: (1) National Natural Science Foundation of China (NSFC 31971595, 31760187); (2) Yunnan Provincial Applied and Basic Research Grants (2017FB060); (3) “Ten-thousand Program”-youth talent support program, and (4) Yunnan Provincial Reserve Talents for Middle & Young Academic and Technical Leaders.
Conflict of interest
There is no conflict of interest in this field.
\n',keywords:"fillers, wood adhesives, performances, advantages, applications",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/71217.pdf",chapterXML:"https://mts.intechopen.com/source/xml/71217.xml",downloadPdfUrl:"/chapter/pdf-download/71217",previewPdfUrl:"/chapter/pdf-preview/71217",totalDownloads:641,totalViews:0,totalCrossrefCites:3,totalDimensionsCites:3,totalAltmetricsMentions:0,introChapter:null,impactScore:1,impactScorePercentile:65,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"September 29th 2019",dateReviewed:"January 21st 2020",datePrePublished:"February 24th 2020",datePublished:"February 3rd 2021",dateFinished:"February 24th 2020",readingETA:"0",abstract:"During the manufacture of wood panel products, fillers are commonly added to wood adhesives to lower costs and give body to liquid adhesives and also reduce undesired flow or overpenetration into wood. The fillers used in wood adhesives are often neutral or weakly alkaline compounds that typically require no chemical reaction with curing agent, or other components. Fillers are mixed with other components prior to the application of resin on the surface of wood, wood veneer, or wood flakes. Fillers can be either organic (e.g., rye, wheat, walnut shell, and wood flours), or inorganic (e.g., calcium carbonate, calcium sulfate, aluminum oxide, or bentonites). Overall, fillers are low-cost materials for improving the properties of wood or even give it new functions.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/71217",risUrl:"/chapter/ris/71217",book:{id:"10045",slug:"fillers"},signatures:"Long Cao, Xiaojian Zhou and Guanben Du",authors:[{id:"289729",title:"Dr.",name:"Xiaojian",middleName:null,surname:"Zhou",fullName:"Xiaojian Zhou",slug:"xiaojian-zhou",email:"xiaojianzhou@hotmail.com",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bUyDSQA0/Profile_Picture_1645110739079",institution:{name:"Southwest Forestry University",institutionURL:null,country:{name:"China"}}},{id:"291315",title:"Prof.",name:"Guanben",middleName:null,surname:"Du",fullName:"Guanben Du",slug:"guanben-du",email:"gongben9@hotmail.com",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291315/images/system/291315.jpg",institution:{name:"Southwest Forestry University",institutionURL:null,country:{name:"China"}}},{id:"315365",title:"Dr.",name:"Long",middleName:null,surname:"Cao",fullName:"Long Cao",slug:"long-cao",email:"cc_caolong@163.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Southwest Forestry University",institutionURL:null,country:{name:"China"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Filler species",level:"1"},{id:"sec_3",title:"3. The advantages of fillers for wood adhesives",level:"1"},{id:"sec_3_2",title:"3.1 Increase the mechanical properties of the adhesive",level:"2"},{id:"sec_4_2",title:"3.2 Give new functions of adhesives",level:"2"},{id:"sec_5_2",title:"3.3 Reduce joint stress",level:"2"},{id:"sec_6_2",title:"3.4 Improve operation process",level:"2"},{id:"sec_8",title:"4. Applications of fillers",level:"1"},{id:"sec_8_2",title:"4.1 Calcium carbonate",level:"2"},{id:"sec_9_2",title:"4.2 Kaolin",level:"2"},{id:"sec_10_2",title:"4.3 Renewable bio-based materials",level:"2"},{id:"sec_12",title:"5. Conclusions",level:"1"},{id:"sec_13",title:"Acknowledgments",level:"1"},{id:"sec_16",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Dunky M. Adhesives in the wood industry. Handbook of Adhesive Technology. 2003;2:50'},{id:"B2",body:'Frihart CR. Wood Adhesion and Adhesives. Boca Raton, FL: CRC Press; 2005'},{id:"B3",body:'Dunky M, Pizzi A. Wood adhesives. Adhesion Science and Engineering. Elsevier Science BV; 2002. pp. 1039-1103'},{id:"B4",body:'Qiao L, Easteal AJ, Bolt CJ, et al. The effects of filler materials on poly (vinyl acetate) emulsion wood adhesives. Pigment & Resin Technology. 1999;28(6):326-330'},{id:"B5",body:'Lei H, Du G, Pizzi A, Celzard A. Influence of nanoclay on urea-formaldehyde resins for wood adhesives and its model. Journal of Applied Polymer Science. 2008;109(4):2442-2451'},{id:"B6",body:'Zhou X, Pizzi A, Du G. The effect of nanoclay on melamine-urea-formaldehyde wood adhesives. Journal of Adhesion Science and Technology. 2012;26(10-11):1341-1348'},{id:"B7",body:'Ghosh PK, Patel A, Kumar K. Adhesive joining of copper using nano-filler composite adhesive. Polymer. 2016;87:159-169'},{id:"B8",body:'Liu D, Chen H, Chang PR, et al. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresource Technology. 2010;101(15):6235-6241'},{id:"B9",body:'Zhang B, Chang Z, Li J, et al. Effect of kaolin content on the performances of kaolin-hybridized soybean meal-based adhesives for wood composites. Composites Part B: Engineering. 2019;173:106919'},{id:"B10",body:'Wang Z, Li Z, Gu Z, et al. Preparation, characterization and properties of starch-based wood adhesive. Carbohydrate Polymers. 2012;88(2):699-706'},{id:"B11",body:'Zhang Y, Ding L, Gu J, et al. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydrate Polymers. 2015;115:32-37'},{id:"B12",body:'Imam SH, Gordon SH, Mao L, et al. Environmentally friendly wood adhesive from a renewable plant polymer: Characteristics and optimization. Polymer Degradation and Stability. 2001;73(3):529-533'},{id:"B13",body:'Zhao X, Peng L, Wang H, et al. Environment-friendly urea-oxidized starch adhesive with zero formaldehyde-emission. Carbohydrate Polymers. 2018;181:1112-1118'},{id:"B14",body:'Ong HR, Khan MMR, Prasad DMR, et al. Palm kernel meal as a melamine urea formaldehyde adhesive filler for plywood applications. International Journal of Adhesion and Adhesives. 2018;85:8-14'},{id:"B15",body:'Khanjanzadeh H, Pirayesh H, Sepahvand S. Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO 2. Journal of the Indian Academy of Wood Science. 2014;11(1):15-20'},{id:"B16",body:'Pizzi A. Resorcinol adhesives. Handbook of Adhesive Technology. Taylor & Francis Group, LLC; 2003:599-613'},{id:"B17",body:'Zhou X, Pizzi A. Pine tannin based adhesive mixes for plywood. International Wood Products Journal. 2014;5(1):27-32'},{id:"B18",body:'Hojilla-Evangelista MP, Bean SR. Evaluation of sorghum flour as extender in plywood adhesives for sprayline coaters or foam extrusion. Industrial Crops and Products. 2011;34(1):1168-1172'},{id:"B19",body:'Kang H, Wang Z, Wang Y, et al. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Industrial Crops and Products. 2019;133:10-17'},{id:"B20",body:'Aydin I, Demirkir C, Colak S, et al. Utilization of bark flours as additive in plywood manufacturing. European Journal of Wood and Wood Products. 2017;75(1):63-69'},{id:"B21",body:'Olivares M, Aceituno H, Neiman G, et al. Lignin-modified phenolic adhesives for bonding radiata pine plywood. Forest Products Journal. 1995;45(1):63'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Long Cao",address:null,affiliation:'
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, China
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, China
'}],corrections:null},book:{id:"10045",type:"book",title:"Fillers",subtitle:null,fullTitle:"Fillers",slug:"fillers",publishedDate:"February 3rd 2021",bookSignature:"Emmanuel Flores Huicochea",coverURL:"https://cdn.intechopen.com/books/images_new/10045.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-436-0",printIsbn:"978-1-83962-435-3",pdfIsbn:"978-1-83962-437-7",reviewType:"peer-reviewed",numberOfWosCitations:0,isAvailableForWebshopOrdering:!0,editors:[{id:"206705",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1370"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"71979",type:"chapter",title:"Fillers in Wood Adhesives",slug:"fillers-in-wood-adhesives",totalDownloads:393,totalCrossrefCites:0,signatures:"Abbas Hasan Faris",reviewType:"peer-reviewed",authors:[{id:"225720",title:"Dr.",name:"Abbas Hasan",middleName:null,surname:"Faris",fullName:"Abbas Hasan Faris",slug:"abbas-hasan-faris"}]},{id:"71217",type:"chapter",title:"Wood Adhesive Fillers Used during the Manufacture of Wood Panel Products",slug:"wood-adhesive-fillers-used-during-the-manufacture-of-wood-panel-products",totalDownloads:641,totalCrossrefCites:3,signatures:"Long Cao, Xiaojian Zhou and Guanben Du",reviewType:"peer-reviewed",authors:[{id:"289729",title:"Dr.",name:"Xiaojian",middleName:null,surname:"Zhou",fullName:"Xiaojian Zhou",slug:"xiaojian-zhou"},{id:"291315",title:"Prof.",name:"Guanben",middleName:null,surname:"Du",fullName:"Guanben Du",slug:"guanben-du"},{id:"315365",title:"Dr.",name:"Long",middleName:null,surname:"Cao",fullName:"Long Cao",slug:"long-cao"}]},{id:"72857",type:"chapter",title:"Fillers for Packaging Applications",slug:"fillers-for-packaging-applications",totalDownloads:422,totalCrossrefCites:0,signatures:"Giovani Otavio Rissi",reviewType:"peer-reviewed",authors:[{id:"320056",title:"M.Sc.",name:"Giovani",middleName:null,surname:"Rissi",fullName:"Giovani Rissi",slug:"giovani-rissi"}]},{id:"71582",type:"chapter",title:"Towards Traditional Carbon Fillers: Biochar-Based Reinforced Plastic",slug:"towards-traditional-carbon-fillers-biochar-based-reinforced-plastic",totalDownloads:774,totalCrossrefCites:0,signatures:"Mattia Bartoli, Mauro Giorcelli, Pravin Jagdale and Massimo Rovere",reviewType:"peer-reviewed",authors:[{id:"39628",title:"Dr.",name:"Mauro",middleName:null,surname:"Giorcelli",fullName:"Mauro Giorcelli",slug:"mauro-giorcelli"},{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",fullName:"Mattia Bartoli",slug:"mattia-bartoli"},{id:"319032",title:"Dr.",name:"Pravin",middleName:null,surname:"Jagdale",fullName:"Pravin Jagdale",slug:"pravin-jagdale"},{id:"319033",title:"Dr.",name:"Massimo",middleName:null,surname:"Rovere",fullName:"Massimo Rovere",slug:"massimo-rovere"}]},{id:"72260",type:"chapter",title:"POSS Fillers as a Factor Influencing on Viscoelastic Properties, Crystallization, and Thermo-Oxidative Degradation of Poly(Lactic Acid)-Epoxidized Natural Rubber PLA/ENR Blend",slug:"poss-fillers-as-a-factor-influencing-on-viscoelastic-properties-crystallization-and-thermo-oxidative",totalDownloads:611,totalCrossrefCites:0,signatures:"Magdalena Lipińska, Klaudia Toczek and Magdalena Stefaniak",reviewType:"peer-reviewed",authors:[{id:"142553",title:"Dr.",name:"Magdalena",middleName:null,surname:"Lipińska",fullName:"Magdalena Lipińska",slug:"magdalena-lipinska"},{id:"316832",title:"Dr.",name:"Klaudia",middleName:"Klara",surname:"Toczek",fullName:"Klaudia Toczek",slug:"klaudia-toczek"},{id:"316833",title:"MSc.",name:"Magdalena",middleName:null,surname:"Stefaniak",fullName:"Magdalena Stefaniak",slug:"magdalena-stefaniak"}]}]},relatedBooks:[{type:"book",id:"6202",title:"Applications of Modified Starches",subtitle:null,isOpenForSubmission:!1,hash:"9d5fc4b642d47ae13c608ceaa38cf554",slug:"applications-of-modified-starches",bookSignature:"Emmanuel Flores Huicochea and Rodolfo Rendón Villalobos",coverURL:"https://cdn.intechopen.com/books/images_new/6202.jpg",editedByType:"Edited by",editors:[{id:"206705",title:"Dr.",name:"Emmanuel",surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"61507",title:"Introductory Chapter: Starch Modifications",slug:"introductory-chapter-starch-modifications",signatures:"Emmanuel Flores Huicochea",authors:[{id:"206705",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Flores Huicochea",fullName:"Emmanuel Flores Huicochea",slug:"emmanuel-flores-huicochea"}]},{id:"58124",title:"Chemical Modification of Starch with Synthetic",slug:"chemical-modification-of-starch-with-synthetic",signatures:"Aurelio Ramírez Hernández",authors:[{id:"207871",title:"Dr.",name:"Aurelio",middleName:null,surname:"Ramirez Hernández",fullName:"Aurelio Ramirez Hernández",slug:"aurelio-ramirez-hernandez"}]},{id:"59112",title:"Evaluation of Styrene Content over Physical and Chemical Properties of Elastomer/TPS-EVOH/Chicken Feather Composites",slug:"evaluation-of-styrene-content-over-physical-and-chemical-properties-of-elastomer-tps-evoh-chicken-fe",signatures:"María Leonor Méndez-Hernández, José Luis Rivera-Armenta, Zahida\nSandoval-Arellano, Beatriz Adriana Salazar-Cruz and María Yolanda\nChavez-Cinco",authors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"171043",title:"Dr.",name:"Beatriz Adriana",middleName:null,surname:"Salazar-Cruz",fullName:"Beatriz Adriana Salazar-Cruz",slug:"beatriz-adriana-salazar-cruz"},{id:"186467",title:"MSc.",name:"Maria Yolanda",middleName:null,surname:"Chavez-Cinco",fullName:"Maria Yolanda Chavez-Cinco",slug:"maria-yolanda-chavez-cinco"},{id:"186468",title:"Dr.",name:"Maria Leonor",middleName:null,surname:"Mendez-Hernandez",fullName:"Maria Leonor Mendez-Hernandez",slug:"maria-leonor-mendez-hernandez"},{id:"218272",title:"Dr.",name:"Zahida",middleName:null,surname:"Sandoval-Arellano",fullName:"Zahida Sandoval-Arellano",slug:"zahida-sandoval-arellano"}]},{id:"59420",title:"Production and Characterization of Starch Nanoparticles",slug:"production-and-characterization-of-starch-nanoparticles",signatures:"Normane Mirele Chaves Da Silva, Fernando Freitas de Lima, Rosana\nLopes Lima Fialho, Elaine Christine de Magalhães Cabral\nAlbuquerque, José Ignacio Velasco and Farayde Matta Fakhouri",authors:[{id:"214385",title:"Ph.D.",name:"Farayde",middleName:"Matta",surname:"Fakhouri",fullName:"Farayde Fakhouri",slug:"farayde-fakhouri"},{id:"214387",title:"MSc.",name:"Normane",middleName:null,surname:"Chaves",fullName:"Normane Chaves",slug:"normane-chaves"},{id:"214388",title:"Dr.",name:"Rozanna",middleName:null,surname:"Fialho",fullName:"Rozanna Fialho",slug:"rozanna-fialho"},{id:"214390",title:"Dr.",name:"Elaine",middleName:null,surname:"Albuquerque",fullName:"Elaine Albuquerque",slug:"elaine-albuquerque"},{id:"239226",title:"Dr.",name:"Fernando",middleName:null,surname:"Freitas De Lima",fullName:"Fernando Freitas De Lima",slug:"fernando-freitas-de-lima"}]},{id:"57456",title:"Aspects on Starches Modified by Ionizing Radiation Processing",slug:"aspects-on-starches-modified-by-ionizing-radiation-processing",signatures:"Mirela Brașoveanu and Monica-Roxana Nemțanu",authors:[{id:"12480",title:"Dr.",name:"Monica",middleName:"Roxana",surname:"Nemtanu",fullName:"Monica Nemtanu",slug:"monica-nemtanu"},{id:"12741",title:"Dr.",name:"Mirela",middleName:null,surname:"Brasoveanu",fullName:"Mirela Brasoveanu",slug:"mirela-brasoveanu"}]}]}],publishedBooks:[{type:"book",id:"3683",title:"Engineering the Future",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"engineering-the-future",bookSignature:"Laszlo Dudas",coverURL:"https://cdn.intechopen.com/books/images_new/3683.jpg",editedByType:"Edited by",editors:[{id:"135546",title:"Prof.",name:"Laszlo",surname:"Dudas",slug:"laszlo-dudas",fullName:"Laszlo Dudas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6306",title:"Additive Manufacturing of High-performance Metals and Alloys",subtitle:"Modeling and Optimization",isOpenForSubmission:!1,hash:"0e08cc35cef3caf389096ca4b999742f",slug:"additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/6306.jpg",editedByType:"Edited by",editors:[{id:"178616",title:"Prof.",name:"Igor",surname:"Shishkovsky",slug:"igor-shishkovsky",fullName:"Igor Shishkovsky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10045",title:"Fillers",subtitle:null,isOpenForSubmission:!1,hash:"aac44d6491e740af99bec2f62aa05883",slug:"fillers",bookSignature:"Emmanuel Flores Huicochea",coverURL:"https://cdn.intechopen.com/books/images_new/10045.jpg",editedByType:"Edited by",editors:[{id:"206705",title:"Dr.",name:"Emmanuel",surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10974",title:"Advanced Additive Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"1f3b2395daae45f1da131473c2ea35c4",slug:"advanced-additive-manufacturing",bookSignature:"Igor V. Shishkovsky",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg",editedByType:"Edited by",editors:[{id:"174257",title:"Prof.",name:"Igor V.",surname:"Shishkovsky",slug:"igor-v.-shishkovsky",fullName:"Igor V. Shishkovsky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6737",title:"Powder Technology",subtitle:null,isOpenForSubmission:!1,hash:"65211e3ea1db91e795908df350115d1f",slug:"powder-technology",bookSignature:"Alberto Adriano Cavalheiro",coverURL:"https://cdn.intechopen.com/books/images_new/6737.jpg",editedByType:"Edited by",editors:[{id:"201848",title:"Dr.",name:"Alberto Adriano",surname:"Cavalheiro",slug:"alberto-adriano-cavalheiro",fullName:"Alberto Adriano Cavalheiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"8753",title:"Tannins",subtitle:"Structural Properties, Biological Properties and Current Knowledge",isOpenForSubmission:!1,hash:"d18f8d68a470cabaa124ad01ea455859",slug:"tannins-structural-properties-biological-properties-and-current-knowledge",bookSignature:"Alfredo Aires",coverURL:"https://cdn.intechopen.com/books/images_new/8753.jpg",editedByType:"Edited by",editors:[{id:"175895",title:"Dr.",name:"Alfredo",surname:"Aires",slug:"alfredo-aires",fullName:"Alfredo Aires"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10045",title:"Fillers",subtitle:null,isOpenForSubmission:!1,hash:"aac44d6491e740af99bec2f62aa05883",slug:"fillers",bookSignature:"Emmanuel Flores Huicochea",coverURL:"https://cdn.intechopen.com/books/images_new/10045.jpg",editedByType:"Edited by",editors:[{id:"206705",title:"Dr.",name:"Emmanuel",surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"81315",title:"Available Technologies for Wastewater Treatment",doi:"10.5772/intechopen.103661",slug:"available-technologies-for-wastewater-treatment",body:'
1. Introduction
Wastewater is produced as a result of human and industrial activities. Different kinds of firms are emerging because of ever-changing needs and demands, and as a response, numerous new pollutants are deposited in wastewater, necessitating the development of advanced treatment techniques. To manage ever-changing wastewater discharges, advanced methods are essential, and there is always a connection between water and energy. Although it is impossible to completely eliminate wastewater formation because no business is 100% efficient, however, it is feasible to develop novel and improve existing wastewater treatment and reuse methods to satisfy water demand. Moreover, water reuse has an enormous prospective for replenishing water resource portfolios that are already overburdened.
Since wastewater treatment and reuse are linked to public health, they are extremely important. The existence of pathogenic organisms and polluted substances in wastewater presents the possibility of harmful health effects where contact, inhalation, or ingestion of substance or microbiological elements of health concern occurs. The impact of several factors (such as pH, temperature, colour, and particle matter) and chemical components (cations, anions, and heavy metals) on human health have already been proven, and acceptable thresholds have been set. However, if industrial emission comprises a major portion of the wastewater, the influence of organic elements in treated water utilized for non-potable activities requires investigation [1]. Furthermore, while modern technologies can assist in reducing energy consumption and improving reliability, the difficulties in human understanding can be even more worrisome. Past and contemporary proof of disease carried by water (such as cholera, typhoid, malaria, dengue fever, and anaemia) has sparked public debate about the safety of reusing water [2]. On-line sensors, membranes, and enhanced oxidation mechanisms are examples of sophisticated technology that can aid to alleviate this impression. Nevertheless, a clearer knowledge of the processes of reuse and the qualities of reused water in comparison to freshwater resources will lead to a more favorable public opinion.
Wastewater treatment is an eco-friendly process because it protects the ecosystem by releasing less contamination; it employs sustainable resources; it offers the opportunity for unused products to be recycled, and it manages leftover wastes in a more biologically acceptable manner. The features and kinds of contaminants contained in the water, as well as the anticipated use of treated water, influence the choice of treatment technique. Activated sludge mechanisms and anaerobic digestion are century-old methods that continue to work well and have become the treatment of choice [3]. Emerging pollutants in wastewater and rising wastewater loads in water bodies necessitate immediate studies in this field to provide safe and clean water while also ensuring freshwater supplies. With this goal in mind, this chapter focuses on research into the present and emerging wastewater treatment and reuse technologies while highlighting their limitations and prospects [4].
2. Wastewater treatment technologies
Physical, chemical, biological, and combined technologies are commonly used in wastewater treatment facilities. Primary, secondary, and tertiary treatment procedures make up a conventional wastewater treatment plant (WWTP). Primary processes consist of screening, filtration, centrifugation, sedimentation, coagulation, and flotation. Biological treatment, which can be oxic or anoxic, is the most common secondary procedure while oxidation, precipitation, reverse osmosis, electrolysis, and electrodialysis are examples of tertiary treatment. Advanced oxidation processes (AOPs), ion exchange, ultra and nanofiltration, adsorption/biosorption, and advanced biological treatment combining algae, bacteria, and fungi are all emerging treatment methods that offer healthy and clean treated water [3].
2.1 Physical wastewater treatment technologies
Physical methods, in which physical forces are utilized to remove contaminants, were among the first wastewater treatment technologies used. They are still used in most wastewater treatment process flow systems. These methods are typically employed when water is heavily polluted. The most often used physical wastewater treatment methods are:
2.1.1 Screening, filtration, and centrifugal separation
The first phase in a wastewater treatment operation is screening. The purpose of screening is to eliminate solid waste from wastewater, and it is applied to remove items such as faecal solids, fibre, cork, hair, fabric, kitchen trash, wood, paper, cork, and so on. As a result, different-sized screens are utilized, the size of which is dictated by the requirement, i.e. the size of the particles in the wastewater.
In the filtering process, water is filtered in via a substance having fine holes. This is usually done with a set-up having pore diameters ranging from 0.1 to 0.5 mm. It is used to remove suspended particles, greases, oils, germs, and other contaminants. Membranes and cartridges are examples of filters that can be employed. Filtration can remove particles smaller than 100 mg l–1, as well as oil smaller than 25 mg l–1, reducing it by up to 99%. For water purification, the filtering process is used. Filtration water is utilized in ion exchange, adsorption, and membrane separation processes. Furthermore, filtration devices create potable water [5, 6].
To remove suspended noncolloidal particles, centrifugal separation is performed (size up to 1 mm). Solids (sludges) are separated and released after the wastewater is put to centrifugal devices and rotated at different speeds. Suspended solids segregate to a degree proportional to their densities. Furthermore, the centrifugal machine’s speed is also important for the removal of suspended materials. Oil and grease separation, as well as source reduction, are examples of applications.
2.1.2 Sedimentation and gravity separation
This process removes suspended particles, grits, and silts by leaving water undisturbed/semi-disturbed in various types of tanks for varied time intervals. Under the pull of gravity, the suspended solids settle [5, 6, 7, 8]. The size and density of the solids, as well as the velocity of the water if it is moving, determine the settling time. To speed up the sedimentation process, alums are occasionally utilized. Gravity separation alone can remove up to 60% of suspended particles. Sedimentation is normally carried out before the application of standard treatment methods. It’s a cost-effective way to treat waste from the paper and refinery industries. Water is generated for membrane processes, ion exchange, industrial water supply, using this technology. Source reduction is another application of technology.
2.1.3 Coagulation
Non-settleable solids are allowed to settle when suspended solids do not settle down through sedimentation or gravity. Coagulation is the term for this process [5, 7]. It is possible to employ alum, starch, ferrous minerals, aluminum salts, and activated silica. Coagulants made of non-ionic polymers, anionic polymers, and synthetic cationic polymers are also effective, but they are usually more expensive than natural coagulants. The most essential governing parameters in the coagulation process are temperature, pH, and contact time. Specific coagulants are added to biological treatment units to remove bacteria and other organics that may be floating in the water. It’s the most significant part of a wastewater treatment unit, and it’s used for a variety of purposes, including wastewater treatment, recycling, and pollution removal.
2.1.4 Flotation
A conventional water treatment facility’s flotation is a typical and necessary component. Flotation removes suspended particles, greases, oils, biological materials, and other contaminants by attaching them to air or gas [5, 9]. The solids bind to the gas or air and create agglomerates, which float to the water’s surface and can be skimmed off easily. Alum, activated silica, and other substances enhance the flotation process. The flotation process is aided by compressed air flowing through the water. Electro-flotation (electro-flocculation) has been utilized for recycling and water treatment for a long time. This method may remove up to 75% of suspended particles while also eliminating up to 95% of grease and oil. It’s a promising treatment method for paper and refinery sectors [5].
2.1.5 Membrane technologies of wastewater treatment
Over the last two decades, as an emerging wastewater treatment approach, membrane technology has evolved into a substantial separation technique. The water world has been looking for new solutions as regulatory limits and esthetic criteria for consumer water quality have continued to progress. Membrane technology is an example of a novel technology. Membranes are employed as filters in separation processes in a variety of applications in this technology. Adsorption, sand filters, and ion exchangers are just a few of the technologies they can replace. Water filtration (covering desalination) and purification (such as groundwater and wastewater) are major applications of this technology, as are sectors such as biotechnology and food & beverage [10, 11]. Table 1 illustrates the pore size different membranes technologies ranges.
Membrane process
Transmembrane pressure (kPa)
Pore size (nm)
Removable components
Microfiltration
100–200
100–1000
Suspended solids, bacteria
Ultrafiltration
200–1000
1–100
Macromolecules, viruses, proteins
Nanofiltration
1000–3000
0.5–5
Micropollutants, bivalent ions
Reverse-osmosis
3500–10,000
<1
Monovalent ions, hardness
Table 1.
Pressure-driven membrane process.
2.1.5.1 Ultrafiltration (UF)
Ultrafiltration has been utilized to remediate a wide range of waterways around the world. According to reports, surface waters, including lake waters, rivers, and reservoirs, have been employed in 50% of UF membrane plants. This technology has been used to treat municipal drinking water for over a decade [12]. UF pores are typically between 0.01 and 0.05 mm (roughly 0.01 mm) in diameter or less. Larger organic macromolecules can be retained by UF membranes. They used to be defined by a molecular weight cut-off (MWCO) rather than a definite pore size [13]. Since the osmotic pressure of the feed solution is low, hydrostatic pressures in UF are typically in the range of 2–10 bar. The operation of a pressure-driven UF process can be separated into three distinct pressure ranges based on the relationship of permeate flow on applied pressure (i) linearly increasing flux (sufficiently low), (ii) intermediate, (iii) and limiting flux (sufficiently high).
Even though its concentration polarization layer has not formed appreciably in the linearly increasing flux pressure range, the membrane is the only source of permeate flux resistance. Permeate flux in the limiting flux pressure range, on the other hand, is unaffected by the applied pressure. The process performance is primarily determined by these boundary layer phenomena, just as it is in MF [14]. Water and wastewater can be treated in a variety of ways using the UF process, including the manufacture of ultra-pure water for the electronics industry, COD levels are decreasing in maize starch plants, chemical treatment of groundwater combined with selective removal of dissolved hazardous metals, the dairy industry’s whey treatment, wine, or fruit juice clarification.
The UF technology has several benefits such as perfect pore size range thus can be applied for the separation of most of the feed components, low energy usage owing to the unavailability of phase transition during separation, and simple and compact design makes it simple to use. In addition, for temperature-sensitive culinary, biological, and pharmaceutical applications, the most advanced membrane separation technology is UF. However, the application of this technology is faced with some drawbacks including an inability to desalinate saltwater because it cannot isolate dissolved salts or low molecular weight species. UF is ineffective at separating macromolecular mixtures; it can only be efficient if the species have a molecular weight difference of 10 times or more.
2.1.5.2 Microfiltration (MF)
Microfiltration is a pressure-driven membrane technology that can retain particles of molecular weight greater than 100 kDa and a diameter smaller than 1000 nm. The membrane pore size determines the separation or retention capacities. MF membrane pore size spans from 100 nm to 10,000 nm. Because the MF pore size is large, the separation pressure is low, ranging from 10 kPa to 300 kPa. Suspended particles, sediments, algae, protozoa, and bacteria are all separated with MF. Furthermore, the separation method is impractical since particles smaller than the pore size pass readily while larger particles are rejected. Darcy’s law describes volume flow through MF membranes, where the applied pressure (ΔP) is directly proportional to the flux, J through the membrane:
J=A.ΔPE1
Where permeability is a constant A containing structural elements like pore size distribution and porosity. MF can be utilized in a variety of industrial settings, where particles with a diameter > 0.1 mm must be controlled in a suspension. The most fundamental operations still rely on cartridge-based dead-end filtering. However, crossflow filtration will gradually replace dead-end filtering in larger-scale applications. Clarification and sterilization of all types of drugs and beverages are two of the most common industrial applications. Ultrapure water in semiconductors, drinking water treatment, wine, beer, and fruit juice clarification, pre-treatment, and wastewater treatment are some of the other applications.
Microfiltration has shown to be viable due to its low energy consumption, operating pressure, and maintenance which result in low operating cost, fouling is not as bad as it could be because of two factors: larger pore sizes and low pressures. The application of this technology is limited due to its sensitivity to oxidizing agents, bacteria and suspended particles can only be eliminated, particles that are hard and sharp can disrupt the membrane, and cleaning pressures of more than 100 kPa can damage the membrane.
2.1.5.3 Nanofiltration (NF)
Nanofiltration is a filtration technology that separates different fluids or ions using membranes. Due to its broader membrane hole structure than the membranes used in RO, “Loose” RO is a term used to describe NF. More salt can pass through the membrane as a result of this. NF is employed in conditions where strong moderate inorganic removal and organic removal are sought since it can function at low pressures, typically 7–14 bars, and absorbs some inorganic salts. NF may concentrate proteins, sugars, bacteria, divalent ions, particles, colors, and other compounds with a molecular weight of more than 1,000 [15]. NF membranes are constructed of aromatic polyamide and cellulose acetate, displaying salt rejection rates ranging from 95% for divalent salts to 40% for monovalent salts and a molecular weight cut-off (MWCO) for organics of 300 [16]. Organics of low molecular weight, including methanol, are unaffected by NF.
Although NF membranes have strong molecular rejection properties for divalent cations such as magnesium and calcium and may be used instead of traditional chemical softening to effectively remove hardness, they can also be utilized to generate drinking water. Organics with a higher molecular weight that cause odor and taste, or that mix with chlorine to produce trihalomethanes or other particles, can be rejected by NF membranes, boosting the effectiveness of downstream disinfection treatments [17]. Rai and co-workers [18] reported using NF for tertiary treatment of distillery effluent, that the NF membrane had a very high separation efficiency for both inorganic and organic chemicals (around 85–95%, 98–99.5%, 96–99.5% removal of TDS, cooler, and COD, respectively). The advantage of nanofiltration is the lower operating pressure, which results in lower energy costs and potential pump and piping investment savings. The most important drawback of NF membranes is the difficulty in controlling membrane pore size and pore size distribution repeatability. Furthermore, NF membranes are prone to fouling, which could result in significant flow reduction.
2.1.5.4 Reverse osmosis (RO)
Reverse osmosis (RO), in general, is the reverse of the osmosis process. When a semi-permeable barrier is established between two solutions, a solvent flows from lower to higher solute concentrations. Reverse osmosis occurs when an external force causes a solvent to flow from a higher to lower solute concentration. The driving force in the typical osmosis process is a drop in the system’s free energy, which diminishes as the system seeks to achieve equilibrium. When the system reaches equilibrium, the osmosis process comes to a stop. An external force larger than the osmotic pressure of the system drives the RO process. RO is like other pressure-driven membrane processes; however, other processes employ size exclusion or straining as the mode of separation and RO employs diffusion.
RO membranes are usually dense membranes having pore sizes less than 1 nm. They are generally a skin layer in the polymer matrix. The membrane material (polymer) forms a layer and a web-like structure. The water follows a tortuous path to get permeated through the membrane. RO membranes can reject the smallest entities from the feed. These include monovalent ions, dissolved organic content, and viruses, almost everything that other membrane processes are not capable of. RO membranes can also be used in both cross-flow and dead-end configurations, but on the other hand, crossflow is frequently favored due to its low energy usage and low fouling qualities. Spiral wound modules, in which the membrane is wound around the inner tube, are the most prevalent. RO has several applications, of which desalination is the most important and widely used. RO is also used in wastewater treatment, and dairy and food products.
Using RO technology, desalination of the sea and brackish water is possible when compared to other membrane processes where separation occurs without a phase change. In comparison to other desalting systems, it is compact and hence takes up less space while ensuring low maintenance and easy scalability. High-pressure requirements, energy-intensive process, lower flux, fouling, and the need to pre-treat feed before use are some of the shortcomings of RO.
2.1.5.5 Forward osmosis (FO)
The FO process is a designed osmotic process in which the treated water is on one side of a semi-permeable membrane and a draw solution (DS) is on the other. Even though FO is built on the osmosis principle, the word “forward osmosis” (FO) was most likely coined to differentiate it from “reverse osmosis,” which has been the term for membrane desalination technology for decades. Forward osmosis (FO) employs a concentrated draw solution to create high osmotic pressure, which extracts water from the feed solution across a semi-permeable membrane [19]. As a result, the volume of the feed stream drops, the salt concentration rises, and the permeate flux to the draw solution side reduces [20]. The general equation characterizing water movement over the RO membrane, according to Lee et al. [21], is:
JW=AσΔπ−ΔPE2
where JW is the water flux, A is the membrane’s water permeability coefficient, σΔπ the effective osmotic pressure difference in reverse osmosis, σ is the reflection coefficient, and ΔP is the applied pressure; for FO, ΔP = 0; for RO, ΔP > Δπ [21]. Since the parameter A and the reflection coefficient are calculated using the pressure applied to the brine, this equation is not suited for FO operations; also, the driving force employed is the difference between osmotic pressure and the applied hydraulic pressure (ΔP) [22, 23]. Figure 1 displays the principles of osmotic processes.
Figure 1.
Principles of osmotic processes: the initial state of the solutions, forward osmosis (FO), pressure retarded osmosis (PRO) and reverse osmosis (RO), adapted from Rao [24].
The primary benefit of FO is how little energy is required to extract pure water from wastewater or recycled feed, with just the energy needed to recirculate the draw solution requiring additional energy [18]. The ultimate flux reduction of concentration polarization is a fundamental limiting element impacting the performance of FO systems [25, 26]. Since forward osmosis is gaining attention as a viable method for lowering the cost of wastewater treatment and generating freshwater, many potential applications for FO membranes have been investigated, including desalination, dilute industrial wastewater concentration, direct potable reuse for enhanced life support systems, food processing, landfill leachate concentration, pharmaceutical industry processes, and concentration of digested sludge liquids [26].
2.2 Chemical wastewater treatment technologies
Chemical methods employed in waste-water treatment are designed to create change through chemical reactions. They are always combined with physical and biological methods. Chemical methods, in comparison to physical ones, have an inherent disadvantage considering that they are additive processes. That is, the dissolved elements of wastewater usually increase. If the wastewater is to be reused, this is an important consideration. A brief description of chemical methods of wastewater treatment is given below.
2.2.1 Neutralization
The pH value of wastewater is adjusted through neutralization. Acids or alkalis are used to neutralize industrial wastewaters after operations such as precipitation and flocculation. Metal-containing acid wastewaters can be treated by adding an alkaline reagent to the acid waste, forming a precipitate, and collecting the precipitate. As a result, the pH of the input solution is adjusted to the optimal range for metal hydroxide precipitation. To meet the overall wastewater treatment objectives, the step is performed before the major phase of wastewater treatment [27].
2.2.2 Precipitation
By lowering their solubilities, dissolved contaminants become solid precipitates, which can be easily skimmed from the water’s surface during precipitation [27]. While it effectively removes metal ions and organics, the accumulation of oil and grease may produce precipitation issues. Adding chemicals or reducing the temperature of the water reduces the solubility of dissolved pollutants. Adding organic solvents to the water could theoretically decrease the contaminant’s solubility, however, this procedure is costly on a large scale. Precipitates form when these compounds react with soluble contaminants. The most used substances for this function include ferric chloride, lime, ferrous sulphate, sodium bicarbonates, and alum. The most critical moderating parameters for the precipitation process are temperature and pH. Precipitation can eliminate approximately 60% of pollutants [28]. This method can be used to recycle water and remediate wastewater from the chromium and nickel-plating industries. Among the applications are water softening and heavy metal removal and phosphate from water. The handling of the vast amount of sludge produced is the main issue related to precipitation [29, 30].
2.2.3 Ion exchange
An ion exchanger, a solid substance, exchanges hazardous ions in wastewater for non-toxic ions [31, 32, 33, 34, 35]. There are two types of ion exchangers: anion and cation exchangers, which can exchange anions and cations, respectively. Ion exchangers are resins with active sites on their surfaces, which might be natural or synthetic. The most used ion exchangers include metha-acrylic resins, zeolites, acrylic, polystyrene sulfonic acid, and sodium silicates. It is a reversible process that utilizes very little energy. Low amounts of inorganics and organics are removed using ion exchange (up to 250 mg l–1). Concentrations of inorganic and organic compounds can be reduced by up to 95%. Potable water production, industrial water, pharmacy, fossil fuels, softening and other sectors are among the applications. It’s also being utilized to cut down on pollution. If there is oil, grease, or large quantities of organics and inorganics in the water, it may be necessary to pre-treat it.
2.2.4 Oxidation/reduction
Redox reactions are commonly used in chemical wastewater treatment and potable water treatment. Chlorinated hydrocarbons and pesticides are effectively removed from drinking water using ozone and hydrogen peroxide oxidation methods. Oxidation techniques are utilized in wastewater treatment to remove problematic biodegradable chemicals. Photochemical purification, which uses UV light to create hydroxyl radicals from hydrogen peroxide or ozone, is very effective. These Advanced Oxidation Processes (AOP) destroy antibiotics, cytostatic medications, hormones, and other anthropogenic trace chemicals. Advanced Oxidation Processes (AOPs) are efficient methods to remove organic contamination not degradable through biological processes in water and wastewater. Ozone also helps with the oxidation of iron and manganese in well water. To convert heavy metal ions, for example, into easily dissolvable sulfides, reduction procedures are necessary [36].
2.2.5 Electrodialysis
Ion-selective semi-permeable membranes allow water-soluble ions to pass through them when an electric current passes through them [37, 38]. Ion-selective membranes are ion exchange materials that are selective. They can be anion or cation exchangers, allowing anion and cations to flow out of the system. The technique uses two electrodes to which a voltage is supplied in either a continuous or batch mode. The membranes are arranged in a series or parallel pattern, to obtain the required degree of demineralization [39, 40]. Factors such as pH, temperature, the type of contaminants, membrane selectivities, scaling and fouling of wastewater, the wastewater flow rate, and the volume and design of phases all affect dissolved solids removal. The creation of drinkable water from brackish water is one of the applications. Furthermore, this technology has been utilized to reduce water sources. Total dissolved solids (TDS) concentrations of up to 200 mg l−1 can be decreased by electrodialysis by up to 90% [41]. Membrane fouling happened in the same way that reverse osmosis does. Carbon nanotubes have been used in composite membranes to alleviate this problem and increase flow.
2.2.6 Disinfection
Disinfection in wastewater treatment aims to limit the number of microorganisms in the water that will be released back into the environment for later use as irrigation water, bathing water, drinking water, and so on. The quality of the treated water (pH, cloudiness, and other parameters), the type of disinfection used, the disinfectant dosage (time and concentration), and other external conditions all influence disinfection efficiency. Due to the obvious nature of wastewater, which contains several human enteric organisms linked to a variety of waterborne diseases, this technique is critical in waste-water treatment [42]. Physical agents such as heat and light, mechanical means such as screening, sedimentation, and filtration, radiation, primarily gamma rays, chemical agents such as chlorine and its compounds, bromine, iodine, ozone, phenol and phenolic compounds, alcohols, heavy metals, dyes, soaps, and synthetic detergents, quaternary ammonium compounds, hydrogen peroxide, and various alkali and acids are among the most used disinfection methods. Oxidizing chemicals are the most frequent chemical disinfectants, and chlorine is the most widely utilized of these.
2.3 Biological wastewater treatment technologies
Biological water treatment technologies are critical components of a wastewater treatment strategy since they are utilized to produce safe drinking water. Aerobic, anaerobic and bioremediation processes are the techniques employed for this. These operations are outlined below.
2.3.1 Aerobic processes
Aerobic and facultative bacteria cause biodegradable organic matter to break down aerobically when oxygen or air is freely accessible in wastewater in the dissolved form [43, 44]. Temperature, retention time, oxygen availability, and the biological activity of the bacteria all limit the extent of the process. Furthermore, the addition of specific compounds essential for bacterial development may increase the rate at which organic pollutants are biologically oxidized. This approach can remove phosphates, nitrates, volatile organics, dissolved and suspended organics, chemical oxygen demand (COD), biological oxygen demand (BOD), and other pollutants. It is possible to reduce the number of biodegradable organics in the environment by up to 90%. The method’s downside is that it produces a huge number of bio-solids, which necessitates additional costly treatment and management. Oxidation ponds, aeration lagoons, and activated sludge processes are used to carry out the aerobic process [44]. The following Eq. (3) gives a simple depiction of aerobic decomposition.
Oxidation ponds are aerobic systems in which the heterotrophic microbes consume oxygen that is supplied by both the atmosphere and photosynthetic algae. In this process, algae utilize the inorganic substances (N, P, CO2) generated by aerobic bacteria to fuel their growth, which is powered by sunlight. They discharge oxygen into the fluid, which the bacteria then use to complete the symbiotic cycle [44].
2.3.1.2 Aeration lagoon
Aeration lagoons are deeper than oxidation ponds, because aerators supply oxygen rather than algal photosynthetic activity, as in oxidation ponds. The aerators maintain the microbial biomass afloat and supply enough dissolved oxygen for the aerobic process to be maximized. Although there is no deposition or sludge return, this process relies on properly mixed liquor formation in the tank/lagoon. As a result, aeration lagoons are appropriate for effluent that is both strong and biodegradable, such as wastewater from the food industry [44].
2.3.1.3 Activated sludge
The activated sludge method works by suspending a substantial bacterial colony in wastewater under aerobic conditions. Greater levels of bacterial proliferation and respiration can be achieved with limitless nutrients and oxygen, resulting in the conversion of accessible organic compounds to oxidized end-products or the formation of new microbes. The activated sludge system is comprised of five interconnected components: bioreactor, activated sludge, aeration and mixing system, sedimentation tank, and returned sludge [44]. The biological mechanism employing activated sludge is a widely utilized technology for wastewater remediation that has low operating costs.
2.3.2 Anaerobic processes or anaerobic digestion
Anaerobic treatment of waste is a biological process in which microorganisms degrade organic pollutants without oxygen. When there is no free dissolved oxygen in the wastewater, anaerobic breakdown or putrefaction takes place where anaerobic and facultative bacteria break down complex organic substances into sulfur-based organic molecules, carbon, and nitrogen. This sequence of biochemical events produces biogas such as methane, hydrogen sulfide, ammonia, and nitrogen. This approach minimizes the number of bacteria in wastewater [45, 46, 47]. Anaerobic technologies are generally used before aerobic treatment for streams with high organic material (measured as high BOD, COD, or TSS). Anaerobic treatment is a tried-and-tested low-energy way of treating industrial effluent. The following Eq. (4) represents the anaerobic process.
The anaerobic digestion (AD) approach is appealing because it treats wastewater, provides renewable energy, and generates byproducts that may be utilized as farm fertilizers, making it an environmentally benign process [48]. When compared to the aerobic wastewater treatment process, the AD process offers the following advantages: fewer nutrients required and the creation of less biological sludge, which requires simply drying as further treatment [49]. It also necessitates a small reactor capacity and no oxygen, reducing the power needed to deliver oxygen in the aerobic approach, and the organic loading on the system is not restricted to an oxygen supply. Thus, a higher loading rate can be used in AD, allowing for a faster response to substrate addition after long periods without feeding and semi-feed strategies for a few months. This benefits the system, making AD a viable option for seasonal industrial wastewater treatment and off-gas elimination that causes air pollution. Examples of anaerobic treatment systems are upflow anaerobic sludge bed (UASB) reactor, expanded granular sludge bed (EGSB), anaerobic baffled reactor (ABR), anaerobic filter reactors and anaerobic Lagoons
2.3.2.1 Upflow anaerobic sludge bed (UASB) reactor
The Upflow anaerobic sludge blanket (UASB) technology is particularly effective for treating wastewater with a high carbohydrate content. As a result, the UASB reactor has become one of the most common designs for treating wastewater from agro-industrial processing companies because it can endure fluctuations in effluent quality and complete reactor shut down during the season [50]. In addition, wastewater containing carbohydrates are readily degraded by bacteria and acts as a nutrient-rich precursor for the anaerobic process. Because of its minimal sludge production and low energy and space requirements, the UASB technique has become well-known for treating wastewater. However, the most significant benefit of this technology is that it can generate energy rather than consume it while treating wastewater [51].
The treated wastewater enters the reactor from the bottom and runs upward through a blanket of biologically activated sludge, typically in granular aggregates. The anaerobic bacteria digest (degrade) the wastewater as it moves upward through the blanket. Under realistic conditions, the blanket is held by the upward flow coupled with gravity’s settling action with the support of flocculants and does not wash off, resulting in better treatment efficiency. Intrinsic mixing is facilitated by anaerobic gas production, which aids in the creation and enhancement of biological granules. However, because some of the gas created in the sludge blanket is connected to the granules, a gas-liquid-solid separator (GLSS) is added to the reactor’s top for effective gas, liquid, and granule separation. In GLSS, gas-enclosed particles collide with the bottom of degassing baffles, fall back into the sludge blanket, and treated water exits the reactor [52].
2.3.2.2 Expanded granular sludge bed (EGSB)
An improved anaerobic treatment system based on an up-flow anaerobic sludge blanket is the expanded granular sludge bed (EGSB). The differentiating feature is that the wastewater passing through the sludge bed has a faster rate of upward flow velocity. In addition, the enhanced flux allows for partial expansion (fluidisation) of the granular sludge bed, boosting wastewater-sludge interaction and enhancing sludge bed segregation of small inactive, suspended particles
2.3.2.3 Anaerobic baffled reactor (ABR)
McCarty and colleagues created the anaerobic baffled reactor (ABR) at Stanford University in the early 1980s. It is a simple linear reactor with a simple operational design that has widespread use in wastewater treatment. The ABR primarily treats wastewater through sludge and scum retention as well as anaerobic degradation of particulate and dissolvable organic substances. As a result, any factors impacting these processes impact ABR treatment. Baffles guide the flow within the reactor in an ABR reactor under the force of the pressure head at the influent. There is no need for mechanical mixing because the flow directly touches the biomass as it is driven through the sludge bed. As a result, no electricity is required during regular operation for an underground ABR design, while ABR above ground design necessitates pumping energy. In ABR, byproduct sludge is recirculated, discharged, or used as manure.
According to Reynaud and Buckley [53], a long solid retention time is required for anaerobic treatment of low-strength wastewater, and the required reactor capacity is influenced by the hydraulic load instead of the organic load. The upflow velocity of the wastewater inside the reactor compartments containing sludge influences solid retention in the ABR design. Low-strength applications, on the other hand, have negligible solid flotation as well as carry-over due to gas production.
2.3.2.4 Anaerobic filter reactors
In 1969, Young and McCarty invented the upflow anaerobic filter. An anaerobic filter was the first high-rate bioreactor that excluded the separation and effluent recycling requirement. In addition, it offers the advantages of eliminating the mechanical mixing stage, having improved stability even at loading rates higher than 10 kg/m3 day COD, enduring hazardous shock loads, and being inhibitor-resistant. Because the upflow anaerobic filter is loaded with inert support material such as gravel, pebbles, coke, or plastic media, it works similarly to an aerobic trickling filter. As a result, there is no need for biomass separation or sludge recycling in the system. The reactor’s designation is to trap particles in the wastewater as it runs through it, while active biomass connected to the surface of the filter material degrades the organic matter [43]. The anaerobic filter reactor can be used as a downflow or upflow filter reactor, with an OLR range from 1 kg/m3 to 15 kg/m3 day COD and separation efficiencies ranging from 75 to 95%. The treatment temperature ranges from 20 to 35.8°C, with HRTs varying from 0.2 to 3 days. The main disadvantage of the upflow anaerobic filter is the possibility of blockage due to undegraded sewage sludge, mineral precipitates, or bacterial biomass [43].
2.3.2.5 Anaerobic lagoons
An anaerobic lagoon is a deep earthen basin with enough volume to allow sedimentation of sedimentable solids, digestion of residual sludge, and anaerobic reduction of some soluble organic substrate [54]. Anaerobic lagoons are typically designed to store and treat wastewater for 20–150 days. They’re deep (normally 8–15 feet) and function similarly to septic tanks, where anaerobic microorganisms break down contaminants in the absence of oxygen. Solids in wastewater segregate and settle into strata inside an anaerobic lagoon. Grease, scum, and other floating debris make up the top layer. The layer of sludge that settles at the bottom of an anaerobic lagoon gradually accumulates and must be removed if septic tanks are not used first. The effluent from an anaerobic lagoon will need to be treated further [55].
2.3.3 Bioremediation
Bioremediation is a biological treatment process that uses biological resources to convert environmental pollutants into less hazardous forms. For example, the innate ability of microorganisms, plants, bacteria, algae or fungi to survive, adapt and thrive in unseemingly harsh conditions has been exploited to treat contaminated water bodies or soils. Like any other biological treatment process, bioremediation is preferred because it does not require chemicals or a lot of energy. This technology can be applied both in-situ (on-site) or ex-situ; for example, the wastewater can be treated on-site where the pollution takes place or transported to an external site for proper manipulation of the operating condition if it cannot be achieved at the contaminated site. Bioremediation can occur in either aerobic or anaerobic environments. Living organisms require ambient oxygen to thrive in aerobic environments. There is no oxygen in anaerobic situations. Microbes in this situation decompose chemical molecules or ions like sulfates in the wastewater to obtain the required energy [56].
Bioremediation is broadly classified into the following;
Microbial bioremediation—employs microorganisms as food sources to break down contaminants.
Mycoremediation—breaks down contaminants using the digestive enzymes of fungi.
Phytoremediation—employs plants to extract, break down and clean up contaminants.
Microbial remediation and mycoremediation can be classified further based on the strategy used as bioattenuation (natural attenuation), biostimulation (use of organic or inorganic nutrients for remediation), and bioaugmentation (use of genetically engineered microbe).
3. Limitations and prospects of wastewater treatment technologies
3.1 Physical and chemical technologies
Conventional wastewater treatment methods are currently beset by several issues, including increased chemical usage, sludge disposal, and increased energy and space needs. Furthermore, effective elimination of recalcitrant organic components, the inability to handle more wastewater than the limited design capacity, and a scarcity of experienced labour are all major operational issues in these systems. Because of all of these operational and technological limitations in traditional wastewater treatment methods, researchers are working to establish novel categories of advanced wastewater treatment techniques to address the aforementioned issues. Advanced wastewater techniques must integrate membrane technology, Advanced Oxidation Processes, Less sludge formation and if sludge is formed, how to use the sludge rather than disposing of it at the dumpsite, adsorption materials with a low cost, fewer chemical or bioflocculant usage, a new group of nanoparticles for wastewater treatment. Although there is a large body of study on the aforementioned topics, there are still areas that need improvement in the open literature to tackle the concerns of developments in wastewater treatment methods. The employment of modern wastewater technologies in conjunction with traditional methods may lead to more efficient wastewater treatment as well as increased reuse and recycling of treated water.
3.1.1 Membrane technologies
Membrane technology has several drawbacks, including greater energy consumption and fouling. Developing novel membrane materials, calculating hydrodynamics, incorporating modules, and exploring innovative modes of operation to reduce energy usage or application parameters to improve the treatment of water or wastewater are all examples of current advancements linked to membrane technology. All membrane processes have a minimal impact on the environment. There are no hazardous chemicals that must be disposed of, and no heat is generated in the operations. Future trends will include the recovery of valuable compounds, utilization of process waters, technological development including forwarding osmosis and pervaporation, real-time fouling monitoring, the advancement of existing fouling analysis techniques, the creation of custom-made novel membranes, and the development of membranes that can be applied in extreme circumstances. As these objectives are met, capacity, selectivity, and cost, as well as environmental effects including chemical consumption and concentrate handling should be addressed.
Membrane processes play an important role as well. As materials and membrane processes advance, new applications such as new MBRs (membrane bioreactor technologies), advanced osmosis, and pervaporation systems will be accessible. Anaerobic MBRs decompose organic compounds using anaerobic bacteria. In this configuration, biogas can replace the air in the submerged reactor. Due to their lower energy use, MBR systems outperform conventional systems. Since anaerobic MBR systems can retain high biomass concentrations, withstand high organic loadings, recover organic and energy acid, and generate little sludge, they are promising. Another promising technique is microbial fuel cells, a new form of MBR. Decentralized treatment systems can be utilized in wastewater systems to reduce costs and promote sanitation and reuse [57, 58].
3.2 Biological technologies
The biological treatment process is a well-known technique for dealing with problems associated with the treatment of industrial effluents and municipal wastewaters, where conventional technologies have proven to be prohibitively expensive, time-consuming, and ineffective. Though the aerobic technique has been successful in terms of industrial application, there are some drawbacks, such as greater capital costs for aeration facilities, increased operational costs (especially for energy for pumps or aerators), increased maintenance demands, and probably surveillance requirements for detecting the dissolved oxygen content in the liquid. While for the anaerobic treatment post-treatment of wastes generated because treated water does not meet standards, odor generation, fouling/clogging of the membrane, and a slower start-up time are some of the limitations. Bioremediation is only possible with biodegradable chemicals. Not all substances can be completely degraded in a short period. There are concerns that the biodegradation byproducts will be more persistent or dangerous than the main contaminant. Extrapolating some biological technologies from bench and pilot-scale to large scale operations is still challenging. Biological mechanisms are frequently very specialized. The availability of metabolically competent microbial communities, proper environmental growth parameters, and optimum quantities of nutrients and pollutants are all crucial site considerations.
Biological treatment technology is an innovative tool with significant future potential. As scientists understand more about its functionalities, it is possible to become one of the most effective methods for wastewater and environmental remediation. The tremendous improvement of molecular biological technologies has made it possible to analyze the organization of microbial communities without being influenced by cultivation. To achieve effective system operation with diverse functional microorganisms, careful management and modification of environmental parameters are required for system performance. The invention of innovative techniques and new concepts (e.g., new functional components and novel biological metabolism pathways) will facilitate the advancement of biological wastewater remediation systems. The best approach to achieving this goal is interdisciplinary collaboration.
4. Conclusion
The treatment of wastewater is crucial because of its effect on the environment. Due to increased urbanization and industrialization, wastewater generation and treatment have become a growing concern in the twenty-first century. Wastewater treatment ensures the long-term viability of the ecosystem. Many wastewater treatment options are employed to address the problem of growing environmental pollution, including physical, chemical, and biological (primary to tertiary treatment) technologies. The employment of some treatment strategies has the potential to produce secondary contaminants. The effective implementation of wastewater treatment options in water resource management necessitates planning, activity, design, storage, and operation. Advances in wastewater recycling have made it possible to produce water of virtually any quality. Water recovery systems incorporate a variety of safety precautions to reduce the environmental risks associated with various reuse applications. Continuous advancements have been made in the fundamental science of water treatment methods, as well as the innovation used in the process. However, based on the known treatment methods, attaining considerable wastewater treatment with a single treatment technology is difficult. Under the present conditions, improved or integrated wastewater treatment technologies are critically required to ensure high-quality water, reduce chemical and biological pollutants, and enhance industrial production operations. Integrated approaches, which may overcome the limits of single treatment techniques, seem to be viable options for efficient wastewater remediation. Regrettably, most viable treatment techniques are on the small scale and lack commercial application feasibility.
\n',keywords:"anaerobic digestion, bioremediation, coagulation, expanded granular sludge bed, ion exchange, membrane technology, microfiltration, nanofiltration",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/81315.pdf",chapterXML:"https://mts.intechopen.com/source/xml/81315.xml",downloadPdfUrl:"/chapter/pdf-download/81315",previewPdfUrl:"/chapter/pdf-preview/81315",totalDownloads:29,totalViews:0,totalCrossrefCites:0,dateSubmitted:"January 29th 2022",dateReviewed:"February 11th 2022",datePrePublished:"April 16th 2022",datePublished:null,dateFinished:"April 16th 2022",readingETA:"0",abstract:"During the last three decades, environmental challenges related to the chemical and biological pollution of water have become significant as a subject of major concern for society, public agencies, and the industrial sector. Most home and industrial operations generate wastewater that contains harmful and undesirable pollutants. In this context, it is necessary to make continuous efforts to protect water supplies to ensure the availability of potable water. To eliminate insoluble particles and soluble pollutants from wastewaters, treatment technologies can be employed including physical, chemical, biological (bioremediation and anaerobic digestion), and membrane technologies. This chapter focuses on current and emerging technologies that demonstrate outstanding efficacy in removing contaminants from wastewater. The challenges of strengthening treatment procedures for effective wastewater treatment are identified, and future perspectives are presented.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/81315",risUrl:"/chapter/ris/81315",signatures:"Ifeanyi Michael Smarte Anekwe, Jeremiah Adedeji, Stephen Okiemute Akpasi and Sammy Lewis Kiambi",book:{id:"11173",type:"book",title:"Wastewater Treatment",subtitle:null,fullTitle:"Wastewater Treatment",slug:null,publishedDate:null,bookSignature:"Prof. Muharrem Ince and Dr. Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/11173.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-847-9",printIsbn:"978-1-80355-846-2",pdfIsbn:"978-1-80355-848-6",isAvailableForWebshopOrdering:!0,editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Wastewater treatment technologies",level:"1"},{id:"sec_2_2",title:"2.1 Physical wastewater treatment technologies",level:"2"},{id:"sec_2_3",title:"2.1.1 Screening, filtration, and centrifugal separation",level:"3"},{id:"sec_3_3",title:"2.1.2 Sedimentation and gravity separation",level:"3"},{id:"sec_4_3",title:"2.1.3 Coagulation",level:"3"},{id:"sec_5_3",title:"2.1.4 Flotation",level:"3"},{id:"sec_6_3",title:"Table 1.",level:"3"},{id:"sec_6_4",title:"2.1.5.1 Ultrafiltration (UF)",level:"4"},{id:"sec_7_4",title:"2.1.5.2 Microfiltration (MF)",level:"4"},{id:"sec_8_4",title:"2.1.5.3 Nanofiltration (NF)",level:"4"},{id:"sec_9_4",title:"2.1.5.4 Reverse osmosis (RO)",level:"4"},{id:"sec_10_4",title:"2.1.5.5 Forward osmosis (FO)",level:"4"},{id:"sec_13_2",title:"2.2 Chemical wastewater treatment technologies",level:"2"},{id:"sec_13_3",title:"2.2.1 Neutralization",level:"3"},{id:"sec_14_3",title:"2.2.2 Precipitation",level:"3"},{id:"sec_15_3",title:"2.2.3 Ion exchange",level:"3"},{id:"sec_16_3",title:"2.2.4 Oxidation/reduction",level:"3"},{id:"sec_17_3",title:"2.2.5 Electrodialysis",level:"3"},{id:"sec_18_3",title:"2.2.6 Disinfection",level:"3"},{id:"sec_20_2",title:"2.3 Biological wastewater treatment technologies",level:"2"},{id:"sec_20_3",title:"2.3.1 Aerobic processes",level:"3"},{id:"sec_20_4",title:"2.3.1.1 Oxidation pond",level:"4"},{id:"sec_21_4",title:"2.3.1.2 Aeration lagoon",level:"4"},{id:"sec_22_4",title:"2.3.1.3 Activated sludge",level:"4"},{id:"sec_24_3",title:"2.3.2 Anaerobic processes or anaerobic digestion",level:"3"},{id:"sec_24_4",title:"2.3.2.1 Upflow anaerobic sludge bed (UASB) reactor",level:"4"},{id:"sec_25_4",title:"2.3.2.2 Expanded granular sludge bed (EGSB)",level:"4"},{id:"sec_26_4",title:"2.3.2.3 Anaerobic baffled reactor (ABR)",level:"4"},{id:"sec_27_4",title:"2.3.2.4 Anaerobic filter reactors",level:"4"},{id:"sec_28_4",title:"2.3.2.5 Anaerobic lagoons",level:"4"},{id:"sec_30_3",title:"2.3.3 Bioremediation",level:"3"},{id:"sec_33",title:"3. Limitations and prospects of wastewater treatment technologies",level:"1"},{id:"sec_33_2",title:"3.1 Physical and chemical technologies",level:"2"},{id:"sec_33_3",title:"3.1.1 Membrane technologies",level:"3"},{id:"sec_35_2",title:"3.2 Biological technologies",level:"2"},{id:"sec_37",title:"4. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Crook J, Surampalli RY. Water reclamation and reuse criteria in the US. Water Science and Technology. 1996;33(10-11):451-462'},{id:"B2",body:'Angelakis AN, Snyder SA. Wastewater treatment and reuse: Past, present, and future. Water. 2015;7(9):4887-4895'},{id:"B3",body:'Ding GKC. Wastewater treatment and reuse-The future source of water supply. Encyclopedia of Sustainable technologies. 2017;2017:43-52'},{id:"B4",body:'Krishnamoorthy S, Selvasembian R, Rajendran G, Raja S, Wintgens T. Emerging technologies for wastewater treatment and reuse. Water Science and Technology. 2019;80(11):3-4'},{id:"B5",body:'Tchobanoglous G, Burton FL, Stensel H. Wastewater engineering. Management. 1991;7:1-4'},{id:"B6",body:'Nemerow NL, Dasgupta A. Industrial and hazardous waste treatment. New Jersey: Noyes Publications; 1991'},{id:"B7",body:'Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling—An overview. RSC Advances. 2012;2(16):6380-6388'},{id:"B8",body:'Cheremisinoff NP. Handbook of Water and Wastewater Treatment Technologies. Boston: Butterworth-Heinemann; 2001'},{id:"B9",body:'Sinev I, Sinev O, Linevich S. Apparatus of flotation treatment of natural waters and wastewater. Izobreteniya. 1997;26:369-370'},{id:"B10",body:'Kurt E, Koseoglu-Imer DY, Dizge N, Chellam S, Koyuncu I. Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination. 2012;302:24-32'},{id:"B11",body:'Ozgun H, Ersahin ME, Erdem S, Atay B, Kose B, Kaya R, et al. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes. Journal of Chemical Technology & Biotechnology. 2013;88(8):1576-1583'},{id:"B12",body:'Kasim NO, Mahmoudi EB, Mohammad AW, Sheikh Abdullah SR. Study on the effect of applied pressure on iron and manganese rejection by polyamide and polypiperazine amide nanofiltration membranes. Solid State Phenomena. 2021;317:283-290'},{id:"B13",body:'Ryu H, Addor Y, Brinkman NE, Ware MW, Boczek L, Hoelle J, et al. Understanding microbial loads in wastewater treatment works as source water for water reuse. Water. 2021;13(11):1452'},{id:"B14",body:'Birrenbach O, Faust F, Ebrahimi M, Fan R, Czermak P. Recovery and purification of protein aggregates from cell lysates using ceramic membranes: Fouling analysis and modeling of ultrafiltration. Frontiers in Chemical Engineering. 2021;3:9'},{id:"B15",body:'Doménech NG, Purcell-Milton F, Gun’ko YK. Recent progress and prospects in development of advanced materials for nanofiltration. Materials Today Communications. 2020;23:100888'},{id:"B16",body:'Hao Y. Black liquor in pulp mill and its treatment. Jakobstad: University of Applied Sciences; 2021'},{id:"B17",body:'Noyes R. Unit operations in environmental engineering. New Jersey: Noyes Publications; 1994'},{id:"B18",body:'Choudhury RR, Gohil JM, Mohanty S, Nayak SK. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. Journal of Materials Chemistry A. 2018;6(2):313-333'},{id:"B19",body:'Zhu X-Z, Wang L-F, Zhang F, Lee LW, Li J, Liu X-Y, et al. Combined fouling of forward osmosis membrane by alginate and TiO2 nanoparticles and fouling mitigation mechanisms. Journal of Membrane Science. 2021;622:119003'},{id:"B20",body:'Guo B-B, Zhu C-Y, Xu Z-K. Surface and interface engineering for advanced nanofiltration membranes. Chinese Journal of Polymer Sciences. 2022;40:1-14'},{id:"B21",body:'Lee J, Kim B, Hong S. Fouling distribution in forward osmosis membrane process. Journal of Environmental Sciences. 2014;26(6):1348-1354'},{id:"B22",body:'Fareed H, Qasim GH, Jang J, Lee W, Han S, Kim IS. Brine desalination via pervaporation using kaolin-intercalated hydrolyzed polyacrylonitrile membranes. Separation and Purification Technology. 2022;281:119874'},{id:"B23",body:'Rai B, Shrivastav A. Chapter 26 - Removal of emerging contaminants in water treatment by nanofiltration and reverse osmosis. In: Shah M, Rodriguez-Couto S, Biswas J, editors. Development in Wastewater Treatment Research and Processes. Elsevier; 2022. pp. 605-628'},{id:"B24",body:'Rao AK, Li OR, Wrede L, Coan SM, Elias G, Cordoba S, et al. A framework for blue energy enabled energy storage in reverse osmosis processes. Desalination. 2021;511:115088'},{id:"B25",body:'Xiang Q , Nomura Y, Fukahori S, Mizuno T, Tanaka H, Fujiwara T. Innovative treatment of organic contaminants in reverse osmosis concentrate from water reuse: A mini review. Current Pollution Reports. 2019;5(4):294-307'},{id:"B26",body:'Bahoosh M, Kashi E, Shokrollahzadeh S. The effect of concentration polarization in the process of water desalination by forward osmosis method. Journal of Environmental Science and Technology. 2020;22(3):241-252'},{id:"B27",body:'Son M-K, Sung H-J, Lee J-K. Neutralization of synthetic alkaline wastewater with CO2 in a semi-batch jet loop reactor. Journal of the Korean Society of Combustion. 2013;18(2):17-22'},{id:"B28",body:'Lelieveld J, Berresheim H, Borrmann S, Crutzen P, Dentener F, Fischer H, et al. Global air pollution crossroads over the Mediterranean. Science. 2002;298(5594):794-799'},{id:"B29",body:'Zinkus GA, Byers WD, Doerr WW. Identify appropriate water reclamat’technologies. Chemical Engineering Progress. 1998;94(5):19-32'},{id:"B30",body:'Iftekhar MS, Blackmore L, Fogarty J. Non-residential demand for recycled water for outdoor use in a groundwater constrained environment. Resources, Conservation and Recycling. 2021;164:105168'},{id:"B31",body:'van der Bom FJ, Kopittke PM, Raymond NS, Sekine R, Lombi E, Mueller CW, et al. Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. Reviews in Environmental Science and Bio/Technology. 2022;21:1-22'},{id:"B32",body:'Cao R, Liu S, Yang X, Wang C, Wang Y, Wang W, et al. Enhanced remediation of Cr (VI)-contaminated groundwater by coupling electrokinetics with ZVI/Fe3O4/AC-based permeable reactive barrier. Journal of Environmental Sciences. 2022;112:280-290'},{id:"B33",body:'Singh R, Mondal P, Purkait MK. pH-responsive membranes. Biomedical Applications. Boca Raton: CRC Press; 2022'},{id:"B34",body:'Yang C, Wang Y, Alfutimie A. Comparison of nature and synthetic zeolite for waste battery electrolyte treatment in fixed-bed adsorption column. Energies. 2022;15(1):347'},{id:"B35",body:'Srivastava N, Chattopadhyay J, Yashi A, Rathore T. Heavy metals removal techniques from industrial waste water. In: Advanced Industrial Wastewater Treatment and Reclamation of Water. Tunisia: Springer; 2022. pp. 87-101'},{id:"B36",body:'Tufail A, Price WE, Mohseni M, Pramanik BK, Hai FI. A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity. Journal of Water Process Engineering. 2021;40:101778'},{id:"B37",body:'Hussain S, Hussain A, Aziz MU, Song B, Zeb J, George D, et al. A review of zoonotic babesiosis as an emerging public health threat in Asia. Pathogens. 2022;11(1):23'},{id:"B38",body:'Abarkan A, Grimi N, Métayer H, Sqalli Houssaïni T, Legallais C. Electrodialysis can lower the environmental impact of hemodialysis. Membranes. 2022;12(1):45'},{id:"B39",body:'Zhang S, Meng Y, Pang L, Ding Q , Chen Z, Guo Y, et al. Understanding the direct relations between various structure-directing agents and low-temperature hydrothermal durability over Cu-SAPO-34 during NH3-SCR reaction. Catalysis Science & Technology. 2022;12:579-595'},{id:"B40",body:'Zentner DL, Raabe JK, Cross TK, Jacobson PC. Machine learning applied to lentic habitat use by spawning walleye demonstrates the benefits of considering multiple spatial scales in aquatic research. Canadian Journal of Fisheries and Aquatic Sciences. 2022;71(1):120-130'},{id:"B41",body:'Adhikary S, Tipnis U, Harkare W, Govindan K. Defluoridation during desalination of brackish water by electrodialysis. Desalination. 1989;71(3):301-312'},{id:"B42",body:'Ganguli S, Karmakar R, Singh M, Ghosh MM. Metagenomics-guided assessment of water quality and predicting pathogenic load. In: Handbook of Research on Monitoring and Evaluating the Ecological Health of Wetlands. India: IGI Global; 2022. pp. 71-91'},{id:"B43",body:'Goli A, Shamiri A, Khosroyar S, Talaiekhozani A, Sanaye R, Azizi K. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. Journal of Environmental Treatment Techniques. 2019;6(1):113-141'},{id:"B44",body:'Samer M. Biological and chemical wastewater treatment processes. Wastewater Treatment Engineering. 2015;14:150'},{id:"B45",body:'Jin Z, Zhao Z, Liang L, Zhang Y. Effects of ferroferric oxide on azo dye degradation in a sulfate-containing anaerobic reactor: From electron transfer capacity and microbial community. Chemosphere. 2022;286:131779'},{id:"B46",body:'Khan MA, Ngo HH, Guo W, Liu Y, Zhang X, Guo J, et al. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy. 2018;129:754-768'},{id:"B47",body:'Chan YJ, Chong MF, Law CL, Hassell DG. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal. 2009;155(1-2):1-8'},{id:"B48",body:'Ruiz B, Flotats X. Citrus essential oils and their influence on the anaerobic digestion process: An overview. Waste Management. 2014;34(11):2063-2079'},{id:"B49",body:'Buitron G, Kumar G, Martinez-ane production via a two-stage processes (H2-SBR+ CH4-UASB) using tequila vinasses. International Journal of Hydrogen Energy. 2014;39(33):19249-19255'},{id:"B50",body:'Daud MK, Rizvi H, Farhan Akram M, Ali S, Rizwan M, Nafees M, et al. Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry. 2018;2018:1-13. DOI: 10.1155/ 2018/1596319'},{id:"B51",body:'Sivaram NM, Barik D. Toxic Waste from Leather Industries. Energy from Toxic Org Waste Heat Power Generation. Cambridge: Woodhead Publishing; 2019. pp. 55-67'},{id:"B52",body:'Mainardis M, Buttazzoni M, Goi D. Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering. 2020;7(2):43'},{id:"B53",body:'Reynaud N, Buckley CA. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: A review. Water Science and Technology. 2016;73(3):463-478'},{id:"B54",body:'Stronach SM, Rudd T, Lester JN. Anaerobic Digestion Processes in Industrial Wastewater Treatment. Heidelberg: Springer, Science & Business Media; 2012'},{id:"B55",body:'Pal P. Biological treatment technology. Industrial Water Treatment Processing and Technology. 2017;1:65-144'},{id:"B56",body:'Anekwe IMS, Isa YM. Comparative evaluation of wastewater and bioventing system for the treatment of acid mine drainage contaminated soils. Water-Energy Nexus. 2021;4:134-140'},{id:"B57",body:'Veress M, Bartik A, Benedikt F, Hammerschmid M, Fuchs J, Müller S, et al. Development and techno-economic evaluation of an optimized concept for industrial bio-SNG production from sewage sludge. In: Proceedings of the 28th European Biomass Conference. 2020'},{id:"B58",body:'Guo H, Li X, Yang W, Yao Z, Mei Y, Peng LE, et al. Nanofiltration for drinking water treatment: A review. Frontiers of Chemical Science and Engineering. 2021;2021:1-18'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Ifeanyi Michael Smarte Anekwe",address:"anekwesmarte@gmail.com",affiliation:'
School of Chemical and Metallurgical Engineering, University of the Witwatersrand, South Africa
Department of Chemical Engineering, Durban University of Technology, South Africa
'},{corresp:null,contributorFullName:"Sammy Lewis Kiambi",address:null,affiliation:'
Department of Chemical Engineering, Durban University of Technology, South Africa
'}],corrections:null},book:{id:"11173",type:"book",title:"Wastewater Treatment",subtitle:null,fullTitle:"Wastewater Treatment",slug:null,publishedDate:null,bookSignature:"Prof. Muharrem Ince and Dr. Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/11173.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-847-9",printIsbn:"978-1-80355-846-2",pdfIsbn:"978-1-80355-848-6",isAvailableForWebshopOrdering:!0,editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"229967",title:"M.A.",name:"Vladimir",middleName:null,surname:"Urosevic",email:"vladimir.urosevic@belit.co.rs",fullName:"Vladimir Urosevic",slug:"vladimir-urosevic",position:null,biography:null,institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229967/images/6616_n.jpg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Belgrade Information Technologies (Serbia)",institutionURL:null,country:{name:"Serbia"}}},booksEdited:[],chaptersAuthored:[{id:"60011",title:"Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired Through IoT in Smart Cities",slug:"temporal-clustering-for-behavior-variation-and-anomaly-detection-from-data-acquired-through-iot-in-s",abstract:"In this chapter, we propose a methodology for behavior variation and anomaly detection from acquired sensory data, based on temporal clustering models. Data are collected from five prominent European smart cities, and Singapore, that aim to become fully “elderly-friendly,” with the development and deployment of ubiquitous systems for assessment and prediction of early risks of elderly Mild Cognitive Impairments (MCI) and frailty, and for supporting generation and delivery of optimal personalized preventive interventions that mitigate those risks, utilizing smart city datasets and IoT infrastructure. Low level data collected from IoT devices are preprocessed as sequences of activities, with temporal and causal variations in sequences classified as normal or anomalous behavior. The goals of proposed methodology are to (1) recognize significant behavioral variation patterns and (2) support early identification of pattern changes. Temporal clustering models are applied in detection and prediction of the following variation types: intra-activity (single activity, single citizen) and inter-activity (multiple-activities, single citizen). Identified behavioral variations and anomalies are further mapped to MCI/frailty onset behavior and risk factors, following the developed geriatric expert model.",signatures:"Vladimir Urosevic, Ana Kovacevic, Firas Kaddachi and Milan\nVukicevic",authors:[{id:"229238",title:"Ph.D.",name:"Milan",surname:"Vukicevic",fullName:"Milan Vukicevic",slug:"milan-vukicevic",email:"vukicevicm@fon.bg.ac.rs"},{id:"229967",title:"M.A.",name:"Vladimir",surname:"Urosevic",fullName:"Vladimir Urosevic",slug:"vladimir-urosevic",email:"vladimir.urosevic@belit.co.rs"},{id:"240289",title:"MSc.",name:"Ana",surname:"Kovacevic",fullName:"Ana Kovacevic",slug:"ana-kovacevic",email:"ana.kovacevic@saga.rs"},{id:"240290",title:"MSc.",name:"Firas",surname:"Kaddachi",fullName:"Firas Kaddachi",slug:"firas-kaddachi",email:"Firas.Kaddachi@lirmm.fr"}],book:{id:"6569",title:"Recent Applications in Data Clustering",slug:"recent-applications-in-data-clustering",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"225387",title:"Prof.",name:"Reda R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",biography:"Reda R. Gharieb, Ph.D. is a Professor of Biomedical and Bioelectronics Engineering, Assiut University, Egypt. He served as a scientist in Japan and the United States. He worked for Fairway Medical Technologies Inc. and Seno Medical Instruments Inc., Texas, USA, on their photoacoustic imaging (PAI) technology. He developed algorithms for 2D image reconstruction in PAI of breast and prostate cancers. He also developed an algorithm for 3D image reconstruction in PAI of a small animal, using a rotated ARC-shaped sensor array. Dr. Gharieb has authored three books, four book chapters, two patents, and about sixty papers. He has also edited two books. His research interests include signal/image processing, modeling and simulation, statistical and scientific computing, bioinstrumentation, and computed tomography.",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}},{id:"226164",title:"Dr.",name:"Khaled",surname:"Abdalgader",slug:"khaled-abdalgader",fullName:"Khaled Abdalgader",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sohar University",institutionURL:null,country:{name:"Oman"}}},{id:"226729",title:"Dr.",name:"Hadeel",surname:"Aljobouri",slug:"hadeel-aljobouri",fullName:"Hadeel Aljobouri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"228719",title:"Ph.D. Student",name:"Hussain A.",surname:"Jaber",slug:"hussain-a.-jaber",fullName:"Hussain A. Jaber",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/228719/images/6378_n.jpg",biography:"Hussain A. Jaber has B.Sc in Electrical and Electronic engineering/Biomedical program at University of Technology Baghdad / Iraq 1997. Also, has MSc in Electrical and Electronic engineering/Biomedical program at Yıldırım Beyazıt University in Ankara/Turkey 2015. He is currently a Ph.D. student in Electrical and Electronic engineering/Biomedical program at Yıldırım Beyazıt University in Ankara/Turkey.\nHe also worked as biomedical engineer. He has several publications in the biomedical field.He has over 17 years experience in biomedical area.",institutionString:null,institution:null},{id:"228720",title:"Dr.",name:"Ilyas",surname:"Çankaya",slug:"ilyas-cankaya",fullName:"Ilyas Çankaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ankara Yıldırım Beyazıt University",institutionURL:null,country:{name:"Turkey"}}},{id:"229238",title:"Ph.D.",name:"Milan",surname:"Vukicevic",slug:"milan-vukicevic",fullName:"Milan Vukicevic",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"230242",title:"Assistant Prof.",name:"F. Marta L.",surname:"Di Lascio",slug:"f.-marta-l.-di-lascio",fullName:"F. Marta L. Di Lascio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Free University of Bozen-Bolzano",institutionURL:null,country:{name:"Italy"}}},{id:"230748",title:"Dr.",name:"Uğurhan",surname:"Kutbay",slug:"ugurhan-kutbay",fullName:"Uğurhan Kutbay",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/230748/images/6702_n.jpg",biography:"I was born in Ankara,TURKEY in 1985. I was graduated Malatya Anatolian High School in 2003. I received BS, MS and Ph.D. degrees in electrical and electronics engineering from the Gazi University, Ankara, Turkey, in 2009, 2011 and 2015, respectively. I have been studying electrical and electronics engineering at the Gazi University as the Dr. Research Assistant. My research interests include electrical resistivity tomography, biomedical engineering, image and video processing, and artificial intelligence.",institutionString:null,institution:null},{id:"240289",title:"MSc.",name:"Ana",surname:"Kovacevic",slug:"ana-kovacevic",fullName:"Ana Kovacevic",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240290",title:"MSc.",name:"Firas",surname:"Kaddachi",slug:"firas-kaddachi",fullName:"Firas Kaddachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montpellier Laboratory of Informatics, Robotics and Microelectronics",institutionURL:null,country:{name:"France"}}}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135705},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12456",title:"Arthroscopis Surgery",subtitle:null,isOpenForSubmission:!0,hash:"7c8c783b20d7e2e1ee6cf53df3bf0750",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12456.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:24,limit:12,total:467},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:66,numberOfSeries:0,numberOfAuthorsAndEditors:1668,numberOfWosCitations:1070,numberOfCrossrefCitations:784,numberOfDimensionsCitations:1793,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:66,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2618,totalCrossrefCites:20,totalDimensionsCites:32,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5952,totalCrossrefCites:19,totalDimensionsCites:32,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9758,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7207,totalCrossrefCites:6,totalDimensionsCites:27,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1477,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:193437,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4646,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3576,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3625,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1373,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82953",title:"Early Visual Areas are Activated during Object Recognition in Emerging Images",slug:"early-visual-areas-are-activated-during-object-recognition-in-emerging-images",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105756",abstract:"Human observers can reliably segment visual input and recognise objects. However, the underlying processes happen so quickly that they normally cannot be captured with fMRI. We used Emerging Images (EI), which contains a hidden object and extends the process of recognition, to investigate the involvement of early visual areas (V1, V2 and V3) and lateral occipital complex (LOC) in object recognition. The early visual areas were located with a retinotopy scan and the LOC with a localiser. The participants (N=8) then viewed an EI, followed by the hidden object’s silhouette (disambiguation), and then, the EI was repeated. BOLD responses before and after disambiguation were compared. The retinotopy parameters were used to back-project the BOLD response onto the visual field, creating spatially detailed maps of the activity change. V1 and V2 (but not V3) showed stronger response after disambiguation, while there was no difference in the LOC. The back-projections revealed no distinct pattern or changes in activity on object location, indicating that the activity in V1 and V2 is not specific for voxels corresponding to the object location. We found no difference before and after disambiguation in the LOC, which may be repetition suppression counteracting the effect of recognition.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Marleen Bakker, Hinke N. Halbertsma, Nicolás Gravel, Remco Renken, Frans W. Cornelissen and Barbara Nordhjem"},{id:"82931",title:"Neuroinflammation in Traumatic Brain Injury",slug:"neuroinflammation-in-traumatic-brain-injury",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105178",abstract:"Neuroinflammation following traumatic brain injury (TBI) is an important cause of secondary brain injury that perpetuates the duration and scope of disease after initial impact. This chapter discusses the pathophysiology of acute and chronic neuroinflammation, providing insight into factors that influence the acute clinical course and later functional outcomes. Secondary injury due to neuroinflammation is described by mechanisms of action such as ischemia, neuroexcitotoxicity, oxidative stress, and glymphatic and lymphatic dysfunction. Neurodegenerative sequelae of inflammation, including chronic traumatic encephalopathy, which are important to understand for clinical practice, are detailed by disease type. Prominent research topics of TBI animal models and biomarkers of traumatic neuroinflammation are outlined to provide insight into the advances in TBI research. We then discuss current clinical treatments in TBI and their implications in preventing inflammation. To complete the chapter, recent research models, novel biomarkers, and future research directions aimed at mitigating TBI will be described and will highlight novel therapeutic targets. Understanding the pathophysiology and contributors of neuroinflammation after TBI will aid in future development of prophylaxis strategies, as well as more tailored management and treatment algorithms. This topic chapter is important to both clinicians and basic and translational scientists, with the goal of improving patient outcomes in this common disease.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Grace Y. Kuo, Fawaz Philip Tarzi, Stan Louie and Roy A. Poblete"},{id:"82876",title:"Oxygen Tissue Levels as an Effectively Modifiable Factor in Alzheimer’s Disease Improvement",slug:"oxygen-tissue-levels-as-an-effectively-modifiable-factor-in-alzheimer-s-disease-improvement",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.106331",abstract:"Despite the advance in biochemistry, there are two substantial errors that have remained for at least two centuries. One is that oxygen from the atmosphere passes through the lungs and reaches the bloodstream, which distributes it throughout the body. Another major mistake is the belief that such oxygen is used by the cell to obtain energy, by combining it with glucose. Since the late nineteenth century, it began to be published that the gas exchange in the lungs cannot be explained by diffusion. Even Christian Bohr suggested that it looked like a cellular secretion. But despite experimental evidence to the contrary and based only on theoretical models, the dogma that our body takes the oxygen it contains inside from the air around it has been perpetuated to this day. The oxygen levels contained in the human body are high, close to 99%, and the atmosphere only contains between 19 and 21%. The hypothesis that there is a supposed oxygen concentrating mechanism has not been experimentally proven to date, after almost two centuries. The mistaken belief, even among neurologists, that our body takes oxygen from the atmosphere is widespread, even though there is no experimental basis to support it, just theoretical models. Our finding that the human body can take oxygen from the water it contains, not from the air around it, like plants, comes to mark a before and after in biology in general, and the CNS is no exception. Therefore, establishing the true origin of the oxygen present within our body and brain will allow us to better understand the physio pathogenesis of neurodegenerative diseases.",book:{id:"11637",title:"Neuropsychology of Dementia",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg"},signatures:"Arturo Solís Herrera"},{id:"82859",title:"Impact of Hypoxia on Astrocyte Induced Pathogenesis",slug:"impact-of-hypoxia-on-astrocyte-induced-pathogenesis",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.106263",abstract:"Astrocytes are the most abundant cells of the central nervous system. These cells are of diverse types based on their function and structure. Astrocyte activation is linked mainly with microbial infections, but long-term activation can lead to neurological impairment. Astrocytes play a significant role in neuro-inflammation by activating pro-inflammatory pathways. Activation of interleukins and cytokines causes neuroinflammation resulting in many neurodegenerative disorders such as stroke, growth of tumours, and Alzheimer’s. Inflammation of the brain hinders neural circulation and compromises blood flow by affecting the blood–brain barrier. So the oxygen concentration is lowered, causing brain hypoxia. Hypoxia leads to the activation of nuclear factor kappa B (NFkB) and hypoxia-inducible factors (HIF), which aggravates the inflammatory state of the brain. Hypoxia evoked changes in the blood–brain barrier, further complicating astrocyte-induced pathogenesis.",book:{id:"10744",title:"Astrocytes in Brain Communication and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg"},signatures:"Farwa Munir, Nida Islam, Muhammad Hassan Nasir, Zainab Anis, Shahar Bano, Shahzaib Naeem, Atif Amin Baig and Zaineb Sohail"},{id:"82839",title:"Neurophysiology of Emotions",slug:"neurophysiology-of-emotions",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.106043",abstract:"Emotions are automatic and primary patterns of purposeful cognitive-behavioral organizations. They have three main functions: coordination, signaling, and information. First, emotions coordinate organs and tissues, thus predisposing the body to peculiar responses. Scholars have not reached a consensus on the plausibility of emotion-specific response patterns yet. Despite the limitations, data support the hypothesis of specific response patterns for distinct subtypes of emotions. Second, emotional episodes signal the current state of the individual. Humans display their state with verbal behaviors, nonverbal actions (e.g., facial movements), and neurovegetative signals. Third, emotions inform the brain for interpretative and evaluative purposes. Emotional experiences include mental representations of arousal, relations, and situations. Every emotional episode begins with exposure to stimuli with distinctive features (i.e., elicitor). These inputs can arise from learning, expressions, empathy, and be inherited, or rely on limited aspects of the environment (i.e., sign stimuli). The existence of the latter ones in humans is unclear; however, emotions influence several processes, such as perception, attention, learning, memory, decision-making, attitudes, and mental schemes. Overall, the literature suggests the nonlinearity of the emotional process. Each section outlines the neurophysiological basis of elements of emotion.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Maurizio Oggiano"},{id:"82172",title:"Neuroimaging in Common Neurological Diseases Treated by Anticoagulants",slug:"neuroimaging-in-common-neurological-diseases-treated-by-anticoagulants",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.105128",abstract:"Stroke imaging/Cerebral Venous sinus thrombosis/Arterial dissecting disease in Head and Neck regions/Neurocomplication of anticoagulation therapy. Nowsday, anticoagulant drugs are common drugs used in daily practice for patients in neurology clinic. Anticoagulant treatment used for treated symptomatic patients as well as for prophylaxis therapy in asymptomatic patients. The purpose of this chapter based on the review of essential neuroimaging in the most common neurological conditions that benefit from treatment with anticoagulant drugs such as ischemic stroke, cerebral venous sinus thrombosis, and arterial dissecting disease of head and neck arteries and will be enclosed with neuroimaging in case of neurocomplication by anticoagulant therapy.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Pipat Chiewvit"}],onlineFirstChaptersTotal:12},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:125,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82465",title:"Agroforestry: An Approach for Sustainability and Climate Mitigation",doi:"10.5772/intechopen.105406",signatures:"Ricardo O. Russo",slug:"agroforestry-an-approach-for-sustainability-and-climate-mitigation",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82754",title:"Impact of Revegetation on Ecological Restoration of a Constructed Soil in a Coal Mining in Southern Brazil",doi:"10.5772/intechopen.105895",signatures:"Lizete Stumpf, Maria Bertaso De Garcia Fernandez, Pablo Miguel, Luiz Fernando Spinelli Pinto, Ryan Noremberg Schubert, Luís Carlos Iuñes de Oliveira Filho, Tania Hipolito Montiel, Lucas Da Silva Barbosa, Jeferson Diego Leidemer and Thábata Barbosa Duarte",slug:"impact-of-revegetation-on-ecological-restoration-of-a-constructed-soil-in-a-coal-mining-in-southern-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82828",title:"Vegetation and Avifauna Distribution in the Serengeti National Park",doi:"10.5772/intechopen.106165",signatures:"Ally K. Nkwabi and Pius Y. Kavana",slug:"vegetation-and-avifauna-distribution-in-the-serengeti-national-park",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82808",title:"Climate Change and Anthropogenic Impacts on the Ecosystem of the Transgressive Mud Coastal Region of Bight of Benin, Nigeria",doi:"10.5772/intechopen.105760",signatures:"Patrick O. Ayeku",slug:"climate-change-and-anthropogenic-impacts-on-the-ecosystem-of-the-transgressive-mud-coastal-region-of",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"83122",title:"New Perspectives on the Application of Chito-Oligosaccharides Derived from Chitin and Chitosan: A Review",doi:"10.5772/intechopen.106501",signatures:"Paul Edgardo Regalado-Infante, Norma Gabriela Rojas-Avelizapa, Rosalía Núñez-Pastrana, Daniel Tapia-Maruri, Andrea Margarita Rivas-Castillo, Régulo Carlos Llarena-Hernández and Luz Irene Rojas-Avelizapa",slug:"new-perspectives-on-the-application-of-chito-oligosaccharides-derived-from-chitin-and-chitosan-a-rev",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83015",title:"Acute Changes in Lipoprotein-Associated Oxidative Stress",doi:"10.5772/intechopen.106489",signatures:"Ngoc-Anh Le",slug:"acute-changes-in-lipoprotein-associated-oxidative-stress",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Anh",surname:"Le"}],book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"83041",title:"Responses of Endoplasmic Reticulum to Plant Stress",doi:"10.5772/intechopen.106590",signatures:"Vishwa Jyoti Baruah, Bhaswati Sarmah, Manny Saluja and Elizabeth H. Mahood",slug:"responses-of-endoplasmic-reticulum-to-plant-stress",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Chemical Biology",value:15,count:4,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:18,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:189,paginationItems:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221831/images/system/221831.jpeg",biography:"Niansheng Tang is a Professor of Statistics and Dean of the School of Mathematics and Statistics, Yunnan University, China. He was elected a Yangtze River Scholars Distinguished Professor in 2013, a member of the International Statistical Institute (ISI) in 2016, a member of the board of the International Chinese Statistical Association (ICSA) in 2018, and a fellow of the Institute of Mathematical Statistics (IMS) in 2021. He received the ICSA Outstanding Service Award in 2018 and the National Science Foundation for Distinguished Young Scholars of China in 2012. He serves as a member of the editorial board of Statistics and Its Interface and Journal of Systems Science and Complexity. He is also a field editor for Communications in Mathematics and Statistics. His research interests include biostatistics, empirical likelihood, missing data analysis, variable selection, high-dimensional data analysis, Bayesian statistics, and data science. He has published more than 190 research papers and authored five books.",institutionString:"Yunnan University",institution:{name:"Yunnan University",country:{name:"China"}}},{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",biography:"Prof. António J. R. Neves received a Ph.D. in Electrical Engineering from the University of Aveiro, Portugal, in 2007. Since 2002, he has been a researcher at the Institute of Electronics and Informatics Engineering of Aveiro. Since 2007, he has been an assistant professor in the Department of Electronics, Telecommunications, and Informatics, University of Aveiro. He is the director of the undergraduate course on Electrical and Computers Engineering and the vice-director of the master’s degree in Electronics and Telecommunications Engineering. He is an IEEE Senior Member and a member of several other research organizations worldwide. His main research interests are computer vision, intelligent systems, robotics, and image and video processing. He has participated in or coordinated several research projects and received more than thirty-five awards. He has 161 publications to his credit, including books, book chapters, journal articles, and conference papers. He has vast experience as a reviewer of several journals and conferences. As a professor, Dr. Neves has supervised several Ph.D. and master’s students and was involved in more than twenty-five different courses.",institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"11317",title:"Dr.",name:"Francisco",middleName:null,surname:"Javier Gallegos-Funes",slug:"francisco-javier-gallegos-funes",fullName:"Francisco Javier Gallegos-Funes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/11317/images/system/11317.png",biography:"Francisco J. Gallegos-Funes received his Ph.D. in Communications and Electronics from the Instituto Politécnico Nacional de México (National Polytechnic Institute of Mexico) in 2003. He is currently an associate professor in the Escuela Superior de Ingeniería Mecánica y Eléctrica (Mechanical and Electrical Engineering Higher School) at the same institute. His areas of scientific interest are signal and image processing, filtering, steganography, segmentation, pattern recognition, biomedical signal processing, sensors, and real-time applications.",institutionString:"Instituto Politécnico Nacional",institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"428449",title:"Dr.",name:"Ronaldo",middleName:null,surname:"Ferreira",slug:"ronaldo-ferreira",fullName:"Ronaldo Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428449/images/21449_n.png",biography:null,institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:null,institution:null},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"417317",title:"Mrs.",name:"Chiedza",middleName:null,surname:"Elvina Mashiri",slug:"chiedza-elvina-mashiri",fullName:"Chiedza Elvina Mashiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"352140",title:"Dr.",name:"Edina",middleName:null,surname:"Chandiwana",slug:"edina-chandiwana",fullName:"Edina Chandiwana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"342259",title:"B.Sc.",name:"Leonard",middleName:null,surname:"Mushunje",slug:"leonard-mushunje",fullName:"Leonard Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"347042",title:"Mr.",name:"Maxwell",middleName:null,surname:"Mashasha",slug:"maxwell-mashasha",fullName:"Maxwell Mashasha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"2941",title:"Dr.",name:"Alberto J.",middleName:"Jorge",surname:"Rosales-Silva",slug:"alberto-j.-rosales-silva",fullName:"Alberto J. Rosales-Silva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"437913",title:"Dr.",name:"Guillermo",middleName:null,surname:"Urriolagoitia-Sosa",slug:"guillermo-urriolagoitia-sosa",fullName:"Guillermo Urriolagoitia-Sosa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"435126",title:"Prof.",name:"Joaquim",middleName:null,surname:"José de Castro Ferreira",slug:"joaquim-jose-de-castro-ferreira",fullName:"Joaquim José de Castro Ferreira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"437899",title:"MSc.",name:"Miguel Angel",middleName:null,surname:"Ángel Castillo-Martínez",slug:"miguel-angel-angel-castillo-martinez",fullName:"Miguel Angel Ángel Castillo-Martínez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"289955",title:"Dr.",name:"Raja",middleName:null,surname:"Kishor Duggirala",slug:"raja-kishor-duggirala",fullName:"Raja Kishor Duggirala",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jawaharlal Nehru Technological University, Hyderabad",country:{name:"India"}}}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"10",title:"Animal Physiology",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development"},{id:"11",title:"Cell Physiology",scope:"
\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology"},{id:"12",title:"Human Physiology",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions"},{id:"13",title:"Plant Physiology",scope:"Plant Physiology explores fundamental processes in plants, and it includes subtopics such as plant nutrition, plant hormone, photosynthesis, respiration, and plant stress. In recent years, emerging technologies such as multi-omics, high-throughput technologies, and genome editing tools could assist plant physiologists in unraveling molecular mechanisms in specific critical pathways. The global picture of physiological processes in plants needs to be investigated continually to increase our knowledge, and the resulting technologies will benefit sustainable agriculture.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",keywords:"Plant Nutrition, Plant Hormone, Photosynthesis, Respiration, Plant Stress, Multi-omics, High-throughput Technology, Genome Editing"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:125,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},subseries:[{id:"3",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"
\r\n\tThe era of antibiotics led us to the illusion that the problem of bacterial infection is over. However, bacterial flexibility and adaptation mechanisms allow them to survive and grow in extreme conditions. The best example is the formation of a sophisticated society of bacteria defined as a biofilm. Understanding the mechanism of bacterial biofilm formation has changed our perception of the development of bacterial infection but successfully eradicating biofilm remains a challenge. Considering the above, it is not surprising that bacteria remain a major public health threat despite the development of many groups of antibiotics. Additionally, increasing prevalence of acquired antibiotic resistance forces us to realize that we are far from controlling the development of bacterial infections. On the other hand, many infections are endogenous and result from an unbalanced relationship between the host and the microorganism. The increasing use of immunosuppressants, such as chemotherapy or organ transplantation, increases the incidence of patients highly susceptible to bacterial infections in the population.
\r\n
\r\n\tThis topic will focus on the current challenges and advantages in the diagnosis and treatment of bacterial infections. We will discuss the host-microbiota relationship, the treatment of chronic infections due to biofilm formation, and the development of new diagnostic tools to rapidly distinguish between colonization and probable infection.
",annualVolume:11399,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null,editorialBoard:[{id:"190041",title:"Dr.",name:"Jose",middleName:null,surname:"Gutierrez Fernandez",fullName:"Jose Gutierrez Fernandez",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"University of Granada",institutionURL:null,country:{name:"Spain"}}},{id:"156556",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Mascellino",fullName:"Maria Teresa Mascellino",profilePictureURL:"https://mts.intechopen.com/storage/users/156556/images/system/156556.jpg",institutionString:"Sapienza University",institution:{name:"Sapienza University of Rome",institutionURL:null,country:{name:"Italy"}}},{id:"164933",title:"Prof.",name:"Mónica Alexandra",middleName:null,surname:"Sousa Oleastro",fullName:"Mónica Alexandra Sousa Oleastro",profilePictureURL:"https://mts.intechopen.com/storage/users/164933/images/system/164933.jpeg",institutionString:"National Institute of Health Dr Ricardo Jorge",institution:{name:"National Institute of Health Dr. Ricardo Jorge",institutionURL:null,country:{name:"Portugal"}}}]},{id:"4",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",annualVolume:11400,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},{id:"5",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",annualVolume:11401,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},{id:"6",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",annualVolume:11402,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/229967",hash:"",query:{},params:{id:"229967"},fullPath:"/profiles/229967",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()