\r\n\tThis book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field. The area of interest and scope of the project can be described with (but are not limited to) the following keywords: Alcoholism, Depression, Addiction, Blackouts, Relapse, Binge Drinking, Genetic basis, Neurological Aspects, Treatment, Organ Damage.
\r\n\r\n\tAuthors are not limited in terms of topic, but encouraged to present a chapter proposal that best suits their current research efforts. Later, when all chapter proposals are collected, the editor will provide a more specific direction of the book.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"cb00568f155a16350f11d29aabfc4ba9",bookSignature:"Associate Prof. Palash Mandal",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8315.jpg",keywords:"Alcoholism, Depression, Addiction, Blackouts, Relapse, Binge Drinking, Genetic basis, Neurological Aspects, Treatment, Organ Damage",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 3rd 2018",dateEndSecondStepPublish:"October 24th 2018",dateEndThirdStepPublish:"December 23rd 2018",dateEndFourthStepPublish:"March 13th 2019",dateEndFifthStepPublish:"May 12th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270934",firstName:"Ivan",lastName:"Butkovic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"ivan.b@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"37113",title:"Modelling of Recycling in LCA",doi:"10.5772/34054",slug:"modelling-of-recycling-in-lca",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/37113.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/37113",previewPdfUrl:"/chapter/pdf-preview/37113",totalDownloads:7660,totalViews:427,totalCrossrefCites:1,totalDimensionsCites:9,hasAltmetrics:0,dateSubmitted:"April 27th 2011",dateReviewed:"February 20th 2012",datePrePublished:null,datePublished:"May 23rd 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/37113",risUrl:"/chapter/ris/37113",book:{slug:"post-consumer-waste-recycling-and-optimal-production"},signatures:"Tom N. Ligthart and Toon (A.)M.M. Ansems",authors:[{id:"98477",title:"Dr.",name:"Tom",middleName:null,surname:"Ligthart",fullName:"Tom Ligthart",slug:"tom-ligthart",email:"tom.ligthart@tno.nl",position:null,institution:{name:"Netherlands Organisation for Applied Scientific Research",institutionURL:null,country:{name:"Netherlands"}}}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"2254",title:"Post-Consumer Waste Recycling and Optimal Production",subtitle:null,fullTitle:"Post-Consumer Waste Recycling and Optimal Production",slug:"post-consumer-waste-recycling-and-optimal-production",publishedDate:"May 23rd 2012",bookSignature:"Enri Damanhuri",coverURL:"https://cdn.intechopen.com/books/images_new/2254.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"96952",title:"Prof.",name:"Enri",middleName:null,surname:"Damanhuri",slug:"enri-damanhuri",fullName:"Enri Damanhuri"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"37104",title:"Assessing the Efficiency of a Proposed Project in Waste Management",slug:"asssessing-the-efficiency-of-a-proposed-project-in-waste-management",totalDownloads:1953,totalCrossrefCites:1,signatures:"Scorţar Lucia-Monica",authors:[{id:"96331",title:"Dr.",name:"Lucia",middleName:null,surname:"Scortar",fullName:"Lucia Scortar",slug:"lucia-scortar"}]},{id:"37105",title:"The Role of Informal Collectors of Recyclable Waste and Used Goods in Indonesia",slug:"the-role-of-informal-collectors-of-recyclable-waste-and-used-goods-in-indonesia",totalDownloads:2603,totalCrossrefCites:8,signatures:"Enri Damanhuri and Tri Padmi",authors:[{id:"96952",title:"Prof.",name:"Enri",middleName:null,surname:"Damanhuri",fullName:"Enri Damanhuri",slug:"enri-damanhuri"}]},{id:"37106",title:"An Analysis of Policies in Support of Waste Collecting in Rio de Janeiro - Three Case Studies",slug:"an-analysis-of-policies-in-support-of-waste-collecting-in-rio-de-janeiro-three-case-studies",totalDownloads:1690,totalCrossrefCites:0,signatures:"Maria Scarlet do Carmo",authors:[{id:"87639",title:"Ph.D.",name:"Maria Scarlet",middleName:null,surname:"Do Carmo",fullName:"Maria Scarlet Do Carmo",slug:"maria-scarlet-do-carmo"}]},{id:"37107",title:"Group Collection of Recyclables in Japan",slug:"group-collection-of-recyclables-in-japan",totalDownloads:1523,totalCrossrefCites:0,signatures:"Shigeru Matsumoto",authors:[{id:"90865",title:"Prof.",name:"Shigeru",middleName:null,surname:"Matsumoto",fullName:"Shigeru Matsumoto",slug:"shigeru-matsumoto"}]},{id:"37108",title:"Concept of Dual Traceable Ownership System (DTOS) as a Sustainable Design for Product Recycling",slug:"concept-of-dual-traceable-ownership-system-dtos-as-a-sustainable-design-for-product-recycling",totalDownloads:1203,totalCrossrefCites:0,signatures:"Jun Fujimoto and Dean Poland",authors:[{id:"87495",title:"Dr.",name:"Jun",middleName:null,surname:"Fujimoto",fullName:"Jun Fujimoto",slug:"jun-fujimoto"}]},{id:"37109",title:"The Economic Aspects of Recycling",slug:"the-economic-aspects-of-recycling",totalDownloads:7739,totalCrossrefCites:1,signatures:"Beatriz Ferreira, Javier Monedero, Juan Luís Martí, César Aliaga, Mercedes Hortal and Antonio Dobón López",authors:[{id:"98867",title:"MSc.",name:"Beatriz",middleName:null,surname:"Ferreira Pozo",fullName:"Beatriz Ferreira Pozo",slug:"beatriz-ferreira-pozo"},{id:"134225",title:"MSc.",name:"Javier",middleName:null,surname:"Monedero Tortola",fullName:"Javier Monedero Tortola",slug:"javier-monedero-tortola"},{id:"134226",title:"MSc.",name:"Juan Luis",middleName:null,surname:"Martí Arbona",fullName:"Juan Luis Martí Arbona",slug:"juan-luis-marti-arbona"},{id:"134227",title:"MSc.",name:"César",middleName:null,surname:"Aliaga Baquero",fullName:"César Aliaga Baquero",slug:"cesar-aliaga-baquero"},{id:"134228",title:"BSc.",name:"Antonio",middleName:null,surname:"Dobón López",fullName:"Antonio Dobón López",slug:"antonio-dobon-lopez"},{id:"134229",title:"Dr.",name:"Mercedes",middleName:null,surname:"Hortal Ramos",fullName:"Mercedes Hortal Ramos",slug:"mercedes-hortal-ramos"}]},{id:"37110",title:"Electronics Waste: Recycling of Mobile Phones",slug:"electronics-waste-recycling-of-mobile-phones",totalDownloads:6922,totalCrossrefCites:4,signatures:"Pia Tanskanen",authors:[{id:"87626",title:"Dr.",name:"Pia",middleName:null,surname:"Tanskanen",fullName:"Pia Tanskanen",slug:"pia-tanskanen"}]},{id:"37111",title:"Design for E-Waste Recycling Deposit System and Expense Mechanism in China",slug:"design-for-e-waste-recycling-deposit-system-and-expense-mechanism-in-china",totalDownloads:3667,totalCrossrefCites:0,signatures:"Hua Zhong",authors:[{id:"90255",title:"Associate Prof.",name:"Hua",middleName:null,surname:"Zhong",fullName:"Hua Zhong",slug:"hua-zhong"}]},{id:"37112",title:"PET Containers in Brazil: A Logistics Model for Post-Consumer Waste Recycling",slug:"pet-containers-in-brazil-a-reverse-logistics-model-post-consumer",totalDownloads:2805,totalCrossrefCites:0,signatures:"Tatiene Martins Coelho, Rosani de Castro and José Alcides Gobbo Junior",authors:[{id:"102842",title:"MSc.",name:"Tatiene",middleName:null,surname:"Coelho",fullName:"Tatiene Coelho",slug:"tatiene-coelho"},{id:"102846",title:"Dr.",name:"Rosani",middleName:null,surname:"Castro",fullName:"Rosani Castro",slug:"rosani-castro"},{id:"102847",title:"Dr.",name:"José Alcides",middleName:null,surname:"Gobbo Junior",fullName:"José Alcides Gobbo Junior",slug:"jose-alcides-gobbo-junior"}]},{id:"37113",title:"Modelling of Recycling in LCA",slug:"modelling-of-recycling-in-lca",totalDownloads:7660,totalCrossrefCites:1,signatures:"Tom N. Ligthart and Toon (A.)M.M. Ansems",authors:[{id:"98477",title:"Dr.",name:"Tom",middleName:null,surname:"Ligthart",fullName:"Tom Ligthart",slug:"tom-ligthart"}]},{id:"37114",title:"Optimal Production Decision in the Closed-Loop Supply Chain Considering Risk-Management and Incentives for Recycling",slug:"optimal-production-decision-in-the-closed-loop-supply-chain-considering-risk-management-and-incentiv",totalDownloads:1222,totalCrossrefCites:0,signatures:"Takashi Hasuike",authors:[{id:"92982",title:"Dr.",name:"Takashi",middleName:null,surname:"Hasuike",fullName:"Takashi Hasuike",slug:"takashi-hasuike"}]},{id:"37115",title:"Research on Multi-Step Active Disassembly Method of Products Based on ADSM",slug:"research-on-multi-step-active-disassembly-method-of-products-based-on-adsm",totalDownloads:1555,totalCrossrefCites:1,signatures:"Zhifeng Liu, Xinyu Li, Huanbo Cheng and Yifei Zhan",authors:[{id:"88357",title:"Prof.",name:"Zhifeng",middleName:null,surname:"Liu",fullName:"Zhifeng Liu",slug:"zhifeng-liu"}]},{id:"37116",title:"Material Flow, Energy Flow and Energy Flow Network in Iron and Steel Enterprise",slug:"material-flow-energy-flow-and-energy-flow-network-in-iron-and-steel-enterprise",totalDownloads:1510,totalCrossrefCites:2,signatures:"Wen-qiang Sun and Jiu-ju Cai",authors:[{id:"90087",title:"Dr.",name:"Wen-Qiang",middleName:null,surname:"Sun",fullName:"Wen-Qiang Sun",slug:"wen-qiang-sun"},{id:"96390",title:"Prof.",name:"Jiuju",middleName:null,surname:"Cai",fullName:"Jiuju Cai",slug:"jiuju-cai"}]},{id:"37117",title:"Evaluation of the Energy Consumption of Recycling Process",slug:"evaluation-of-the-energy-consumption-of-recycling-process",totalDownloads:1800,totalCrossrefCites:0,signatures:"Toshiharu Goto",authors:[{id:"87515",title:"MSc.",name:"Toshiharu",middleName:null,surname:"Goto",fullName:"Toshiharu Goto",slug:"toshiharu-goto"}]},{id:"37118",title:"Size Reduction by Grinding as an Important Stage in Recycling",slug:"comminution-as-an-important-stage-in-recycling",totalDownloads:5159,totalCrossrefCites:2,signatures:"Marek Macko",authors:[{id:"98075",title:"Dr.",name:"Marek",middleName:null,surname:"Macko",fullName:"Marek Macko",slug:"marek-macko"}]}]},relatedBooks:[{type:"book",id:"7557",title:"Recovery and Utilization of Metallurgical Solid Waste",subtitle:null,isOpenForSubmission:!1,hash:"e9d20f98cdcbb7b5d0c35f53e06c74be",slug:"recovery-and-utilization-of-metallurgical-solid-waste",bookSignature:"Yingyi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/7557.jpg",editedByType:"Edited by",editors:[{id:"221673",title:"Prof.",name:"Yingyi",surname:"Zhang",slug:"yingyi-zhang",fullName:"Yingyi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"65036",title:"Introductory Chapter: Metallurgical Solid Waste",slug:"introductory-chapter-metallurgical-solid-waste",signatures:"Yingyi Zhang",authors:[{id:"221673",title:"Prof.",name:"Yingyi",middleName:null,surname:"Zhang",fullName:"Yingyi Zhang",slug:"yingyi-zhang"}]},{id:"63935",title:"Antimicrobial Efficiency of Metallurgical Slags Suitable for Construction Applications",slug:"antimicrobial-efficiency-of-metallurgical-slags-suitable-for-construction-applications",signatures:"Július Strigáč, Nadežda Števulová, Jozef Mikušinec, Ľudovít Varečka\nand Daniela Hudecová",authors:[null]},{id:"63272",title:"Treatments and Recycling of Metallurgical Slags",slug:"treatments-and-recycling-of-metallurgical-slags",signatures:"Elena Brandaleze, Edgardo Benavidez and Leandro Santini",authors:[null]},{id:"63982",title:"The Comprehensive Utilization of Steel Slag in Agricultural Soils",slug:"the-comprehensive-utilization-of-steel-slag-in-agricultural-soils",signatures:"Angélica Cristina Fernandes Deus, Rosemary Marques de Almeida Bertani,\nGuilherme Constantino Meirelles, Anelisa de Aquino Vidal Lacerda Soares,\nLais Lorena Queiroz Moreira, Leonardo Theodoro Büll and\nDirceu Maximino Fernandes",authors:[null]},{id:"63364",title:"Comprehensive Utilization of Iron-Bearing Converter Wastes",slug:"comprehensive-utilization-of-iron-bearing-converter-wastes",signatures:"Hu Long, Dong Liu, Lie-Jun Li, Ming-Hua Bai, Yanzhong Jia and Wensheng Qiu",authors:[null]},{id:"63120",title:"The Comprehensive Utilisation of Red Mud Utilisation in Blast Furnace",slug:"the-comprehensive-utilisation-of-red-mud-utilisation-in-blast-furnace",signatures:"Andrey Dmitriev",authors:[null]}]}]},onlineFirst:{chapter:{type:"chapter",id:"62301",title:"Predator-Prey Interactions in Ciliated Protists",doi:"10.5772/intechopen.78622",slug:"predator-prey-interactions-in-ciliated-protists",body:'\nA common definition for predatory behavior describes it as the process through which one animal, the predator, captures and kills another animal, the prey, before eating it in part or entirely [1]; however, according to the opinion of a number of microbiologists and protistologists, this definition should be also extended to different organisms included in other life Kingdoms, with particular regard to microorganisms. Indeed, especially in the last 30 years, a lot of studies have been devoted to describing the predator-prey interactions among unicellular eukaryotic organisms like protists. Whittaker [2] originally defined protists as those “organisms which are unicellular or unicellular-colonial and which form no tissues,” and for this reason they must carry out at the cellular level all the basic functions which can be observed in multicellular eukaryotes. Among these functions, self-nonself recognition mechanisms are represented by a large repertoire in protists and can trigger either autocrine or paracrine processes in some ciliates (see [3] for a review), together with the capability to detect prey (food) or predators in others. In this regard, it is known that protists have developed a variety of strategies of feeding behaviors especially in response to different environmental factors, together with a diverse kind of food available in micro-habitats. \nFigure 1\n shows a general scheme of predator-prey interactions, where the predator recognizes the presence of the prey (step 1) and can attack it (step 2). On the other hand the prey recognizes the presence of the predator (step 1′) and it can organize its defense mechanisms (step 2′) [4]. This scheme should be considered functional for both animals and protists, and indeed several studies have shown that the food recognition and the offense-defense mechanisms adopted by some groups of protists can be compared, in terms of complexity and variability, with those observed in animals.
\nGeneral scheme of predator-prey interactions. Redrafted from [4].
In this context, a common feeding mechanism found in heterotrophic protists is phagocytosis, a process which requires specific organelles for food assimilation and which occurs in three steps: food capture, phagosome formation, and food digestion [5]. Different techniques of phagocytosis have been described in various protists, where they have especially been investigated in ciliates [5, 6, 7]. Verni and Gualtieri [5] describe three main phagocytotic processes in ciliates: filter feeding, suctorial feeding, and raptorial feeding. The authors compare them to the strategies used in fishing, like netting, trapping, and harpooning. In filter-feeding ciliates, the food, represented by small organisms or edible debris of various types, was pushed into the ciliate buccal cavity by the rhythmical beats of the cilia located in its adoral apparatus. Suctorial-feeding ciliates are represented by sessile or sedentary species that for most of their lives remain attached to other organisms or various substrates, intercepting the food particles with their specialized tentacles. Finally, raptorial ciliates are able to directly catch other organisms using peculiar organelles to paralyze and/or kill their prey, generally called extrusomes.
\nThe term “extrusome” was proposed, for the first time, by Grell in 1973 for extrusive (ejectable) bodies, which occur widely in protists [8]. They are membrane-bound organelles usually located in the cell cortex, attached to the cell membrane. They can display differences in structure and morphology, but they share the common characteristic of discharging their contents to the outside of the cell in response to mechanical or chemical stimuli. Remarkably, when the extrusomes are discharged, the cell remains intact and functional. Studies on extrusomes and related organelles have been reviewed by Hausmann [9], Dragesco [10], Kugrens et al. [11], Hausmann and Hülsmann [12], and Rosati and Modeo [13]. Typical examples of these organelles include toxicysts, trichocysts, mucocysts, cortical, or pigment granules in ciliates and flagellates, haptocysts in suctorians, and kinetocysts in heliozoan actinopods. Some extrusomes are known to be related in predator-prey interactions, for example, to catch and kill the prey (such as toxicysts, haptocysts, kinetocysts, and some cortical granules), or used as defensive organelles (such as the trichocysts and various cortical or pigment granules), but the role of other kinds of extrusomes such as the mucocysts in Tetrahymena or the trichites in Strombidiidae [13] still remains obscure.
\nOffensive extrusomes generally possessed by raptorial protists and located usually at or near the feeding apparatus are discharged after contact with a possible prey, which is immobilized, damaged, or firmly bound to the predator. Among these, organelles, certainly the most widely studied, belong to the category of toxicysts (toxic extrusomes) and they play an essential role in capturing and killing prey [7, 13]. Toxicysts are synthesized in Golgi or ER vesicles and are usually localized in the cell cortex attached to the cell membrane. Most of them are observed in species belonging to the class Litostomatea and subclass Haptoria, but they are also present in other predatory ciliates. They are usually positioned in a specific region of the cell, near the oral apparatus, and generally in the first portion which contacts the prey during the raptorial feeding [13]. Independently of the specific differences in the morphology of the cytostome, the toxicysts are always present in an appreciable number, for example, in the genera Didinium, Dileptus, Prorodon, Litonotus, Colpes, Homalozoon, and many others. In resting position, the toxicysts appear generally as rod-like elements (\nFigure 2\n), and could be discharged in milliseconds, if exposed to an appropriate stimulus such as contact with a prey (\nFigure 3\n) [7]. In this case, the tubules of the toxicysts are suddenly introduced into the cytoplasm of the prey’s body, like hypodermic needles, to inject the toxic material. Hausmann [7] reports essentially two ways by which the toxicysts may be discharged: in the first case, there is a fusion of the toxicyst’s membrane with the plasma membrane, followed by the tubule discharge via evagination; in the second, observed in certain ciliate species, a telescopic discharge of the tubules was observed. During or near the end of the toxicysts’ discharge, the toxic secondary metabolites were secreted by the tubules. It is worth noting that this mechanism of discharging toxic substances shows the structural and functional similarities that can be found between the toxicysts in ciliated protists and nematocysts in Cnidaria, despite the substantial differences in size [7].
\nTransmission electron microscope (TEM) picture of the toxicysts in a dividing cell of a ciliate Didinium nasutum. Scale bar = 1 μm. Original picture by R. Allen from http://www.cellimagelibrary.org/images/10010.
Predatory behavior of Coleps hirtus on Pseudokeronopsis erythrina. The predator attacks the prey with its toxicysts (arrow). Micrograph extracted from a film clips. Scale bar = 200 μm.
In contrast with recent and less recent studies about the nature of the toxic secondary metabolites used by ciliates in chemical defense, no exhaustive data are yet available about the composition of the toxins stored in the toxicysts of predatory ciliates. This is essentially due to the difficulty in separating the content of extrusomes from other molecules produced by the ciliate, in order to purify them at homogeneity for subsequent chemical and structural analyses.
\nTo date the presence of acid phosphatase has been demonstrated in the toxicysts of Didinium nasutum [14] and four other raptorial ciliates such as Enchelys mutans, Lacrymaria olor, Homalozoon vermiculare, and Pseudoprorodon niveus [15]. It has been supposed that this enzyme, generally present in lysosomes of animal cells, may probably be used by these ciliates to start the digestion of the prey.
\nThe complete analysis of the content of the toxicysts, together with observations of the predatory behavior, was also performed on another species, Coleps hirtus, a freshwater protostomatid ciliate. C. hirtus (40–65 × 20–35 μm) has an oral apparatus placed at the anterior end of the cell and its barrel-shaped body is covered by calcified armor arranged in plates. This ciliate is able to feed off bacteria, algae, flagellates, and ciliates, but it is also histophagous, that is, it feeds on living plant and animal tissue such as rotifers, crustaceans, and fish [16, 17]. Coleps is also reported to show a scavenger feeding on tissues of dead metazoans, such as Daphnia, Diaphanosoma, and chironomid larvae [18], as well as toward dead ciliates and dead specimens of its own species. Coleps is usually equipped with toxicysts used by the ciliate to assist its carnivorous feeding, and its predatory behavior has recently been analyzed against another ciliate species used as prey, Euplotes aediculatus. Observations conducted on a mixture of predators and prey showed several contacts between the specimens of Colpes and Euplotes, but only after 5–10 min did interactions between the anterior section of a predator with a specimen of Euplotes become effective. This time was probably essential for prey detection and recognition, followed by prolonged contact between predator and prey, generally ending with the rapid backward swimming of the latter which separated the two organisms. When the attacks became numerous some individuals of Coleps remained attached to their prey (\nFigure 4\n), which decreased their swimming speed and gradually stopped swimming. After 20–30 min, the prey was fragmented and eaten by several specimens of Coleps, and a similar predatory behavior was also observed using different ciliate species as prey [19]. On the contrary the toxicysts-deficient specimens of Colpes (\nFigure 5\n) obtained by means of the application of the cold-shock method capable of inducing an exclusive massive discharge of extrusomes in ciliates [20] appear unable to catch and kill their prey [19].
\nMultiple attacks by different cells Coleps hirtus on a cell of Euplotes aediculatus. Micrograph extracted from a film clips. Scale bar = 200 μm.
(A) The toxicysts in Coleps hirtus appear as rod-shaped organelles (arrow) in the oral basket of a cell. (B) The photomicrograph shows the toxicysts discharged (arrow) into the medium, immediately after a cold-shock treatment. (C) No toxicysts are detected in a toxicyst-deprived cell. Photomicrographs of fixed specimens by protargol stain. Scale bar = 10 μm. Pictures from [19].
Unexpectedly, the analysis of the bioactive fraction of the toxicyst discharge of Coleps hirtus (performed by liquid chromatography-electro-spray-mass spectrometry and gas chromatography-mass spectrometry) showed the presence of a mixture of 19 saturated, monounsaturated and polyunsaturated free fatty acids (FFAs) with the addition of a minor amount of a diterpenoid (phytanic acid) but did not reveal the presence of enzymes, as reported for other predatory ciliates [19]. To date this is the only report on the presence of FFAs as toxic substances in the extrusomes of ciliated protists, but the use of this class of compounds as toxins by Coleps is shared with at least 15 freshwater, 13 marine, and 6 brackish water potentially harmful microalgae, as well with some multicellular organisms. For example, a chemical defense by a mixture of FFAs was studied and demonstrated for the harmful microalga Fibrocapsa japonica (Raphidophyceae) [21, 22, 23], and also in animals, a defensive strategy mediated by FFAs was recently described for the fish Barbus barbus which adopted it to protect its eggs from predators [24].
\nVery little is known about the role and source of phytanic acid in ciliates, this being the additional component detected in the toxicyst discharge of Coleps. Phytanic acid can be produced from the biodegradation of the side chain of chlorophyll [25], so one possible source arises from Coleps’ carnivorous feeding on photosynthetic microorganisms [19]. Some insects, such as the sumac flea beetle, accumulate chlorophyll-derived metabolites as a chemical deterrent in excrements [26]. Komen et al. [27] demonstrated the toxic effect of phytanic acid on human skin fibroblasts, where it impaired mitochondrial respiration through protonophoric action. Regarding the role of phytanic acid in Coleps, it is possible to hypothesize that it can be used as a weapon, deterrent, or, at least, it could be stored in toxicysts given its potential toxic activity. In addition, it is known that ciliates themselves are also able to synthesize a huge number of terpenoids [28, 29]. This is the case of Euplotes focardi [30] and Euplotes rariseta [31] where the production of new diterpenoids was demonstrated. Terpene compounds and FFAs may also act together to exert cytotoxic effects [19]. FFAs may serve as a matrix to deliver toxic compounds to prey or predators and also to create a perfect environment where toxic metabolites can exert their functions.
\nIt has been demonstrated that the substances discharged from the toxicysts by Coleps are highly toxic for a number of ciliate species such as Euplotes aediculatus, Paramecium tetraurelia, Spirostomum teres, and S. ambiguum or Oxytricha sp. [19], and their action mechanism appears to be related to a necrotic process. The term necrosis refers to a rapid (unprogrammed) cell death, with plasmatic membrane rupture, often caused by external factors such as toxins. On the contrary, the apoptosis is programmed cell death characterized by nuclear condensation, cytoplasmic shrinkage, and disintegration of the cell into small, membrane-bounded fragments. As shown in \nFigures 6\n and \n7\n, the purified toxin from Coleps is able to induce rapid cell death in E. aediculatus and in S. ambiguum preceded by cell membrane fracture without any changes in the morphology of the macronucleus. An action mechanism of this type seems to be a “good choice” for Coleps as it induces paralysis and a very rapid death in the prey.
\n(A) Necrotic effects of the toxicyst discharge of Coleps hirtus on Euplotes aediculatus and (B) Spirostomum ambiguum. Arrows indicate the cell-membrane fractures. Scale bar = 100 μm. Pictures from [19].
(A, B) Effects of the toxicyst discharge of Coleps hirtus on the macronuclear morphology in specimens of Euplotes aediculatus and (C, D) Spirostomum ambiguum. Cells were stained with acridine orange and ethidium bromide and observed by fluorescent microscopy. Viable cells show intact, bright green nuclei, nonviable cells show red/orange nuclei. M = macronucleus, m = micronucleus. Scale bar = 100 μm. Pictures from [19].
Interestingly, the cells of Coleps can also be damaged if exposed, in vitro, to their own toxin discharge [19]. Nevertheless, this cannot occur in nature, because on the one hand, the toxins are stored in the toxicysts of the ciliate, thus avoiding autotoxicity and on the other hand, the accidental exposure of Coleps to the toxicyst discharge dissolved in the medium is also unlikely, due to the choice of the predator to directly inject the toxins into the prey [19]. In this context, it is worth remembering the peculiar predatory behavior of Coleps, which usually leads to the observation that the same prey undergoes multiple attacks by several raptorial specimens, a behavior also adopted against young larvae of zebrafish [17]. It is likely that this behavior has evolved to ensure a fast immobilization of the prey, that after simultaneous multiple attacks, it can easily accumulate lethal concentrations of toxins injected by numerous predators. Therefore, essentially for the “wolf-like” group hunting behavior of Coleps, the species that appeared relatively resistant to its toxicyst discharge may also be easily caught and killed.
\nDifferently to Coleps, other ciliate species have specialized in hunting and catching a few preferential prey. This is, for example, the case of Didinium nasutum that is capable of capturing and killing several species of Paramecium and few other ciliates. Generally, Paramecium species are able to defend themselves by means of mechanical extrusomes like trichocysts (that will be discussed later on this chapter) but Didinium seems to overcome the defense of Paramecium by means of a highly specialized combination of extrusomes. Present on the proboscis of Didinium are several units of two different kinds of extrusomes: toxicysts, as in other Litostomatea, and pexicysts, another specialized offensive extrusome observed only in this species [32]. These authors describe the discharge of pexicysts as the first response after the prey recognition [14], which is typically followed by the discharge of toxicysts. At the same time, the prey (generally a Paramecium) discharges its trichocysts which separate the two organisms, but the proboscis of Didinium remains attached to the prey by a tiny connection probably composed of a bundle of discharged pexicysts and toxicysts (\nFigure 8\n). Subsequently, the Paramecium will be reached again and captured by the predator. In the light of this observation, the pexicysts seem to act most by a mechanical function (as harpoon-like organelles) rather than with a chemical offense. This assumption is supported by the fact that another species of predatory ciliate, Monodinium balbiani, which is morphologically similar and phylogenetically close to Didinium, but without the presence of the pexicysts on its proboscis, unlike the Didinium, is sensitive to the defense mechanism possessed by Paramecium, which is often able to avoid capture [33].
\nScanning electron microscope (SEM) picture on the predator-prey interaction between a cell of Didinium nasutum and a cell of Paramecium multimicronucleatum. The bundle of toxicysts and pexicysts can be seen between the two organisms (arrow). Magnification ×50. Original picture by G. Antipa from http://www.cellimagelibrary.org/images/21991.
In this context it is also relevant to mention the subclass Suctoria, represented by ciliates which become sessile during development and consequently lose the ciliary structure. Suctorians are able to feed on other protists and frequently on other ciliates by means of specialized tentacles. The distal ends of these tentacles are often equipped by peculiar extrusomes called haptocysts that are involved in prey capture. When a tentacle touches a possible prey, the discharge of haptocysts is able to penetrate the prey’s membrane, forming a connection between the predator and the prey and injecting the extrusome content into the latter, which also concurs to the fusion of the membranes belonging to the two organisms [13, 34]. However, the fusion of the two membranes is not always immediate, for example, in Heliophrya erhardi, Spoon et al. [35] observed that many specimens of Paramecium contacting the tentacles of the suctorian escaped discharging trichocysts at the point of contact, suggesting that Paramecium is able to defend itself from the puncture of the haptocysts.
\nIn addition to predatory behavior, ciliated protists have also evolved different defense strategies, many based on the discharge of extrusomes. Two different mechanisms involved in their defense behavior are essentially observed: the first is mediated by the mechanical actions of trichocysts as in Paramecium or Frontonia and the second is mediated by the toxic secondary metabolites of different kinds of chemical extrusomes.
\nSpindle trichocysts (or simply, trichocysts) are spindle-shaped organelles which discharge their content in the form of a thread. They are found in some ciliates and flagellates and are sometimes furnished with a specially constructed tip [9]. The best known and studied trichocysts are those in the genus Paramecium. Trichocysts in Paramecium are 3–4 μm long, carrot-shaped membrane-bounded organelles armed with a sharply pointed tip, and are present in thousands all over the cell surface, except at the oral apparatus (\nFigures 9\n and \n10\n). When paramecia are subjected to various stimuli, the membranes of the trichocysts and the cell membrane blend together, and the content of the extrusomes is immediately discharged to the outside of the cell, forming a spear-like structure in milliseconds (\nFigure 11\n) (see [13] for a review). Trichocyst discharge has therefore been extensively studied as a model system of exocytosis [36] (see [37] for a review). Synthesis, processing, and sorting of component proteins in trichocysts are also studied as model systems of protein biosynthesis [36] for a review.
\nScheme of the ciliary structure and the trichocysts of Paramecium. Picture from http://biodidac.bio.uottawa.ca, redrafted by R. D’Arcangelo.
Membrane details of resting trichocysts under the freeze fracture. The trichocyst tip (tt) and body (tb) are covered by the same membrane. The A-face of this membrane (A-tin) possesses randomly distributed particles whereas the B-face (B-tin) shows corresponding depressions. Scale bar = 1 μm. Picture from [9].
The trichocysts discharged by a cell of Paramecium tetraurelia exposed to picric acid solution. Scale bar = 100 μm.
Maupas, one of the pioneers of protozoology, first proposed the defensive function of trichocysts in Paramecium in 1883, observing its morphological features and judging it as self-evident [38]; however, this point was questioned for years. The main controversy was due to the fact that Paramecium species are easily preyed upon by Didinium in spite of massive trichocyst discharge by paramecia. Pollack reported that Didinium preys on wild-type cells as easily as trichocyst-defective mutants in P. tetraurelia [39]. However, further studies have unequivocally indicated that trichocysts in Paramecium exert an effective defensive function against unicellular predators, including the raptorial protists Dileptus margaritifer, Monodinium balbiani, Climacostomum virens, Echinosphaerium akamae, and E. nuceofilum [33, 40, 41, 42, 43]. In addition, a more recent paper also analyzed the defensive function of trichocysts in P. tetraurelia against some microinvertebrate predators, such as a rotifer (Cephalodella sp.), an ostracod (Eucypris sp.), and a turbellarian flatworm (Stenostomum sphagnetorum) [44]. The results of this study show the success in the defensive function of trichocysts against the rotifer and the ostracod while the mechanism seems ineffective against the flatworm. The authors speculate that the efficiency of the defense by means of trichocysts depends essentially on the kind of prey-capture behavior displayed by the predators. In particular, the success of the defense mediated by trichocysts appears positively related to the time that the predator requires to capture and manipulate the prey before ingestion. Consequently, and different from the turbellarian flatworm that directly swallows paramecia, predators such as the rotifer and the ostracod that, prior to ingesting paramecia, contact it with a ciliated corona or articulated appendices, give the prey sufficient time to activate the trichocysts discharge that allows it to escape [44]. Essentially this looks like the same phenomenon observed during the interaction between Paramecium and the predatory ciliate Dileptus margaritifer, that attempts to paralyze its prey with the toxicysts on its proboscis before ingestion, thereby inducing an explosive extrusion of trichocysts by Paramecium, which then swims away [44]. In this regard, another interesting observation was made when Paramecium was placed in a cell-free fluid containing the toxic material derived from the toxicysts from Dileptus [45] (Miyake A. personal communication); indeed after contact with this toxic solution, Paramecium cells violently reacted by immediately discharging most of their trichocysts before being killed. In this reaction, sometimes a single specimen (cell) of Paramecium was completely surrounded by its discharged trichocysts. When this occurred, the Paramecium survived long after other cells were killed, moving slowly in the narrow space in the capsule of discharged trichocysts. But when it happened that one of these encapsulated cells managed to squeeze out of the capsule, it was quickly killed. This observation suggests that discharged trichocysts of Paramecium function as a barrier against the Dileptus toxins and hence the locally discharged trichocysts in the Paramecium-Dileptus interaction function as an instant shield against Dileptus.
\nTo summarize, the mechanical defense by trichocysts and related extrusomes appear to be multiple, including quick physical displacement, the thrust into a predator, and protection against the predator’s toxins, increasing the chance for the prey to survive and escape. However, especially in ciliates and flagellates, other kinds of extrusomes used for defense were found, ones that, unlike trichocysts, are capable of discharging toxic materials in response to predatory behavior.
\n\nPigment granules (also called pigmentocysts) and cortical granules are extrusive organelles containing pigmented or colorless toxic material, respectively, and they were originally classified as a special type of mucocysts [9]. Pigment and cortical granules are mainly present in heterotrich and karyorelictean ciliates, such as Blepharisma, Stentor, Loxodes, and Trachelonema, but they may also exist in other groups of ciliates. They are usually present in great numbers throughout the cell cortex, sometimes providing bright colors to their bearers. Examples are Stentor coeruleus, whose coloration is due to the pigment called stentorin, and several red species of Blepharisma, whose coloration is due to blepharismins, formerly overall called zoopurpurin by Giese [46]. The coloration of these common heterotrichs has long attracted attention and most studies on pigment granules have been carried out using S. coeruleus, and a few red species of Blepharisma. B. japonicum (\nFigure 12\n) is the best studied species of the genus Blepharisma and it presents pigment granules usually in a size of 0.3–0.6 μm diameter, arranged in stripes between the rows of cilia that confer a red-pink coloration to the ciliate (\nFigure 13\n). These granules have been shown to contain a mixture of five compounds called blepharismins that are multifunctional quinone derivatives structurally related to hypericin, a photodynamic toxin of Hypericum perforatum (St. John’s Wort), and stentorin, produced by the ciliate S. coeruleus [47, 48] (\nFigure 14\n). To date, two primary functions of blepharismins have been demonstrated: light perception and defense function against predators [47, 48, 49, 50, 51, 52]. With regard to light perception, B. japonicum shows a temporal backward swimming or rotating movement (step-up photophobic response) if exposed to a sudden increase in light intensity. The step-up photophobic response helps the cells avoid strongly illuminated regions and lethal damage due to the photodynamic action of blepharismins [53]. In addition to light perception, blepharismins were found to act as chemical weapons via their light-independent cytotoxic effect against predatory protozoans and methicillin-resistant Gram-positive bacteria [49, 50, 54]. A possible explanation for this cytotoxicity can be found in the capability of blepharismins to form cation-selective channels in planar phospholipid bilayers [51], a phenomenon also expected to occur in the cell membranes of microorganisms exposed to toxic concentrations of ciliate pigments. The defensive function of blepharismins was initially proposed by Giese in 1949 who found that crude extracts of Blepharisma were toxic to various ciliates but not to Blepharisma itself [55]. Unfortunately, however, his preliminary tests did not support this assumption, that is, Blepharisma was easily eaten by predators such as the heliozoan Actinospherium eichhorni and small crustaceans [46, 55]. Some predators, Didinium nasutum, Woodruffia metabolica, and Podophrya fixa, did not eat Blepharisma, but they also ignored some other ciliates including uncolored ones. In the absence of further evidence, Giese was skeptical about the assumption [46]. This hypothesis was further unequivocally demonstrated by Miyake, Harumoto, and collaborators, comparing normally pigmented red cells of B. japonicum, albino mutant cells, and light-bleached cells (a phenocopy of the albino mutant) as prey for the raptorial ciliate Dileptus margaritifer and evaluating the toxicity of purified blepharismins on various ciliate species [49, 50]. As a response to the attack by D. margaritifer versus one cell of B. japonicum, the latter releases the toxic blepharismins, visible as spherical bodies of 0.2–0.6 μm in diameter under scanning electron microscopy (\nFigure 15\n). The discharge take place within a second and it is able to repel the predator, while the albino and light-bleached cells are much more sensitive to the attacks of D. margaritifer [49, 50]. Recently the defensive function of blepharismins was also investigated in two additional species of Blepharisma, B. stoltei, and B. undulans against two predatory protists (C. hirtus and Stentor roeseli) and one metazoan, the turbellarian S. sphagnetorum [56]. The results indicate that the chemical defense mechanism present in B. stoltei and B. undulans is mediated by the same five blepharismins present in B. japonicum, although produced in different proportions [56]. Authors speculate that the conservation of this panel of toxic secondary metabolites suggests that distinct roles for these molecules are likely required at least for the fine control of photophobic reactions, as initially proposed by Matsuoka et al. [48]. Summarizing, the Blepharisma species studied are able to defend themselves against C. hirtus, although S. sphagnetorum and S. roeseli seem to overcome Blepharisma’s chemical defense, but it was observed that after the ingestion of intact cells of the toxic ciliates these predators are not able to reproduce, suggesting the presence of the post-ingestion toxicity phenomena [56]. Additional toxic pigments, structurally related to hypericin, were found in other heterotrich ciliate species, such as stentorin in S. coeruleus (see [57] for a review), amethystin in S. amethystinus [58], and maristentorin in the marine ciliate Maristentor dinoferus [59], but the defensive function was experimentally proved only for S. coeruleus [60].
\nExternal morphology of a living cell of Blepharisma japonicum. Scale bar = 100 μm.
Extrusive pigment granules in Blepharisma japonicum (arrow) visible as red/pink dots under a vacuole. Scale bar = 100 μm.
Main secondary metabolites produced by ciliated protists. Erythrolactones: A1 (R1 = SO3\n−; R2 = C6H13 (n-hexyl)); B1 (R1 = SO3\n−; R2 = C7H15 (n-heptyl)); C1 (R1 = SO3\n−; R2 = C8H17 (n-octyl)); A2 (R1 = H; R2 = C6H13 (n-hexyl); B2 (R1 = H; R2 = C7H15 (n-heptyl)); C2 (R1 = H; R2 = C8H17 (n-octyl)).
SEM micrographs of the predator-prey interaction between a cell of Dileptus margaritifer (DI) and a cell of Blepharisma japonicum (BL). (A) Blepharisma being attacked by Dileptus. Arrow indicates the site of the damage inflicted by the proboscis of the Dileptus. The rupture runs across the adoral zone of membranelles of the Blepharisma. Scale bar = 50 μm. (B) Enlargement of the region near the rupture in A. Scale bar = 5 μm. (C) The rupture magnification in B, showing the surface of Blepharisma peppered with spherules discharged from pigment granules. The surface is also pitted with small depressions presumably formed at the spots where the spherules have passed through the cell membrane. Scale bar = 5 μm. (D) Enlargement of a part of C. Scale bar = 0.5 μm. Pictures from [50].
Karyorelictean ciliates also possess pigment granules which are similar in size, structure, and distribution to those in the heterotrichs, but principally due to the difficulties to the growing species of karyorelictid in the laboratory, the chemical nature of their pigments is still unknown. The most studied species is freshwater Loxodes striatus, which presents yellow-brown pigment granules previously examined as photoreceptors [61]. More recently it has been proved that the pigment granules in L. striatus are extrusive organelles which contain a toxic photodynamic pigment used for chemical defense against predators [62]. Loxodes are able to discharge the toxic pigment as response to attacks of the ciliate D. margaritifer (\nFigure 16\n) or of the turbellarian S. sphagnetorum repelling predators. Intriguingly Finlay and Fenchel already proposed a defensive function for the pigment granules in Loxodes (L. striatus and L. magnus) based on different evidences; specifically, they found that light induces in Loxodes a characteristic behavior to escape from toxic water and that the pigment granules are the photoreceptors for this reaction [61]. They assumed that this reaction may serve to localize Loxodes in regions of low oxygen tension where predators, such as planktonic metazoan, are rare and therefore the pigment may function as a predator-avoidance strategy. If this is the case, pigment granules of Loxodes participate in two very different kinds of defense, chemical defense and the behavior-based predator-avoidance, conferring to the ciliate an ability to defend itself against a wider range of predators [62].
\nPredator-prey interaction between Dileptus margaritifer and Loxodes striatus. (A) Dileptus (the slender cell at the left) starts swimming backward after hitting a Loxodes with its proboscis. (B) The same cells as in A, about a second later, showing the retreated Dileptus and a mass of brownish material (arrow) near the Loxodes. Micrograph extracted from a film clips. Magnification ×70. Pictures from [62].
Pigmented granules are found also in other groups of ciliates as the Spirotrichea, and mainly in the genus Pseudokeronopsis, which shows species equipped with reddish-brown pigment granules morphologically similar to those in heterotrichs [63]. Particularly in P. carnea [64] and in P. erythrina [65], these granules are reported as extrusive organelles. New secondary metabolites, keronopsins and keronopsamides, respectively, produced by P. rubra and P. riccii, were recently isolated together with their sulfate esters (\nFigure 14\n) [66, 67]. In the case of P. rubra, it was demonstrated that a crude extract of this organism containing keronopsins, A1 and A2, and their sulfate esters B1 and B2, is capable of paralyzing or even killing ciliates and flagellates [66]. For these reasons a defensive function for these secondary metabolites has been proposed; however, no data relative to their cellular localization and mechanism of action are available to date. On the other hand, in the case of P. riccii, the function of the alkaloid secondary metabolite keronopsamide A and its sulfate esters B and C has not been investigated, and the possible localization of the pigments in the cortical granules is only presumed [67]. The most extensively studied species is P. erythrina; previously described as an estuarine one, it was successively found also in the freshwater environment and hence reported as a euryhaline organism [68]. This ciliate shows an elongated body (\nFigure 17\n) equipped with spherical, dark-reddish, brown, or brick red colored pigment granules of about 1 μm in diameter that are mainly arranged around ciliary organelles [69]. As the content of pigment granules, three new secondary metabolites have recently been characterized and named erythrolactones A2, B2, and C2. These are characterized by a central 4-hydroxy-unsaturated δ lactone ring bearing an alkyl saturated chain at carbon-2 and a butyl-benzenoid group at carbon-5 [65, 68]. These molecules were detected in the crude extract of whole cells together with their respective sulfate esters, erythrolactones A1, B1, and C1 (\nFigure 14\n). After the application of the cold-shock method on massive cell cultures of P. erythrina to induce the exclusive discharge of pigment granules, it was demonstrated that only non-sulfonated molecules A2, B2, and C2 were contained in the extrusomes of the ciliate [65]. The mixture of these three molecules has been proven to repel some predators, such as the ciliate C. hirtus, and to be toxic for a panel of ciliates and microinvertebrates [65]. Erythrolactones A2, B2, and C2 are the only toxins present in the extrusome discharge of P. erythrina, whereas their respective sulfate esters A1, B1, and C1 remain confined inside the cell environment [68]. It is known that the process of sulfonation of endogenous molecules is a major metabolic reaction in eukaryotes that can increase water solubility and influence conformational changes but can also lead to the activation or inactivation of a biological effect (see [70] for a review). Buonanno and collaborators [64] speculate that the exclusive maintenance of the sulfate esters of the erythrolactones inside the P. erythrina cell may be associated with their temporary inactivation, in order to prevent the phenomenon of self-toxicity that could occur before their definitive storing, as non-sulfonated and active compounds, in the cortical pigment granules.
\nExternal morphology of a living cell of Pseudokeronopsis erythrina. Scale bar = 100 μm.
Other organelles strictly related to pigment granules are the colorless cortical granules in the heterotrich, sometimes reported as granulocysts to underline their extrusive nature. These organelles show a greatest morphological similarity to pigment granules, as in the case of the cortical granules of Climacostomum virens [71] and Blepharisma hyalinum [72]. The function and biological activity of the secondary metabolites contained in the cortical granules seem to be primarily related to chemical defense or offense, and the cortical granules in C. virens are to date the most studied. This freshwater heterotrich ciliate, if properly stimulated, is able to repel predators by discharging the colorless toxin climacostol (\nFigure 14\n) and some related analogues.
\nThis toxin may be chemically classified within a large group of natural compounds known as resorcinolic lipids (also called alkylresorcinols or 5-alkylresorcinols), widely detected in prokaryotes and eukaryotes [73] and with reported antimicrobial, antiparasitic, antitumoral, and genotoxic activities (see [74] for a review).
\nA typical defensive behavior of C. virens occurs when a predator, such as the ciliate D. margaritifer, contacts a C. virens cell with its toxicysts bearing proboscis (\nFigure 18A\n). D. margaritifer swims backward while dense material is visible under dark field microscopy, emerging from the site where the proboscis touched the C. virens (\nFigure 18B\n) which swims away [75]. Sometimes, together with the discharged material from C. virens, it is also possible to detect some hazy material consisting of needle-like structures which appear to be discharged toxicysts of D. margaritifer (\nFigure 19\n), suggesting a possible further protection against the toxic extrusomes of predators [75]. Interestingly, the chemical defense adopted by C. virens against D. margaritifer is also effective against some other protists and metazoans [44, 76].
\nPredator-prey interaction between Dileptus margaritifer and Climacostomum virens. (A) Dileptus (the slender cell at the center) starts swimming backward after hitting with the proboscis Climacostomum. A small bulge (arrow) is developing on the surface of the Climacostomum at the site where the proboscis has just hit. (B) The same cells as in A, about a second later, show the retreated Dileptus and a small cloud (arrow) near the Climacostomum. Dark field micrographs of living cells. Magnification ×70. Pictures from [75].
Hazy cloud consisting of needle-like structures discharged from the toxicysts of Dileptus margaritifer. Magnification ×720. Pictures from [75].
If the defensive function of cortical granules in C. virens is widely demonstrated, some evidences indicate that these extrusomes could be also successfully used for chemical offense. Differently from the Paramecium species which do not have trichocysts (exclusively for defense) localized in the oral apparatus, C. virens presents a wide number of cortical granules in the buccal cortex suggesting an additional offensive function for these extrusomes [71]. C. virens is able to catch and ingest prey of different sizes, from small flagellates such as Chlorogonium elongatum to large ciliates, such as B. japonicum or Spirostomum ambiguum [43, 77]. These prey are sucked up into the buccal cavity of C. virens, which is formed of a peristomial field and a buccal tube, and then ingested in a food vacuole, which arises at the end of the tube [43]. A cell of P. tetraurelia which is entirely taken into the buccal tube of C. virens is able to discharge the trichocysts and escape from the predator [43], different to what happens when an individual of the same species is totally caught in the pharynx of the microturbellarian S. sphagnetorum [44]. Perhaps, as in the case of contact with the toxicysts of the raptorial ciliate D. margaritifer, the trichocysts were discharged after contact with climacostol released from C. virens to kill the prey. A similar phenomenon also occurs with different preys which possess chemical extrusomes for defense such as the ciliate S. ambiguum. In this case, after a cell-cell contact, the S. ambiguum displays rapid cell contraction, and according to the authors, it is likely that this contraction is induced by the discharge of extrusomes by C. virens [77]. If this is the case, it is likely that the cortical granules of C. virens could be equally used as multifunctional extrusomes, both for chemical defense and offense.
\nBesides the natural role of climacostol and thanks to the availability of a straightforward method for its chemical synthesis [78], other bioactivities of the toxin and its potential application to human health are, to date, investigated in various biological systems. The toxicity of climacostol proves very effective against pathogenic Gram-positive bacteria such as Staphylococcus aureus or S. pneumoniae and against a fungal pathogen, Candida albicans [79]. In addition, on the basis of the anticancer properties of other resorcinolic lipids, the toxic potential of climacostol is also studied against cancerous and non-cancerous mammalian cells, including human cell lines. The results show that climacostol effectively inhibits the growth of some tumor cell lines in a dose-dependent manner by inducing programmed cell death, with non-tumor cells proving significantly to be more resistant to the toxin [73, 80]. More recently the anti-tumor therapeutic activity of this toxin was also proved in vivo, using a melanoma allograft model in mice [81]. These results are quite interesting also in light of the fact that different molecules produced by other ciliate species show some particular pharmacological properties such as the sesquiterpenoid euplotin C or the cell type-specific signaling protein pheromone Er-1 from Euplotes species (see [82] for a review).
\nReturning to the topic of this chapter, different secondary metabolites have been also isolated and characterized from other heterotrics, such as Spirostomum ambiguum, and S. teres. S. ambiguum (\nFigure 20\n) is a colorless freshwater species and one of the largest and elongated existing ciliates (800–2000 × 48–60 μm). The species is very common in the sludge-water contact zone of wells, ponds, sewage ponds, lakes, oxbows, ditches, and in the sediments of alpha- to beta-mesosaprobien rivers [77]. The defensive function of its cortical granules was recently demonstrated against different predators and the toxicity of its content was tested on a panel of freshwater ciliates [77, 83]. S. ambiguum has numerous cortical granules which, under a phase contrast microscope, appear as dots placed in the region between ciliary lines that could be observed in a large transparent contractile vacuole placed at the posterior end of the cell (\nFigure 21A\n) [77]. The cold-shock method was applied to S. ambiguum to obtain the cortical granule-deficient cells, which showed a markedly reduced number of extrusomes (\nFigure 21B\n). Both untreated and cortical granule-deficient cells were exposed to the attack of C. virens, and when the buccal apparatus of the predator makes contact with an untreated cell of S. ambiguum, it showed a rapid contraction while the predator swam backwards (\nFigure 22A\n). Similarly to untreated cells, cortical granule-deficient cells of S. ambiguum also showed rapid contraction after attack by C. virens, but they were successfully captured and sucked up by the predator into its buccal cavity (\nFigure 22B\n) [77]. The toxin involved in this interaction was purified by reversed phase high-performance liquid chromatography (RP-HPLC), and its structural characterization was carried out through nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) measurements and revealed as 2-(3-methylbut-2-enyl)benzene-1,4-diol(mono-prenyl hydroquinone) (\nFigure 14\n). Prenylated-hydroquinone derivatives are metabolites of abundant occurrence and have been isolated from fungi, algae, plants, animals, and bacteria [77]. In this case the involvement of this molecule in predator-prey interaction is clear. Interestingly, another freshwater species of the genus Spirostomum, S. teres, possesses a different colorless toxin used for defense, characterized as spiro[(2,5-dimethyl-5,6,7,8-tetrahydronaphthalene-1,4-dione)-8,6′-(pyrane2’,5′-dione)] and named spirostomin (\nFigure 14\n) [84]. It is no novelty that closely related organisms can produce different or even biogenetically distant specific secondary metabolites [77], and it is very common for ciliates [56]. To date, the only reported exception to this phenomenon is related to the genus Blepharisma in which the three species B. japonicum, B. stoltei and B. undulans share the same mixture of blepharismins even if produced in different proportions [56].
\nExternal morphology of living cells of Spirostomum ambiguum. Scale bar = 200 μm.
Reduction in the number of extrusomes (cortical granules) in Spirostomum ambiguum obtained by cold-shock treatment. (A) Extrusomes in an untreated cell. (B) Extrusome-deprived cell after cold shock. Magnification ×900. Pictures from [77].
Predator-prey interaction between Climacostomum virens and Spirostomum ambiguum. (A) 1: Cell of C. virens contacts a cell of S. ambiguum with its buccal apparatus. 2: S. ambiguum shows rapid contraction while the predator swims backwards. 3: The same cells as in 2, a second later, showing a retreated C. virens, while S. ambiguum swims away. (B) Predator-prey interaction between C. virens and extrusome-deficient cells of S. ambiguum obtained by cold-shock treatment. 1: C. virens cell contacts a S. ambiguum cell which instantly shows contraction. 2: C. virens engulfs the contracted S. ambiguum cell and continues to eat the S. ambiguum cell (3). Micrographs extracted from a film clip. Magnification ×50. Pictures from [77].
Another peculiar defensive mechanism, reported as inducible defense, has been described for some Euplotes species as the response to the presence of some predators, such as microturbellarians, ciliates, or amoebas. These predators can release active substances, called kairomones, which induce some behavioral and morphological changes (such as the formation of spines in Euplotes) as a defensive mechanism in response to the presence of the predator [85, 86, 87, 88] for a review.
\nIt could be interesting to study the efficiency of the inducible defenses, if compared to mechanical and chemical defense by means of extrusomes. In this regard, a first study was performed to compare the efficiency of the defense mediated by trichocysts in P. aurelia with that mediated by cortical granules in C. virens and S. ambiguum [44]. The authors reported that the mechanical defense in Paramecium against metazoan predators appears to be equally effective as the chemical one, but can be successfully activated only during the very early interactions with the predator, whereas it is ineffective after the ingestion of the ciliate. In contrast, the chemical defense adopted by a toxic ciliate against metazoan predators can also be activated after the ingestion of the prey by the predator, but its effectiveness appears to be strictly linked to the cytotoxic potency of the compound stored in the protozoan cortical granules. It would also be interesting to compare these two mechanisms against unicellular predators.
\nIn a general perspective, it is clear that the researches on predatory behavior and on the related defensive mechanisms in protists not only represent progress in knowledge about the ecological role played in nature by predator-prey interactions in aquatic microhabitats but will also provide new research opportunities for evolutionary biology and may also represent a relevant source of new natural products.
\nWe are grateful to Dr. Gill Philip (University of Macerata) for the linguistic revision of the chapter. Financial support was provided by University of Macerata, Italy.
\nThe authors have declared no conflict of interest.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"178"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"267",title:"Ethics",slug:"ethics",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:2,numberOfAuthorsAndEditors:38,numberOfWosCitations:15,numberOfCrossrefCitations:14,numberOfDimensionsCitations:22,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"ethics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6003",title:"Robotics",subtitle:"Legal, Ethical and Socioeconomic Impacts",isOpenForSubmission:!1,hash:"15ab11f5bb5aac89956dd8b42f261011",slug:"robotics-legal-ethical-and-socioeconomic-impacts",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6003.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5418",title:"Bioethics",subtitle:"Medical, Ethical and Legal Perspectives",isOpenForSubmission:!1,hash:"767abdeb559d66387ad2a75b5d26e078",slug:"bioethics-medical-ethical-and-legal-perspectives",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/5418.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"56025",doi:"10.5772/intechopen.69796",title:"Cybersecurity of Robotics and Autonomous Systems: Privacy and Safety",slug:"cybersecurity-of-robotics-and-autonomous-systems-privacy-and-safety",totalDownloads:1538,totalCrossrefCites:6,totalDimensionsCites:6,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Francisco J. Rodríguez Lera, Camino Fernández Llamas, Ángel\nManuel Guerrero and Vicente Matellán Olivera",authors:[{id:"124522",title:"Dr.",name:"Vicente",middleName:null,surname:"Matellan",slug:"vicente-matellan",fullName:"Vicente Matellan"},{id:"211294",title:"Prof.",name:"Camino",middleName:null,surname:"Fernández-Llamas",slug:"camino-fernandez-llamas",fullName:"Camino Fernández-Llamas"},{id:"211295",title:"MSc.",name:"Ángel Manuel",middleName:null,surname:"Guerrero-Higueras",slug:"angel-manuel-guerrero-higueras",fullName:"Ángel Manuel Guerrero-Higueras"},{id:"211296",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Rodríguez-Lera",slug:"francisco-javier-rodriguez-lera",fullName:"Francisco Javier Rodríguez-Lera"}]},{id:"52301",doi:"10.5772/65128",title:"Pharmacy Ethics and the Spirit of Capitalism: A Review of the Literature",slug:"pharmacy-ethics-and-the-spirit-of-capitalism-a-review-of-the-literature",totalDownloads:1585,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Robert Ancuceanu and Ioana-Laura Bogdan",authors:[{id:"189717",title:"Associate Prof.",name:"Robert",middleName:null,surname:"Ancuceanu",slug:"robert-ancuceanu",fullName:"Robert Ancuceanu"}]},{id:"53439",doi:"10.5772/65765",title:"Rethinking Autonomy and Consent in Healthcare Ethics",slug:"rethinking-autonomy-and-consent-in-healthcare-ethics",totalDownloads:1771,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Eleanor Milligan and Jennifer Jones",authors:[{id:"187831",title:"Prof.",name:"Eleanor",middleName:null,surname:"Milligan",slug:"eleanor-milligan",fullName:"Eleanor Milligan"}]}],mostDownloadedChaptersLast30Days:[{id:"52101",title:"Ethical Issues in Organ Procurement and Transplantation",slug:"ethical-issues-in-organ-procurement-and-transplantation",totalDownloads:3983,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Richard J. Howard and Danielle L. Cornell",authors:[{id:"188201",title:"M.D.",name:"Richard",middleName:null,surname:"Howard",slug:"richard-howard",fullName:"Richard Howard"},{id:"194143",title:"Ms.",name:"Danielle",middleName:null,surname:"Cornell",slug:"danielle-cornell",fullName:"Danielle Cornell"}]},{id:"52563",title:"Medical Ethics and Bedside Rationing in Low‐Income Countries: Challenges and Opportunities",slug:"medical-ethics-and-bedside-rationing-in-low-income-countries-challenges-and-opportunities",totalDownloads:1442,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Lydia Kapiriri",authors:[{id:"189068",title:"Associate Prof.",name:"Lydia",middleName:null,surname:"Kapiriri",slug:"lydia-kapiriri",fullName:"Lydia Kapiriri"}]},{id:"56025",title:"Cybersecurity of Robotics and Autonomous Systems: Privacy and Safety",slug:"cybersecurity-of-robotics-and-autonomous-systems-privacy-and-safety",totalDownloads:1539,totalCrossrefCites:6,totalDimensionsCites:6,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Francisco J. Rodríguez Lera, Camino Fernández Llamas, Ángel\nManuel Guerrero and Vicente Matellán Olivera",authors:[{id:"124522",title:"Dr.",name:"Vicente",middleName:null,surname:"Matellan",slug:"vicente-matellan",fullName:"Vicente Matellan"},{id:"211294",title:"Prof.",name:"Camino",middleName:null,surname:"Fernández-Llamas",slug:"camino-fernandez-llamas",fullName:"Camino Fernández-Llamas"},{id:"211295",title:"MSc.",name:"Ángel Manuel",middleName:null,surname:"Guerrero-Higueras",slug:"angel-manuel-guerrero-higueras",fullName:"Ángel Manuel Guerrero-Higueras"},{id:"211296",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Rodríguez-Lera",slug:"francisco-javier-rodriguez-lera",fullName:"Francisco Javier Rodríguez-Lera"}]},{id:"52301",title:"Pharmacy Ethics and the Spirit of Capitalism: A Review of the Literature",slug:"pharmacy-ethics-and-the-spirit-of-capitalism-a-review-of-the-literature",totalDownloads:1589,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Robert Ancuceanu and Ioana-Laura Bogdan",authors:[{id:"189717",title:"Associate Prof.",name:"Robert",middleName:null,surname:"Ancuceanu",slug:"robert-ancuceanu",fullName:"Robert Ancuceanu"}]},{id:"53239",title:"Rethinking the Postwar Period in Relation to Lives Not Worth Living",slug:"rethinking-the-postwar-period-in-relation-to-lives-not-worth-living",totalDownloads:1481,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"José-Antonio Santos",authors:[{id:"188020",title:"Dr.",name:"José-Antonio",middleName:null,surname:"Santos",slug:"jose-antonio-santos",fullName:"José-Antonio Santos"}]},{id:"53154",title:"Bioethics and the Experiences of Hansen’s Disease Survivors",slug:"bioethics-and-the-experiences-of-hansen-s-disease-survivors",totalDownloads:970,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Makiko Kondo, Kazuo Mori, Hiroshi Nomura, Hanako Kadowaki,\nMakiko Watanabe, Akemi Doi and Sayaka Shima",authors:[{id:"188019",title:"Dr.",name:"Makiko",middleName:null,surname:"Kondo",slug:"makiko-kondo",fullName:"Makiko Kondo"}]},{id:"53393",title:"In Whose Best Interests? Critiquing the “Family-as-Unit” Myth in Pediatric Ethics",slug:"in-whose-best-interests-critiquing-the-family-as-unit-myth-in-pediatric-ethics",totalDownloads:1440,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Joseph A. Raho",authors:[{id:"188268",title:"Dr.",name:"Joseph",middleName:null,surname:"Raho",slug:"joseph-raho",fullName:"Joseph Raho"}]},{id:"56250",title:"Robots Liability: A Use Case and a Potential Solution",slug:"robots-liability-a-use-case-and-a-potential-solution",totalDownloads:1168,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Alejandro Zornoza, José C. Moreno, José L. Guzmán, Francisco\nRodríguez and Julián Sánchez-Hermosilla",authors:[{id:"5859",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Guzman",slug:"jose-luis-guzman",fullName:"Jose Luis Guzman"},{id:"22920",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Moreno",slug:"jose-carlos-moreno",fullName:"Jose Carlos Moreno"},{id:"22922",title:"Dr.",name:"Francisco",middleName:null,surname:"Rodriguez",slug:"francisco-rodriguez",fullName:"Francisco Rodriguez"},{id:"22923",title:"Dr.",name:"Julian",middleName:null,surname:"Sanchez-Hermosilla",slug:"julian-sanchez-hermosilla",fullName:"Julian Sanchez-Hermosilla"},{id:"204035",title:"Ph.D.",name:"Alejandro",middleName:null,surname:"Zornoza",slug:"alejandro-zornoza",fullName:"Alejandro Zornoza"}]},{id:"53439",title:"Rethinking Autonomy and Consent in Healthcare Ethics",slug:"rethinking-autonomy-and-consent-in-healthcare-ethics",totalDownloads:1776,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"bioethics-medical-ethical-and-legal-perspectives",title:"Bioethics",fullTitle:"Bioethics - Medical, Ethical and Legal Perspectives"},signatures:"Eleanor Milligan and Jennifer Jones",authors:[{id:"187831",title:"Prof.",name:"Eleanor",middleName:null,surname:"Milligan",slug:"eleanor-milligan",fullName:"Eleanor Milligan"}]},{id:"56684",title:"Human, Not Humanoid, Robots",slug:"human-not-humanoid-robots",totalDownloads:986,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-legal-ethical-and-socioeconomic-impacts",title:"Robotics",fullTitle:"Robotics - Legal, Ethical and Socioeconomic Impacts"},signatures:"Domenico Parisi",authors:[{id:"203559",title:"Emeritus Prof.",name:"Domenico",middleName:null,surname:"Parisi",slug:"domenico-parisi",fullName:"Domenico Parisi"}]}],onlineFirstChaptersFilter:{topicSlug:"ethics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/227107/anoop-chakrapani",hash:"",query:{},params:{id:"227107",slug:"anoop-chakrapani"},fullPath:"/profiles/227107/anoop-chakrapani",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()