\r\n\t1. Emphasizing the unique power of the molecular docking method in new drug discovery; \r\n\t2. Demonstration of how the molecular docking technique has led to the discovery of new molecules in cancer therapy, proteasome, and STAT3 inhibition, and the treatment of Alzheimer's disease; \r\n\t3. Underlining the importance of molecular docking-based modeling methods in the various branches of biotechnology
\r\n
\r\n\tWe hope that this book will be a common point where researchers working in the fields of life sciences and drug development will eventually meet.
",isbn:"978-1-80356-468-5",printIsbn:"978-1-80356-467-8",pdfIsbn:"978-1-80356-469-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"8c918a1973786c7059752b28601f1329",bookSignature:"Dr. Erman Salih Istifli",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",keywords:"Protein-Ligand Interaction, Lead Discovery, Molecular Recognition, Enzyme-Ligand Interaction, Mutant Enzymes, Alanine Screening, Proteasome Inhibitors, Signal Transducers, Transcription Activators (STATs), DNA Recognition Motifs, Neoplastic Cells, Amyloid-Beta Proteins",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 3rd 2022",dateEndSecondStepPublish:"May 4th 2022",dateEndThirdStepPublish:"July 3rd 2022",dateEndFourthStepPublish:"September 21st 2022",dateEndFifthStepPublish:"November 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A multidisciplinary researcher working in the fields of cytogenetics, molecular genetics, and bioinformatics-based molecular modeling (currently on the structural biology of COVID-19 and the treatment of Alzheimer’s disease). Dr. Istifli previously joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany where he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",middleName:null,surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli",profilePictureURL:"https://mts.intechopen.com/storage/users/179007/images/system/179007.JPG",biography:"Dr. Erman Salih İstifli received his Ph.D. from Biology Department of Cukurova University, Insitute of Science and Letter. In his doctoral study, Dr. İstifli focused on the elucidation of the genotoxic and cytotoxic effects of a commonly used anticancer agent (antifolate) on human lymphocytes. During his period of doctoral research, he joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany, and he focused there on investigating the molecular cytogenetic causes of some human rare diseases. During these studies, he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R) responsible for intelligence and obesity. He was assigned as an expert and rapporteur on eight candidate projects in the Marie-Sklodowska Curie-Actions Innovative Training Networks in 2016. In 2017, he completed the online theoretical and practical course 'Introduction to Biology - The Secret of Life', run by the Massachusetts Institute of Technology (MIT) on the edX platform. In April 2019, within the framework of Erasmus+ staff mobility program, he gave seminars on 'DNA microarrays and their use in genotoxicity' at Tirana University in Tirana, Albania. He is a published author of several articles in journals covered by the SCI and SCI-E, and has manuscripts in other refereed scientific journals. He currently serves as a referee in several journals covered by the SCI and SCI-E. His studies mainly fall into the field of genetic toxicology. He continues his current research on the structural biology of COVID-19 as well as identification of novel plant-based hit compounds in the treatment of Alzheimer’s disease.",institutionString:"Çukurova University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8068",title:"Cytotoxicity",subtitle:"Definition, Identification, and Cytotoxic Compounds",isOpenForSubmission:!1,hash:"20a09223d92829b5478b5f241f6a03ce",slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",bookSignature:"Erman Salih Istifli and Hasan Basri Ila",coverURL:"https://cdn.intechopen.com/books/images_new/8068.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6969",title:"Lymphocytes",subtitle:null,isOpenForSubmission:!1,hash:"1aa8ac01c934ebdeedd5d7813036beef",slug:"lymphocytes",bookSignature:"Erman Salih Istifli and Hasan Basri İla",coverURL:"https://cdn.intechopen.com/books/images_new/6969.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"75210",title:"Design Techniques in Rock and Soil Engineering",doi:"10.5772/intechopen.90195",slug:"design-techniques-in-rock-and-soil-engineering",body:'
1. Introduction
The process of engineering design comprises of devising a scheme/module, or process to achieve the required goal or target. It can also be defined as an assessment –making procedure, which utilized the knowledge of basic sciences, mathematics and engineering sciences to convert resources optimally to meet quantified objectives. In other words, engineering design is the procedure of formulating framework, segment, or procedure to address desired problems [1]. General goal of engineering design is to develop a solution (the design) to a known problem. However, there is no single solution, and depends upon the approach used by different engineers resulting different solution. Among the solution obtained some will work well than others, but it is necessary that all solutions should ‘work’. The reason behind the fact that solutions to engineering design problem are not unique is perhaps due to very broader spectrum of the concerns encountered in design [2].
2. The design process
Each and every engineering problem/task passes through a design process. According to Hill (1983), as discussed by Biniawski (1988), the design process is: a) logical development of design inside organization of actions and b) a work plan process for planning the design program. For satisfactory design results, a define process can work as agenda of activities. The defined process or methodology can be considered as a form of quality control that ensures that all aspects that should be considered in the design are considered [2]. Response to a complex engineering problem does not shortly seem in a vacuum. Well-meaning description of engineering problem needs exercise or approach. Design processes generally depend upon the number of engineers analyzing design. The process described here is general, and one can adapt it to the problem, they are trying to solve [3]. Following are the different stages of design process [1] illustrated in Figure 1.
Recognition of need or a problem
Statement of the problem
Collection of information
Analysis of solution component
Synthesis to create a detailed solution
Evaluation of ideas and solutions
Optimization
Recommendation
Communication
Implementation
Figure 1.
The engineering design process [1].
2.1 Recognition of need or a problem
Engineering design activity always occurs in response to a human need [3]. Before attempting any solution for design, the presence and nature of a problem must be. This is not an easy task. It needs the rather rare skill of inquiring the right kind of question and call for a clear identification of the problem to be solved. In design it involves the recognition of a genuine social need want or opportunity.
2.2 Statement of the problem
If there is any problem involves, it is then necessary to clearly define it. This may involve a list of specification or criteria. These must be stated clearly and concisely. A poorly recognized and expressed problem cannot be anticipated to result in a good solution. In rock mechanics design, this means to set design objectives in terms of economy, safety and stability.
2.3 Collection of information
This stage comprises the collecting, investigation, processing and analyzing of information to obtain the explicit nature of the targeted problem. In rock engineering collection of information include site investigations, conducting in-situ and laboratory tests to determine the characteristics of the rock strata and assessment of applied loads and field stresses.
2.4 Analysis of solution component
The selection of approach to either search for the most promising method of solution or certain hypothesis is selected or conceived depends upon the nature of the problem. Design approaches at this phase involve numerical analysis and mathematical, physical modal studies, observation and monitoring or the empirical analyses based on experience.
2.5 Synthesis to create a detailed solution
On the basis of analysis of the individual solution component, all design is focused to furnish comprehensive alternative solutions. In this phase of design, calculations, specifications, performance predictions, cost estimates, scheduling procedures and the experimentation are involved.
2.6 Evaluation of ideas and solutions
In this phase the solution is interpreted and compare with the original hypothesis, specification, facts assumptions, requirements or constraints. This demand for a clear understanding of the all relevant interacting factors that’s needed for the engineering judgments. The solution for engineering problems should be balanced involving all the factors with interact.
2.7 Optimization
Optimization is the assortment of a best solution (with regard to some criteria) from some set of available alternative solutions [4]. There are always multiple solutions available to any engineering problem. Refinement and modification of a solution may then be required to reach a practicable agreement between the generally contradictory constraint and assets. The effectiveness of an optimization process mostly depends upon simplicity and clarity with which problem and solution are specified.
2.8 Recommendation
Recommendation is the principle of the whole Engineering design process. It provides a refined endorsement of the solution to problem, point out limitations and shows the trend to be followed in applying the solution.
2.9 Communication
The conclusive aim of the all design stages is the creation or instigation of a progression accomplishment. In order to achieve the objective requires the engineer must communicate the finding effectively. Effective communication means that all relevant aspects should be appropriately presented. If a mathematician were to sum up these thoughts, he might well do so by the Eq. (1).
E=MC2E1
Where,
E means effectiveness of the subject, M mean the mastery of the subject matter and C means the communication.
So for effective communication one should have sound knowledge of the subject matter and good communication skills. The design engineer must have the capability to communicate views and ideas concisely and clearly and to convey technical knowledge effectively.
2.10 Implementation
This is the final stage of design procedures. The finding or results communicated are applied under the given circumstance and proper monitoring is carried out for further refining the result or design that has been recommended for action. The main objective of the design is to ensure that a desire goal and quality will achieved within the time frame and the budget allocated.
2.11 Feed back
After implementation of the design, its performance is monitored and recorded. Remedial measurements are suggested for more improvement of the performance the solution design.
3. Design techniques in soil and rock engineering
There are different significant design techniques in rock engineering. They are classified into three groups which are Analytical, Empirical and Observational. Rock masses having more complex in nature. Due to the very complex nature of rock masses and the difficulties encountered with their characterization, the analytical approach is the least used in the present engineering practice. Due to this reason, it does not lie in the analytical techniques themselves, since some have been developed to a high degree of sophistication, but in the inability to furnish the necessary input data as the ground conditions are adequately explored. Consequently, such analytical techniques as the finite element method, the boundary element method, closed form mathematical solutions, photo-elasticity or analogue simulation are mainly useful for assessing the influence of the various parameters or processes and for comparing alternative design schemes; they are the methods of the future not as yet acceptable as the practical engineering means for the design of rock tunnels [5]. Empirical methods of design are commonly applied as these are built on earlier practices derived from creation of rock structures owning alike physical characteristics [6]. It is a good practice to evaluate the stability of tunnels using at least two Empirical methods and validate through Numerical methods. Therefore, these two groups of tunnel design methods will be discussed in detail [7].
4. Empirical methods of design
The empirical approach relates the experience encountered at previous projects to the conditions anticipated at a proposed site. If an empirical design is backed by a systematic approach to ground classification, it can effectively utilize the valuable practical experience gained at many projects, which is so helpful to exercising one’s engineering judgment. This is particularly important since, a good engineering design is a balanced design in which all the factors which interact, even those which cannot be quantified, are taken into account; the responsibility of the design engineers is not to compute accurately but to judge soundly. Rock mass classifications, which the main part of the empirical design methods, are extensively used tunnels within rock. At present, most of the tunnels excavated in the United States make use of some classification system. Terzaghi classification which was presented over 40 years ago is the most broadly used. In fact, rock mass classifications have been successfully applied throughout the world [5].
The empirical methods of design may be used in association with other engineering assessment and design Techniques [6]. These methods are very essential and beneficial for the design in the earlier stages of the project, when minimum evidence about the behavior of rock mass, stress conditions and hydrological characteristics are obtainable [8].
4.1 Rock mass classification systems
Rock mass classification is a tool for the assessment of the rock behavior and performance based on the essential inherent and structural parameters [9]. Rock mass classification systems are the most and widely used empirical methods of design Different rock mass classification systems are RMR, Q-System, RQD, RSR, GSI etc. [6]. Rocks have been classified on the basis of origin, mineralogical compositions and distinct physical properties and ground condition. Rock Classification provides a mutual basis of communication to recognize rock mass in a category having same and well define characterization and basic input parameters for rock engineering design. For designing purposes in several attempts were made to classify rock based on rock and site characterization. Such simplified classification systems have served to understand the upper bound response of the rocks [10]. Rock mass classification systems effectively combined the results comes observation, experience and other engineering judgment for providing a quantitative evaluation of rock mass situations. Rock mass classification systems has the below mentioned purposes in tunneling design [5].
Group rock masses having similar behaviors.
Provides the root for understanding the characteristics of independent groups.
Helps in planning and designing of excavation in rock and provide quantifiable data for the design of complex engineering complications.
A common understanding agenda for all the related people in the project.
Up till now different rock mass classification systems have been proposed by Terzaghi (1946), Lauffer (1958), Deere (1964), Wickham, Tiedemann, and Skinner (1972), Bieniawski (1973), and Barton, Lien, and Lunde (1974), (Bieniawski Z. T. 1990). The different classification systems used for the design purposes are assembled in Table 1.
4.1.1 Terzaghi’s rock mass classification
A well-known classification system for support of tunnels. This explanatory system was developed in the U.S.A in 1946. Terzaghi’s (1946) formulate the first rational method of evaluating the rock loads suitable to the design of steel sets. This classification is appropriate for the estimating rock loads for steel arch supported tunnels. It is not so suitable for modern tunneling methods using shotcrete and rock bolts [5].
Intact Rock: Rocks that’s having no joints and cracks, it breaks crossways a sound rock or loose block may drops off the top for many hours and days due to blasting. It is called sapling condition.
Stratified rock: that rock composed those distinct sections having slightly or no confrontation to parting beside the margins stuck between the strata. In such rock the spalling condition is generally happened.
Moderately jointed rock: That rock having joints and hair cracks, but the blocks among joints are locally developed collectively or so closely joined that perpendicular walls do not need on the sides support. In this type of rock, both spalling and popping conditions may be happened.
Blocky and seamy rock: Such rocks consist of chemically intact or almost intact rock fragments which are totally detached from each other and erroneously joined. In such rock, vertical walls may need sides support.
Crushed rock: such rocks are chemically intact rock but have the characteristic of crusher outing. If maximum or completely all the fragments are as small as fine sand particles and no cementation has taken place, crushed rock below the water table demonstrate the properties of water-bearing sand.
Squeezing rock: Squeezing rock gradually progresses into the tunnel without noticeable increase in volume. An obligation for squeeze is a high percentage of microscopic and sub-microscopic elements of micaceous minerals or clay minerals with a low swelling capability.
Swelling rock: Such rock moves inside the tunnel mainly because of expansion. The capability to swell seems to be insufficient to those rocks that have clay minerals such as montmorillonite, with a high swelling capability.
4.1.2 Classifications containing stand-up time
Lauffer (1958) anticipated that stand up time for an excavation span is associated with the quality of rock mass in which the width is mined. The Unsupported span may be defined as the width of the tunnel or the distance between the face and the adjacent support, if such is grater that the tunnels width. Laufer’s (1958) advanced classification has been improved by various researchers especially Pacher et al., (1974) and currently formulae the part of the worldwide tunneling attitude so called the New Austrian Tunneling Method (NTAM). The importance of the standup time is to increase in the tunnel width results in a substantial decrease in the period available for the fixing of support. The NATM comprises numerous systems for workable, safe and stable excavation in rock situations where the stand-up time is restricted before collapse occurred. These systems are:
The use of small headings and benching
The use of several small drifts to form a reinforced ring inside which the unpackaged of the tunnel can be mined
As described by Terzaghi (1946), these practices are appropriate to apply in squeezing soft rock mass i.e. shale’s, phyllites and mudstones. The practices are also appropriate when tunneling in exceptionally jointed rock, but needs excessive attention to apply these practices to underground excavations designed in hard rocks having dissimilar failure mechanisms. For hard rock excavation support design, it is practical to accept the assumption that the stability of the rock mass adjacent to the underground excavation is not time-dependent. A defined wedge visible in the roof of an excavation will fall as soon as after excavation. This can happen after blasting or during the succeeding scaling process. Early support is demanded do keep such a wedge in place, or to improve the limit of safety preferably before the rock supporting the full wedge is removed. On the other hand, in a highly stressed rock condition, failure will generally be induced by some change in the stress condition adjoining the excavation. The failure may occur gradually and apparent it as spalling or it may occur rapidly in the form of a rock burst. In either case, the support system design must take into account the modification in the stress condition rather than the ‘stand-up’ time of the excavation.
4.1.3 Rock quality designation index (RQD)
It is developed by Deere et al., (1967). Such system provides the quantities estimation of rock mass quality from the drill core logs. RQD is defined as the percentage sum of all intact core pieces having length more than 10 cm in the total length of the core provided that the core should be of NX size (54 mm in diameter). The precise practices for the estimation of the size of core portions and the approximation of Rock Quality Designation Index are summarized as shown in Figure 2 [11].
Figure 2.
Procedure for measurement and calculation of RQD [11].
In 1982, Plastron suggested that when core is not available and discontinuity traces are visible in surface disclosure or exploratory adits, the RQD may be calculated from the number of discontinuities per unit volume. The suggested relationship is for clay free masses and is given below by Eq. (2).
RQD=115−3.33JvE2
Where,
RQD is the Rock Quality Designation Index,
Jv is the number of all joints per unit length for all joint (discontinuity) sets, so called volumetric joint count.
4.1.4 Rock structure rating
Wickham et al. (1972) established another quantitatively rock mass classification system termed as Rock Structure Rating (RSR). RSR is used to describe and measure the quality of rock mass for selecting of appropriate support and reinforced system. Such classification system not applied generally as compared to other classification systems, but it has its important role in the emergent of other empirical classification schemes. Many investigators advised that for good, reliable and suitable results for planning of excavation more than one rock mass classification systems should be used at initial stage of the project. The significance of the rock structure rating, in the context of this conversation, is to bring forward the idea of assessment of each of the constituents recorded below to calculate a mathematical value of RSR = A + B + C.
Where,
Factor A: Area Geology: It includes Common evaluation of geological structure based on:
Rock type Origin (sedimentary, metamorphic and igneous).
Rock Hardness (it means hard, medium, soft and decomposed).
Factor B: Geometry of the geological structures: it consists of effect of disjointedness arrangement with consideration to the tunnel alignment on the basis of:
Joint spaces.
Orientation of joints (dip and strike).
Direction of tunnel drive.
Factor C: it includes influence of groundwater inrush and joint situation on the basis of:
Whole rock mass class based previous parameter combined (A and B).
Situation of Joint (poor, fair and good).
Quantity of water flow (gallons/minute/1000 feet of tunnel).
The following tables are used for the calculation of RSR (maximum RSR is 100) [9] (Tables 2–4).
S.No
Rock mass classification system
Originator
Origin country
Application areas
1
Rock Load
Terzaghi, 1946
USA
Tunnels with steel support
2
Stand-up time
Lauffer, 1958
Australia
Tunneling
3
New Austrian Tunneling Method (NATM)
Pacher et al., 1964
Austria
Tunneling
4
Rock Quality Designation (RQD)
Deer et al., 1967
USA
Core logging, Tunneling
5
Rock Structure Rating (RSR)
Wickham et al., 1972
USA
Tunneling
6
Rock Mass Rating (RMR) Modified Rock Mass Rating (M-RMR)
Bieniawski 1973 (List modified, 1989-USA) Özkan and Ünal, 1990
South Africa Turkey
Tunnels, Mines, (Slopes, Foundations) Mining
Rock Mass Quality (Q)
Barton et al., 1974 (Last modified 2002)
Norway
Tunnels, Mines, Foundations
8
Strength- Block Size
Franklin, 1975
Canada
Tunneling
9
Rock Mass Strength (RMS)
Stille et al., 1982
Sweden
Metal Mining
10
Unified Rock Mass Classification System (URMC)
Williamson, 1984
USA
General Communication
11
Weakening Coefficient System (WCS)
Singh, 1986
India
Coal Mining
12
Basic Geotechnical Classification
ISRM, 1981
International
General
13
Geological strength index (GSI)
Hoek et al. 1995
Mines and Tunnels
Table 1.
Most widely used rock mass classification systems [6, 10].
Basic Rock Type
Geological Structure
Hard
Medium
Soft
Decomposed
Igneous
1
2
3
4
Slightly
Moderately
Intensively
Metamorphic
1
2
3
4
Folded or
Folded or
Folded or
Sedimentary
2
3
4
4
Massive
Faulted
Faulted
Faulted
Type 1
30
22
15
9
Type 2
27
20
13
8
Type 3
24
18
12
7
Type 4
19
15
10
6
Table 2.
Rock structure rating, parameter a: General area geology [9].
Rock structure rating, parameter C: Groundwater, joint condition [11].
Joint condition: good = tight or cemented; fair = slightly weathered or altered; poor = severely weathered, altered or open.
The RSR value calculated for the above tables are then used for the calculation support system recommendation. The support recommendation chart for the RSR value is given in Figure 3.
Figure 3.
RSR support recommendation chart [9].
4.1.5 Rock mass rating system (RMR system)
The rock mass rating system was produced by Biniawski in 1976; it is sometimes also called geo-mechanics classification system. It was developed taking into account the distinctive case histories in the field of structural designing This classification system was altered in 1974, 1976, 1979 and 1989, because of considering of more contextual analyses identified related to tunnels, mines, chambers, slopes and foundations [1]. The Geo-mechanics classification system has a widespread application in different rock engineering fields such as mining, hydro power projects, tunneling and hill slope stability (Kumar S. S., 2012). The geo-mechanics classification incorporates the following 6 parameters that are computable in the site and from cores [6]:
Uniaxial compressive strength
Rock quality designation (RQD)
Spacing of discontinuities
Condition of discontinuities
Ground water condition
Orientation of discontinuities
While using this classification system, the rock masses are divided into a number of structural regions. Each region is classified independently [12]. These six parameters are being given different rating based on different geological and geotechnical condition as shown in Table 5.
A. CLASSIFICATION PARAMETERS AND THEIR RATINGS*
Parameter
Range of values
1
Strength of intact rock material
Point-load strength index
>10 MPa
4–10 MPa
2–4 MPa
1–2 MPa
For this low range - unlaxial compressive test is preferred
Unlaxial comp. Strength
>250 MPa
100–250 MPa
50–100 MPa
25–50 MPa
5–25 MPa
1–5 MPa
< 1 MPa
Rating
15
12
7
4
2
1
0
2
Drill core Quality RQD
90% - 100%
75% - 90%
50% - 75%
25% - 50%
<25%
Rating
20
17
13
8
3
3
Spacing of
> 2 m
0.6–2. m
200–600 mm
60–200 mm
< 60 mm
Rating
20
15
10
8
5
4
Condition of discontinuities (see E)
Very rough surfaces
Slightly rough surfaces
Slightly rough surfaces
Slickensided surfaces or Gouge <5 mm thick or Separation 1–5 mm Continuous
Soft gouge >5 mm thick or Separation >5 mm Continuous
Not continuous
Separation <1 mm
Separation <1 mm
No separation
Slightly weathered walls
Highly weathered walls
Unweathered wall rock
Rating
30
25
20
10
0
5
Groundwater
Inflow per 10 m tunnel length (Mm)
None
< 10
10–25
25–125
> 125
(Joint water press)/(Major principal σ)
0
<0.1
0.1, − 0.2
0.2–0.5
>0.5
General conditions
Completely dry
Damp
Wet
Dripping
Flowing
Rating
15
10
7
4
0
B. RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS (See F)
Strike and dip orientations
Very favorable
Favorable
Fair
Unfavorable
Very Unfavorable
Ratings
Tunnels & mines
0
−2
−5
−10
−12
Foundations
0
−2
−7
−15
−25
Slopes
0
−5
−25
−50
C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS
Rating
100 ← 81
80 ← 61
60 ← 41
40 ← 21
<21
Class number
I
II
III
IV
V
Description
Very good rock
Good rock
Fair rock
Poor rock
Very poor rock
D. MEANING OF ROCK CLASSES
Class number
I
II
III
IV
V
Average stand-up time
20 yrs. for 15 m span
1 year for 10 m span
1 week for 5 m span
10 hrs for 2.5 m span
30 min for 1 m span
Cohesion of rock mass (kPa)
>400
300–400
200–300
100–200
<100
Friction angle of rock mass (deg)
>45
35–45
25–35
15–25
<15
E. GUIDELINES FOR CLASSIFICATION OF DISCONTINUITY conditions
Discontinuity length (persistence)
<1 m
1–3 m
3–10 m
10–20 m
>20 m
Rating
6
4
2
1
0
Separation (aperture)
None
<0.1 mm
0.1–1.0 mm
1–5 mm
>5 mm
Rating
6
5
4
1
0
Roughness
Very rough
Rough
Slightly rough
Smooth
Slickensided
Rating
6
5
3
1
0
Infilling (gouge)
None
Hard filling <5 mm
Hard filling >5 mm
Soft filling <5 mm
Soft filling >5 mm
Rating
6
4
2
2
0
Weathering
Unweathered
Slightly weathered
Moderately weathered
Highly weathered
Decomposed
Ratings
6
5
3
1
0
F. EFFECT OF DISCONTINUITY STRIKE AND DIP ORIENTATION IN TUNNELING**
Some conditions are mutually exclusive. For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly.
Modified after Wickham et al. (1972).
Based on the overall rating of RMR calculated form above mentioned parameters support systems are being recommended for the project site. Support recommendation based on RMR value is given in Table 6.
Rock mass class
Excavation
Rock bolts (20 mm diameter, fully grouted)
Shotcrete
Steel sets
I. Very good rock RMR: 81–100
Full face, 3 m advance.
Generally no support required except spot boiling.
II. Good rock RMR: 61–80
Full face, 1–1.5 m advance. Complete support 20 m from face.
Locally, bolts in crown 3 m long, spaced 2.5 m wi1n occasional wire mesh.
50 mm in crown where required.
None.
III. Fair rock RMR: 41–60
Top heading and bench 1.5–3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.
Systematic bolts 4 m long, spaced 1.5–2 m in crown and walls with wire mesh in crown.
50–100 mm in crown and 30 mm in sides.
None.
IV. Poor rock RMR: 21–40
Top heading and bench 1.0–1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.
Systematic bolts 4–5 m long, spaced 1–1.5 m in crown and walls with wire mesh.
100–150 mm in crown and 100 mm in sides.
Light to medium ribs spaced 1.5 m where required.
V. Very poor rock RMR: < 20
Multiple drifts 0.5–1.5 m advance in lop heading. Install support concurrently with excavation Shotcrete as soon as possible after blasting.
Systematic bolts 5–6 m long, spaced 1–1.5 m in crown and walls with wire mesh. Bolt invert.
150–200 mm in crown, 150 mm in sides, and 50 mm on face.
Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.
Table 6.
Guidelines for excavation and support of 10 m span rock tunnels in accordance with the RMR system [1, 6].
4.1.6 Q-system
This system of rock mass classification was devised by Barton et al., (1979) in Norwegian Geotechnical Institute (NGI), explicitly for the design of tunnel established on 212 case histories. The rock mass classification system is generally used for tunnel design throughout the world and has been used in approximately 1260 various projects and considered as one of the best classification systems for design of tunnels (Kumar N., 2002). The extreme ratings of Q-System shows good quality of rock mass and the lowest ratings designate poor quality of rock mass. The minimum and maximum of Q-index ranges from 0.001 to 10000 on logarithmic scale. According to this classification system Q is the function of six independent parameters as defined by Eq. (3).
Q=RQDJn×JrJa×JwSRFE3
Where,
RQD Rock Quality designation index, Jn shows joint set number, Jr shows number of joint roughness estimated for the set of joint that is most terrible and dangerous to alignment of tunnel, Ja show joint alteration number estimated for the most dangerous and unfavorable set of joint along the alignment of tunnel, Jw is joint water condition which shows the water reduction factor, Stress Reduction Factor, SRF is comprised to consider the consequence of in-situ stress condition on the whole quality of Rock. The following comments are offered by Barton et al. (1974) for explaining the meaning of the parameters used to decide the value of Q.
The first quotient RQDJn demonstrating the organization of the rock mass, is a rough measure of the block size.
The second quotient JrJa communicates the unevenness and frictional features of the joint walls or infill materials. This measure is taken in favor of uneven, unchanged joints in direct interacted. The strength is reduced significantly in case where rock joints have coating of thin clay mineral and fillings. It defines the inter – block shear strength of rock mass.
The third quotient JwSRF incorporates two stress related parameters. SRF is a degree of 1) untying load when the excavation passes through clay bearing rock and shear zones, 2) rock stress when the excavation is within competent rock, and 3) squeezing loads in plastic weak rock masses. It is also as a total stress parameter. The Jw parameter is amount of water pressure, adversely affect the shear strength of joints as it reduces the effective normal stress. In addition, presence of water may create softening and ultimately the possibility of outwash when clay infill the joints. It generally shows the active stress component and that is determined empirically. The comprehensive and detail system of determining the values of the Q-System parameters (Rock quality designation (RQD), Number of joints (Jn), Roughness number for joint (Jr), Joint alteration number (Ja), Joint water reduction factor (Jw), Surface reduction factor (SRF) are given in Tables 7–12. The extreme value exemplifies good class of rock and the inferior value signifies poor class of rock.
1
Rock quality designation (RQD)
RQD
A
Very poor
>27 joints per m3
0–25
B
Poor
20–27 joints per m3
25–50
C
Fair
13–19 joints per m3
50–75
D
Good
8–12 joints per m3
75–90
E
Excellent
0–7 joints per m3
90–100
Table 7.
Rock quality designation (RQD) and volumetric jointing [13].
Note: i. Where RQD is reported, as ≤10 (including zero) the value 10 is used to assess the Q-value.
ii. RQD-intervals of 5 are adequately accurate.
2
Jn values
Jn
A
Massive, no or few joints
0.5–0.1
B
One joint set
2
C
One joint set plus random joints
3
D
Two joint sets
4
E
Two joint sets plus random joints
6
F
Three joint sets
9
G
Three joint sets plus random joints
12
H
Four joint sets, random, heavily jointed, “sugar cube”, etc.
Note: i. description refer to small scale features and intermediate scale features, in that order
c. No-rock wall contact when sheared
H
Zones containing clay minerals thick enough to prevent rock wall contact
1
I
Sandy, gravely or crushed zone thick enough to prevent rock wall contact
1
Note: ii. 1. Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m. iii. Jr. = 0.5 can be used for planar, slickensides joints having lineation, provided that the lineation are oriented for minimum strength.
a. Weak zones crossing the underground excavation, which may cause loosening of rock mass
A
Multiple occurrences of weak zones within a short section containing clay or chemically disturbed very loose surrounding rock at any depth, or long section with incompetent rock.
10
B
Multiple shear zones within a short section in competent day-free rock with weak surrounding rock at any depth.
7.5
C
Single weak zone with or without clay or chemical disintegrated rock with depth less than or equal to 50 m.
5
D
Loose, open joints, heavily jointed at any depth
5
E
Single weak zones with or without clay or chemical disintegrated rock with depth greater than 50 m
2.5
Note: i. Reduce these values of SRF by 25–50% if the weak zones but do not intersect the underground opening
b. Competent massive rock with stress problems
σc / σ1
σΘ / σc
SRF
F
Low stress, near surface, open joints
>200
<0.01
2.5
G
Medium stress, favorable stress condition
200–10
0.01–0.3
1
H
High stress, very tight structure. Usually good for stability. Depending on stress orientation it may be unfavorable to stability.
10–5
0.3–0.4
0.5–2 2–5*
I
Moderate spalling land/slabbing after greater than one hour in massive rock
5–3
0.5–0.65
5–50
J
Spalling or rock burst after a few minutes in massive rock
3–2
0.65–1
50–200
K
Heavy rock burst and instant active deformation in massive rock
<2
>1
200–400
Note: ii. For strongly anisotropic virgin stress field (if measured): when 5 ≤ σ1 / σ3 ≤ 10 reduce σc to 0.8 σc, and σΘ to 0.8 σΘ, when σ1 / σ3 > 10 reduce σc to 0.5 σc, and σΘ to 0.5 σΘ. iii. Few case records available where depth of crown below surface is less than span width Suggest SRF increase from 2.5 to 5 for such cases (see H).
c. Squeezing rock: plastic deformation in incompetent rock under the influence of high pressure
σΘ / σc
SRF
L
Mild squeezing rock pressure
1–5
5–10
M
Heavy squeezing rock pressure
>5
10–20
d. Swelling rock: chemical swelling activity depending on the presence of water
The values achieved for the different parameters using the above cited tables are then used for the determination of the value of the Q- system. Based on the Value of Q-System the Bortan et al. (1974) classify the quality of rock into nine different groups as shown in Table 13.
High professionalism is required for estimation of the values of parameter used in this system. The poor professional users may face trouble while approximating the score of the parameters and may approximate the lesser value for Q-System, which is considered the weakness of this classification system [14].
The width and altitude of the underground excavations mainly depend on the class of rock mass and considered as significant elements in design of underground excavations. The facet of width or altitude directly disturbs the stability when amplified or declined. To highlight the safety obligation, Bortan et al. (1974) further carry the addition of a fresh parameter to Q-System named as excavation support ratio (ESR). The lower value of ESR symbolizes the necessity of great level firmness and vice versa. The ESR is used for the estimation of support system that can be set up to sustain the stability and also associated to the anticipated use of excavation. Incorporating various conditions, different values of ESR are summarized in Table 14. Based on the width and altitude of underground excavation, ESR shows the Equivalent dimension that is achieved by means of the Eq. (4) [13].
7
Excavation types
ESR values
A
Temporary mine openings
3–5
B
Permanent mine openings, water tunnels for hydro power (excluding high Pressure penstocks), pilot tunnels, drifts and headings for large excavations.
1.6
C
Storage rooms, water treatment plants, minor road and railway tunnels, surge Chambers, access tunnels.
1.3
D
Power stations, major road and railway tunnels, civil defense chambers, Portal intersections.
1.0
E
Underground nuclear power stations, railway stations, sports and public Facilities, factories.
The support chart proposed by Bortan et al. (1974) as shown in Figure 4, is based on the Q-system ratings and equivalent dimension for the endorsement of permanent support system for underground excavations. This chart provides a wide-ranging framework established on the empirical data that what kind of support system is recommended in case of rock bolt’s center to center spacing and the thickness sprayed concrete, and also give the energy absorption of fiber strengthened sprayed concrete.
Figure 4.
Permanent support system recommendation chart for Q-system [13].
4.2 Geological strength index (GSI)
This classification system established and improved by Hoek and other researchers including the block size and its shear strength in order to estimate value of GSI quantitatively. The GSI index value for any rock mass is depend on the estimation techniques, expertise and reliability of these two input parameters. Sonmez and Ulusay developed the arithmetical basis for GSI value calculation and present quantitatively GSI chart as given in Figure 5 [16]. Further research were carried out for quantification of GSI value by (Cai, et al.,2004), they present the assessment method for block size, joint and joints wall condition for GSI value quantification.
Figure 5.
Geological strength index chart [15].
GSI system should not be considered as the replacement for other classification systems like RMR and Q-System, as this system cannot recommend any support system for stability of rock mass. This system can only be used in estimation of rock mass properties and input parameters for numerical modeling [15]. The comprehensive practice for estimation of input parameters for numerical analysis of stress condition and the remedial measures is presented in Figure 5 (Hoek, 2013).
The GSI index may be estimated by subsequent various methods used for assessment of rock mass.
Method A: Using this method the GSI is estimated by skilled geologist or mining engineers from the data collected (observational data) at site and then the value of GSI is evaluated from chart [17].
Method B: In this method the GSI index is estimated by using other classification systems like RQD and RMR etc. when limited data is available. The GSI can be estimate from the well-known relationship presented by various researchers [17].
Method C: The sonmez and Ulusay considered structure rating (SR) and surface condition rating (SCR) for approximation of GSI value [17].
The Cai et al. (2004) used block volume (Vb) and joint surface condition factor (Jc) to approximation the GSI. The block volume having greater number of joint sets indicated as:
Vb=S1×S2×S3E5
where, S is joint spacing.
The Jc defined by the roughness of joint, weathering and infilling, these are used to measure the joint surface condition factor by using the Eq. (6).
Jc=Jw×Js/JaE6
The Vb and Jc are used to precisely quantify the GSI value [17]. The quantitative chart for estimation of GSI suggested by sonmez and Ulusay [1999] is shown in Figure 6.
Figure 6.
Quantitative estimation of GSI chart [15].
5. Numerical methods of design
The empirical methods of design do not estimate accurately the reliability supports, redistribution of stresses, rock mass deformation [18]. These parameters are very important in designing and analysis of any excavation therefore, numerical analysis should be carried out for appropriate designing. The numerical methods are considered very useful to estimate the above parameters precisely and in minimum time as compared to other methods of design. Numerical methods used physical and strength properties of rock as input for analysis. For efficient and viable design the numerical and empirical methods are used in parallel [19, 20, 21, 22, 23].
Different researchers developed and present various numerical methods and models. These are divided into eight classes on the basis of four methods and two levels as shown in Figure 7 [24, 25].
Figure 7.
Division of numerical models and methods [24, 25].
5.1 Numerical methods of modeling for rock/soil engineering
The numerical methods of design uses in rock/soil engineering are grouped into three classes for modeling in rock mechanics as discussed above.
5.1.1 Continuum methods
The different continuum methods of design are as under.
Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Finite Difference Method (FDM).
The Finite difference method (FDM) is the direct calculation of PDEs and transmitted the creative PDEs in term of unknown at grid point into a system of algebraic equations by interchange the fractional derivatives with difference at irregular or regular grid forced over problem areas. This system is solved due to establishing the required initial and boundary condition. This method is old but widely applied in the numerical modeling in rock mechanics. This method is based for explicit approach of discreet element method (DEM) [26].
Finite Element Method (FEM).
The Finite element method (FEM) splits the problem into sub-elements of smaller sizes and shapes with fitting the number of nodes at the vertices and at the side of discretization. FEM is mostly used to estimate the behavior of PDEs at elemental level and for signifying the behavior of elements; it produces the local algebraic equation. After creating the local equation the FEM gathered it according to topographic relation of node and elements and further put it into worldwide system of algebraic equation for receiving the required information after establishing the definite initial and boundary situations.
Boundary Element Method (BEM).
The Boundary element method is the precise method then FEM and FDM because of its easiness. This method involves the discretization of solution areas at boundary and thus decreases the problem dimension by simplifying the design input parameters. This method computes separately the essential information in the solution domains from the information at the boundary, which is achieved by the solution of boundary integral equation rather than direct solution of PDEs [26].
5.1.2 Discontinuum methods
The different discontinuum methods of design are given below.
Discrete Element Method (DEM)
Discrete Fracture Network (DFN)
5.1.3 Hybrid continuum/Discontinuum
Following are the different Hybrid continuum/discontinuum methods of design:
Hybrid FEM/BEM methods
Hybrid DEM/DEM methods
Hybrid FEM/DEM methods
Other hybrid method/models
6. Finite element method (FEM)
This method of design was developed by Clough et al., (1950). Due to wide application of this method in mining engineering especially tunneling, it get more attention for solving mining problems and popularity in this field [19]. The FEM divide problem into small parts and connect these parts at a point/nodes at the apexes and at the boundaries of meshing/discretization. The FEM has many applications in modeling in rock engineering design due to dealing with nonlinearity, boundary conditions and heterogeneity problems [26, 27].
The unidentified function over each element in FEM estimated through test function having its nodal values of anonymous system (in polynomial form). This practice is the fundamental supposition of FEM. For experimental function, it is mandatory to satisfy the principal of PDFs. In this research the FEM based software Phase2 was used for analysis of stresses and total displacement around tunnel. For experimental function it must be satisfied the principal of PDFs, which is given in Eq. (7).
uie=∑j=1MNijuieE7
Where,
Nij is the shape function or interpolation function; this must be defined into inherent coordinates for use of Gaussian quadratic integration, M is the element order.
Using shape function the problem original PDFs can be substituted by the arithmetical equation as given below.
∑j=1NKijeuie=∑j=1NfieorKu=FE8
Where,
Keij is the coefficient matrix, uie vector is the nodal value vector having unidentified variables, fie is consist of body force contribution and initial boundary condition, K is the global stiffness matrix.
Keij is also called the element stiffness matrix in term of elasticity problem which is given by Eq. (9).
[Kije=∫ΩiBiNiTDiBidΩE9
Where,
Di is the elasticity matrix; Bi is the geometry matrix which is determined from the relation between displacement and strain.
In FEM the material properties of different materials can easily feed into FEM by assigning different properties to different elements distinctly.
6.1 Finite elements
The element may be in numerous forms i.e. one dimensional, two dimensional and three dimensional elements. One dimensional element having cross-sectional area and usually denoted by line sections or segment. Two dimensional element fields consist of triangle and quadrilateral. Three dimensional element field described by tetrahedron and parallelepiped. Some element shapes and node position used in two dimensional element fields [28] (Figure 8).
Figure 8.
Some element forms and node position used in two dimensional [28].
6.2 Shape function
It is the displacement within the element at any point when related to the displacement of the nodes. For instance the displacement of u and v within the quadrilateral element at any point represented by Eq. (10).
uv=N10N20N100N30N40N20N30N4u1viu2v2u3v3u4v4E10
Where,
u1, v1….u4, v4 are nodal displacement and N1-N4 are shape function and that are connected with the nodes 1–4 correspondingly.
6.3 Coordinate transformation
The shape function is additionally used for coordinate’s alteration of element in order to simplify the integration for calculation of stiffness matrix of some quantities for element. The coordinates (x, y, z), within the element of a point represented by Eq. (11) [28].
x=∑i−1nNixiy=∑i−1nNiyiz=∑i−1nNiziE11
6.4 Relation between strain and displacement
For two dimensional element domain the relation between strain and displacement represent by Eq. (12) [28].
ε=εxεyγxyεz=Bu1v1u2v2…unvnE12
6.5 Relation between stress and strain
It may express as:
Δσ=DTΔεE13
Where,
Δσ is the vector of stress components, Δε represents corresponding components of strains and DT is a square matrix that is constant in the elastic case.
6.6 Global stiffness matrix
It is formed when added the stiffness matrices of all elements. The equation for global stiffness is given as:
KΔδ=ΔRE14
Where.
Δδ is unknown vector having increments of nodal displacement due to increment force ΔR.
For material linear elastic material behavior the equation may by write as (Scheldt, 2002).
Kδ=RE15
6.7 Finite element based software’s
Following are finite element based software’s.
Displacement Analyzers Finite Element program (DIANA) software is developed by TNO Building and Construction Research, Netherlands. It is a flexible software and used in solving of linear and nonlinear structural engineering in 2D and 3D [28].
Phase2 developed by rock science for solving 2D non-linear problems like analysis of displacements and stresses around underground openings, in the field of mining and civil engineering [29].
ABAQUS software is developed by Hibbitt et al. (1978) in USA. It is used for linear and non-linear, problems and analyzes the stresses of any structure in 3D [28].
ANSYS software is developed for solving both linear and non-linear problems for isotropic and non-isotropic properties of materials [28].
7. Conclusion
Engineering design is the valuation using knowledge of basic sciences, mathematics and engineering sciences to convert resources optimally to meet quantified objectives. Its goal is to develop a solution to a known problem. There are different stages of design process; one can adapt it to the particular problem for solving it. We have variety of design techniques in rock engineering. They are classified in to three groups i.e. are Analytical, Empirical and Observational. Among, these empirical approaches can effectively be used for engineering judgment. Rock mass classification is one of the widely used empirical methods for the assessment of the rock mass behavior. The empirical methods of design do not estimate accurately the reliability of support systems, redistribution of stresses and rock mass deformation. Numerical methods are considered very useful to be used for estimate these parameters precisely and in short time as compared to other methods of design. So it is recommended that for efficient and viable design the numerical and empirical methods should be used in parallel for the assessment of soil/rock mass behavior to design any underground structure.
Acknowledgments
We acknowledge the support of all colleagues in the Department of Mining Engineering, University of Engineering and Technology Peshawar, Pakistan while compiling this work.
Conflict of interest
We have no conflict of interest.
Notes/thanks/other declarations
Thanks and warm regards.
\n',keywords:"tunnel design, design techniques, stability, sensitivity, RMR",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/75210.pdf",chapterXML:"https://mts.intechopen.com/source/xml/75210.xml",downloadPdfUrl:"/chapter/pdf-download/75210",previewPdfUrl:"/chapter/pdf-preview/75210",totalDownloads:377,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:49,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"October 9th 2018",dateReviewed:"December 11th 2020",datePrePublished:"February 12th 2021",datePublished:"March 17th 2021",dateFinished:"February 12th 2021",readingETA:"0",abstract:"At the initial stage of tunnel design, the tunnel stability can be assessed by different design techniques which are broadly classified into three categories i.e. Mathematical Analysis, Empirical Methods and Numerical Analysis. Mathematical methods or closed form solutions are more precise methods; however, its use is limited to simple geometries and almost impossible for complex geometries due to complex and tedious calculations involved. In practice, Empirical and Numerical Methods are usually used for stability analysis of tunnels. It should be noted that it is not the replacement of final design. Empirical design methods use information about the structural geology and other rock mass properties as input that can be easily obtained at the initial stage of a project. Numerical Methods commonly require mechanical properties, especially strength and deformation of rocks. Numerical methods are also considered as precise due to provision of allowance for variable inputs and geometry and having ability for sensitivity analysis. It is good practice to evaluate the stability of tunnels using at least two Empirical methods and validated through Numerical methods.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/75210",risUrl:"/chapter/ris/75210",book:{id:"8909",slug:"slope-engineering"},signatures:"Zahid Ur Rehman, Sajjad Hussain, Noor Mohammad, Akhtar Gul and Bushra Nawaz",authors:[{id:"280305",title:"Ph.D. Student",name:"Zahid Ur",middleName:null,surname:"Rehman",fullName:"Zahid Ur Rehman",slug:"zahid-ur-rehman",email:"engr.zahid@uetpeshawar.edu.pk",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"King Abdullah University of Science and Technology",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"314395",title:"Mr.",name:"Sajjad",middleName:null,surname:"Hussain",fullName:"Sajjad Hussain",slug:"sajjad-hussain",email:"engr.sajjad@uetpeshawar.edu.pk",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"314396",title:"Ms.",name:"Bushra",middleName:null,surname:"Nawaz",fullName:"Bushra Nawaz",slug:"bushra-nawaz",email:"bushranawaz3@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"344014",title:"Dr.",name:"Noor",middleName:null,surname:"Mohammad",fullName:"Noor Mohammad",slug:"noor-mohammad",email:"nmoh1102@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Peshawar",institutionURL:null,country:{name:"Pakistan"}}},{id:"344015",title:"Mr.",name:"Akhtar",middleName:null,surname:"Gul",fullName:"Akhtar Gul",slug:"akhtar-gul",email:"akhtarwazir@uetpeshawar.edu.pk",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The design process",level:"1"},{id:"sec_2_2",title:"2.1 Recognition of need or a problem",level:"2"},{id:"sec_3_2",title:"2.2 Statement of the problem",level:"2"},{id:"sec_4_2",title:"2.3 Collection of information",level:"2"},{id:"sec_5_2",title:"2.4 Analysis of solution component",level:"2"},{id:"sec_6_2",title:"2.5 Synthesis to create a detailed solution",level:"2"},{id:"sec_7_2",title:"2.6 Evaluation of ideas and solutions",level:"2"},{id:"sec_8_2",title:"2.7 Optimization",level:"2"},{id:"sec_9_2",title:"2.8 Recommendation",level:"2"},{id:"sec_10_2",title:"2.9 Communication",level:"2"},{id:"sec_11_2",title:"2.10 Implementation",level:"2"},{id:"sec_12_2",title:"2.11 Feed back",level:"2"},{id:"sec_14",title:"3. Design techniques in soil and rock engineering",level:"1"},{id:"sec_15",title:"4. Empirical methods of design",level:"1"},{id:"sec_15_2",title:"4.1 Rock mass classification systems",level:"2"},{id:"sec_15_3",title:"4.1.1 Terzaghi’s rock mass classification",level:"3"},{id:"sec_16_3",title:"4.1.2 Classifications containing stand-up time",level:"3"},{id:"sec_17_3",title:"4.1.3 Rock quality designation index (RQD)",level:"3"},{id:"sec_18_3",title:"Table 1.",level:"3"},{id:"sec_19_3",title:"Table 5.",level:"3"},{id:"sec_20_3",title:"Table 7.",level:"3"},{id:"sec_22_2",title:"4.2 Geological strength index (GSI)",level:"2"},{id:"sec_24",title:"5. Numerical methods of design",level:"1"},{id:"sec_24_2",title:"5.1 Numerical methods of modeling for rock/soil engineering",level:"2"},{id:"sec_24_3",title:"5.1.1 Continuum methods",level:"3"},{id:"sec_25_3",title:"5.1.2 Discontinuum methods",level:"3"},{id:"sec_26_3",title:"5.1.3 Hybrid continuum/Discontinuum",level:"3"},{id:"sec_29",title:"6. Finite element method (FEM)",level:"1"},{id:"sec_29_2",title:"6.1 Finite elements",level:"2"},{id:"sec_30_2",title:"6.2 Shape function",level:"2"},{id:"sec_31_2",title:"6.3 Coordinate transformation",level:"2"},{id:"sec_32_2",title:"6.4 Relation between strain and displacement",level:"2"},{id:"sec_33_2",title:"6.5 Relation between stress and strain",level:"2"},{id:"sec_34_2",title:"6.6 Global stiffness matrix",level:"2"},{id:"sec_35_2",title:"6.7 Finite element based software’s",level:"2"},{id:"sec_37",title:"7. Conclusion",level:"1"},{id:"sec_38",title:"Acknowledgments",level:"1"},{id:"sec_41",title:"Conflict of interest",level:"1"},{id:"sec_38",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'https://www.google.com.pk/search?q=optimization&oq=optimization&aqs=chrome..69i57j69i59j69i60l3j69i61.2975j0j7&sourceid=chrome&es_sm=93&ie=UTF-8'},{id:"B2",body:'Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for design of rock support. Rock Mechanics, 189–236'},{id:"B3",body:'Bieniawski, Z. (1984). Rock Mechanics Design in Mining and Tunneling . Rotterdam, Netherlands: A.A.Balkema'},{id:"B4",body:'Stacey, T. (2004). The link between the design process in rock engineering and the code of practice to combat rock fall and rockburst accidents. The Journal of The South African Institute of Mining and Metallurgy, 29–34'},{id:"B5",body:'Khandani, S. (2005). Engineering Design Process.Saylor.org'},{id:"B6",body:'Bieniawski, Z. T. (1990). Tunnel Design By Rock Mass classifications. Washington: Department of the army, US army Corpss of Engineer Washington, DC 20314–1000'},{id:"B7",body:'Ali, E. W. (2014). M.Sc thesis, rock mass charecterization for diversion tunnel at diamer basha dam, pakistan-a design perspective. peshawar: University of Engineering and Technology, Peshawar, Pakistan'},{id:"B8",body:'www.google.com. (2016, March Thursday ). Retrieved 2016 Thursday, 2016, from www.google.com: https://www.rocscience.com/documents/hoek/corner/04_Rock_mass_classification.pdf'},{id:"B9",body:'Muhammad Tahir. (2014). Prediction performance and Generalization of the emeprical Estimation of Rock mass Deformation Modulus Based on Rockmass Classification Systems. International Journal of Scientific Engineering and Technology, 1488–1495'},{id:"B10",body:'www.google.com. (2015). Retrieved from www.google.com'},{id:"B11",body:'Karahan, E. (2010). Design of Excavation and Support System for the Cubukbili Tunnel in Antalya.'},{id:"B12",body:'E.Hoek, P. K. (1993). Support of Underground Excavations in Hard Rock.'},{id:"B13",body:'E.HOEK, P. K. (2016, March Wednesday). www.google.com. Retrieved March 2016, from www.google.com: http://web.mst.edu/∼rogersda/umrcourses/ge341/Rock%20Mass%20Rating.pdf'},{id:"B14",body:'(NGI), N. g. (2013). Using the Q-System. Sweden and Norway: NGI'},{id:"B15",body:'D. Milne, J. H. (1998). Rock mass characterization for underground hard rock mines. Tunnelling and Underground Space Technology, 383–391'},{id:"B16",body:'Pantelidis, L. (2009). Rock Slope Stability assestment through rock mass calsification systems. International Journal of Rock Mechanics and Mining Science, 315–325'},{id:"B17",body:'Sonmez, H., & Ulusay, R. (1999). Modifications to the geological strength index (GSI) and their applicability to stability of slopes. Int J Rock Mech Min Sci., 36, 763–760'},{id:"B18",body:'V. Marinos, P. E. (2005). Gelogical strength index: applications and'},{id:"B19",body:'Mahmoud Hashemi, S. M. (2010). Application of rock mass charecterization for determining the mechanical properties of rock mass: a comparitive study. Rock Mechanics, Rock Engineering, 305–320'},{id:"B20",body:'H. Basarir, A. O. (2005). Analysis of support requirements for a shallow diversion tunnel at Guledar dam site, turkey. Engineering Geology, 131-['},{id:"B21",body:'Bobet, A. (2010). Numerical methods in geomechanics. The Arabian Journal for Science and Engineering, 35, Number 1B'},{id:"B22",body:'Zulfu Gurocak, P. S. (2007). Empirical and numerical analyses of support requirements for a diversion tunnel at the Boztepe dam site, eastern Turkey. Engineering Geology, 91, 194–208'},{id:"B23",body:'M. Genis, H. B. (2007). Engineering geological appraisal of the rock masse s and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey. Engineering Geology, 92, 14–26'},{id:"B24",body:'Aydin Ozsan, H. B. (2006). Engineering geological investigations along the Ankara subway extension. IAEG, paper no. 586'},{id:"B25",body:'Rasouli, M. (2009). Engineering geological studies of the diversion t'},{id:"B26",body:'John A. Hudson, X.-T. F. (2010). Technical auditing of rock mechanics modelling and rock engineering design. International Journal of Rock Mechanics & Mining Sciences, 47, 877–886'},{id:"B27",body:'L. Jing, J. H. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics & Mining Sciences, 39, 409–427'},{id:"B28",body:'Jing, L. (2013). A reviewof techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences, 40, 283–353'},{id:"B29",body:'M. Caia, P. K. (2004). Estimation of rock mass deformati on modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics & Mining Sciences, 41, 3–19'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Zahid Ur Rehman",address:"engr.zahid@uetpeshawar.edu.pk",affiliation:'
Department of Mining Engineering, University of Engineering and Technology Peshawar, Pakistan
Department of Mining Engineering, University of Engineering and Technology Peshawar, Pakistan
'}],corrections:null},book:{id:"8909",type:"book",title:"Slope Engineering",subtitle:null,fullTitle:"Slope Engineering",slug:"slope-engineering",publishedDate:"March 17th 2021",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8909.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-924-2",printIsbn:"978-1-83962-923-5",pdfIsbn:"978-1-83962-946-4",reviewType:"peer-reviewed",numberOfWosCitations:0,isAvailableForWebshopOrdering:!0,editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",middleName:null,surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"708"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"75354",type:"chapter",title:"Design and Construction for Tunnel Face Stability: Theoretical and Modeling Approach",slug:"design-and-construction-for-tunnel-face-stability-theoretical-and-modeling-approach",totalDownloads:346,totalCrossrefCites:0,signatures:"Adel Aissi, Abdelghani Brikat, Ali Ismet Kanlı, Aissa Benselhoub and Oussama Kessal",reviewType:"peer-reviewed",authors:[{id:"243975",title:"Dr.",name:"Ali Ismet",middleName:null,surname:"Kanlı",fullName:"Ali Ismet Kanlı",slug:"ali-ismet-kanli"},{id:"324217",title:"Ph.D.",name:"Aissa",middleName:null,surname:"Benselhoub",fullName:"Aissa Benselhoub",slug:"aissa-benselhoub"},{id:"339147",title:"Dr.",name:"Adelghani",middleName:null,surname:"Brikat",fullName:"Adelghani Brikat",slug:"adelghani-brikat"},{id:"339149",title:"Dr.",name:"Adel",middleName:null,surname:"Aissi",fullName:"Adel Aissi",slug:"adel-aissi"},{id:"344729",title:"Dr.",name:"Oussama",middleName:null,surname:"Kessal",fullName:"Oussama Kessal",slug:"oussama-kessal"}]},{id:"74438",type:"chapter",title:"Geoysynthetic Reinforced Embankment Slopes",slug:"geoysynthetic-reinforced-embankment-slopes",totalDownloads:558,totalCrossrefCites:0,signatures:"Akshay Kumar Jha and Madhav Madhira",reviewType:"peer-reviewed",authors:[{id:"327589",title:"Dr.",name:"Akshay Kumar",middleName:"Kumar",surname:"Jha",fullName:"Akshay Kumar Jha",slug:"akshay-kumar-jha"},{id:"329058",title:"Prof.",name:"M.R.",middleName:null,surname:"Madhav",fullName:"M.R. Madhav",slug:"m.r.-madhav"}]},{id:"75210",type:"chapter",title:"Design Techniques in Rock and Soil Engineering",slug:"design-techniques-in-rock-and-soil-engineering",totalDownloads:377,totalCrossrefCites:0,signatures:"Zahid Ur Rehman, Sajjad Hussain, Noor Mohammad, Akhtar Gul and Bushra Nawaz",reviewType:"peer-reviewed",authors:[{id:"280305",title:"Ph.D. Student",name:"Zahid Ur",middleName:null,surname:"Rehman",fullName:"Zahid Ur Rehman",slug:"zahid-ur-rehman"},{id:"314395",title:"Mr.",name:"Sajjad",middleName:null,surname:"Hussain",fullName:"Sajjad Hussain",slug:"sajjad-hussain"},{id:"314396",title:"Ms.",name:"Bushra",middleName:null,surname:"Nawaz",fullName:"Bushra Nawaz",slug:"bushra-nawaz"},{id:"344014",title:"Dr.",name:"Noor",middleName:null,surname:"Mohammad",fullName:"Noor Mohammad",slug:"noor-mohammad"},{id:"344015",title:"Mr.",name:"Akhtar",middleName:null,surname:"Gul",fullName:"Akhtar Gul",slug:"akhtar-gul"}]},{id:"73684",type:"chapter",title:"Three Dimensional Slope Stability Analysis of Open Pit Mine",slug:"three-dimensional-slope-stability-analysis-of-open-pit-mine",totalDownloads:468,totalCrossrefCites:0,signatures:"Masagus Ahmad Azizi, Irfan Marwanza, Muhammad Kemal Ghifari and Afiat Anugrahadi",reviewType:"peer-reviewed",authors:[{id:"326051",title:"Dr.",name:"Masagus Ahmad",middleName:null,surname:"Azizi",fullName:"Masagus Ahmad Azizi",slug:"masagus-ahmad-azizi"},{id:"331111",title:"Dr.",name:"Irfan",middleName:null,surname:"Marwanza",fullName:"Irfan Marwanza",slug:"irfan-marwanza"},{id:"331112",title:"Dr.",name:"Afiat",middleName:null,surname:"Anugrahadi",fullName:"Afiat Anugrahadi",slug:"afiat-anugrahadi"},{id:"331113",title:"Mr.",name:"Muhammad Kemal",middleName:null,surname:"Ghifari",fullName:"Muhammad Kemal Ghifari",slug:"muhammad-kemal-ghifari"}]},{id:"74343",type:"chapter",title:"Asphalt Fill Strengthening of Free Slip Surfaces of Shale Slopes in Asphaltite Open Quarry: Stability Analysis of Free Sliding Surface for Wet Shale Slopes in Avgamasya Asphaltite Open Quarry No 2. Site",slug:"asphalt-fill-strengthening-of-free-slip-surfaces-of-shale-slopes-in-asphaltite-open-quarry-stability",totalDownloads:395,totalCrossrefCites:0,signatures:"Yildırım İsmail Tosun",reviewType:"peer-reviewed",authors:[{id:"200229",title:"Dr.",name:"Yıldırım",middleName:"İsmail",surname:"İsmail Tosun",fullName:"Yıldırım İsmail Tosun",slug:"yildirim-ismail-tosun"}]},{id:"73907",type:"chapter",title:"The Potential of Remote Sensing to Assess Conditioning Factors for Landslide Detection at a Regional Scale: The Case in Southeastern Colombia",slug:"the-potential-of-remote-sensing-to-assess-conditioning-factors-for-landslide-detection-at-a-regional",totalDownloads:326,totalCrossrefCites:0,signatures:"Nixon Alexander Correa-Muñoz and Carol Andrea Murillo-Feo",reviewType:"peer-reviewed",authors:[{id:"326644",title:"Prof.",name:"Nixon",middleName:"Alexander",surname:"Correa-Munoz",fullName:"Nixon Correa-Munoz",slug:"nixon-correa-munoz"},{id:"326647",title:"Dr.",name:"Carol Andrea",middleName:null,surname:"Murillo-Feo",fullName:"Carol Andrea Murillo-Feo",slug:"carol-andrea-murillo-feo"}]},{id:"74242",type:"chapter",title:"Comparative Evaluation of Various Statistical Models and Its Accuracy for Landslide Risk Mapping: A Case Study on Part of Himalayan Region, India",slug:"comparative-evaluation-of-various-statistical-models-and-its-accuracy-for-landslide-risk-mapping-a-c",totalDownloads:361,totalCrossrefCites:0,signatures:"C. Prakasam, Aravinth R., Varinder S. Kanwar and B. Nagarajan",reviewType:"peer-reviewed",authors:[{id:"327580",title:"Associate Prof.",name:"Dr C",middleName:null,surname:"Prakasam",fullName:"Dr C Prakasam",slug:"dr-c-prakasam"},{id:"334305",title:"Mr.",name:"Aravinth",middleName:null,surname:"R",fullName:"Aravinth R",slug:"aravinth-r"},{id:"334307",title:"Dr.",name:"Varinder",middleName:null,surname:"S Kanwar",fullName:"Varinder S Kanwar",slug:"varinder-s-kanwar"},{id:"334308",title:"Dr.",name:"B",middleName:null,surname:"Nagarajan",fullName:"B Nagarajan",slug:"b-nagarajan"}]},{id:"73931",type:"chapter",title:"Integrated Analysis Method for Stability Analysis and Maintenance of Cut-Slope in Urban",slug:"integrated-analysis-method-for-stability-analysis-and-maintenance-of-cut-slope-in-urban",totalDownloads:274,totalCrossrefCites:0,signatures:"Mincheol Park, Heuisoo Han and Yoonhwa Jin",reviewType:"peer-reviewed",authors:[{id:"327494",title:"Dr.",name:"Mincheol",middleName:null,surname:"Park",fullName:"Mincheol Park",slug:"mincheol-park"}]},{id:"73557",type:"chapter",title:"Ecological Engineering Measures for Ravine Slope Stabilization and Its Sustainable Productive Utilization",slug:"ecological-engineering-measures-for-ravine-slope-stabilization-and-its-sustainable-productive-utiliz",totalDownloads:405,totalCrossrefCites:1,signatures:"Gaurav Singh, Raj Kumar, Dinesh Jinger and Dinesh Dhakshanamoorthy",reviewType:"peer-reviewed",authors:[{id:"327586",title:"Dr.",name:"Gaurav",middleName:null,surname:"Singh",fullName:"Gaurav Singh",slug:"gaurav-singh"},{id:"327587",title:"Dr.",name:"Raj",middleName:null,surname:"Kumar",fullName:"Raj Kumar",slug:"raj-kumar"},{id:"331673",title:"Dr.",name:"Dinesh",middleName:null,surname:"Jinger",fullName:"Dinesh Jinger",slug:"dinesh-jinger"},{id:"331676",title:"Dr.",name:"Dinesh",middleName:null,surname:"Dhakshanamoorthy",fullName:"Dinesh Dhakshanamoorthy",slug:"dinesh-dhakshanamoorthy"}]}]},relatedBooks:[{type:"book",id:"8361",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",subtitle:null,isOpenForSubmission:!1,hash:"788c034eec48a4e2f1f6a2f1788d3346",slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8361.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"64060",title:"Advance Wave Modeling and Diffractions for High-Resolution Subsurface Seismic Imaging",slug:"advance-wave-modeling-and-diffractions-for-high-resolution-subsurface-seismic-imaging",signatures:"Yasir Bashir and Deva Prasad Ghosh",authors:[null]},{id:"63394",title:"Radiometric Mapping of Hydrothermal Alterations in Isla Isabel, Mexico",slug:"radiometric-mapping-of-hydrothermal-alterations-in-isla-isabel-mexico",signatures:"Román Alvarez and Gerardo Figueroa",authors:[null]},{id:"67103",title:"Rock Physics Interpretation of Tomographic Solutions for Geothermal Reservoir Properties",slug:"rock-physics-interpretation-of-tomographic-solutions-for-geothermal-reservoir-properties",signatures:"Lawrence Hutchings, Brian Bonner, Seth Saltiel, Steve Jarpe and Mariel Nelson",authors:[null]},{id:"66999",title:"Resistivity and Induced Polarization Application for Urban Waste Disposal Site Studies",slug:"resistivity-and-induced-polarization-application-for-urban-waste-disposal-site-studies",signatures:"Andréa Ustra and Vagner R. Elis",authors:[null]},{id:"63425",title:"Analysis of Seismic Responses of Rock Massif to Explosive Impacts with Using Nonlinear Methods",slug:"analysis-of-seismic-responses-of-rock-massif-to-explosive-impacts-with-using-nonlinear-methods",signatures:"Olga Hachay and Oleg Khachay",authors:[{id:"150801",title:"Prof.",name:"Olga",middleName:"Alexandrovna",surname:"Hachay",fullName:"Olga Hachay",slug:"olga-hachay"},{id:"263300",title:"Dr.",name:"Oleg",middleName:null,surname:"Khachay",fullName:"Oleg Khachay",slug:"oleg-khachay"}]},{id:"64321",title:"Application of Seismic Tomography and Geotechnical Modeling for the Solution of Two Complex Instability Cases",slug:"application-of-seismic-tomography-and-geotechnical-modeling-for-the-solution-of-two-complex-instabil",signatures:"Roberto Balia and Pier Paolo Manca",authors:[null]},{id:"64562",title:"Electrical Resistivity Tomography: A Subsurface-Imaging Technique",slug:"electrical-resistivity-tomography-a-subsurface-imaging-technique",signatures:"Bing Zhou",authors:[null]}]}],publishedBooks:[{type:"book",id:"3717",title:"Geoscience and Remote Sensing",subtitle:"New Achievements",isOpenForSubmission:!1,hash:null,slug:"geoscience-and-remote-sensing-new-achievements",bookSignature:"Pasquale Imperatore and Daniele Riccio",coverURL:"https://cdn.intechopen.com/books/images_new/3717.jpg",editedByType:"Edited by",editors:[{id:"4222",title:"Dr.",name:"Pasquale",surname:"Imperatore",slug:"pasquale-imperatore",fullName:"Pasquale Imperatore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6532",title:"Drilling",subtitle:null,isOpenForSubmission:!1,hash:"3bb91a4e4eb17b4395091940cf1c36fe",slug:"drilling",bookSignature:"Ariffin Samsuri",coverURL:"https://cdn.intechopen.com/books/images_new/6532.jpg",editedByType:"Edited by",editors:[{id:"120519",title:"Prof.",name:"Ariffin",surname:"Samsuri",slug:"ariffin-samsuri",fullName:"Ariffin Samsuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8240",title:"Geotechnical Engineering",subtitle:"Advances in Soil Mechanics and Foundation Engineering",isOpenForSubmission:!1,hash:"2a3c20b826fa5a5cf4693e418eb1c909",slug:"geotechnical-engineering-advances-in-soil-mechanics-and-foundation-engineering",bookSignature:"Sayed Hemeda and Mehmet Barış Can Ülker",coverURL:"https://cdn.intechopen.com/books/images_new/8240.jpg",editedByType:"Edited by",editors:[{id:"258282",title:"Prof.",name:"Sayed",surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8909",title:"Slope Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9be2d5801074590ab1d79845ee5c47e9",slug:"slope-engineering",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8909.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"8909",title:"Slope Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9be2d5801074590ab1d79845ee5c47e9",slug:"slope-engineering",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8909.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"81726",title:"Design and Fabrication of Microencapsulated Phase Change Materials for Energy/Thermal Energy Storage and Other Versatile Applications",doi:"10.5772/intechopen.102806",slug:"design-and-fabrication-of-microencapsulated-phase-change-materials-for-energy-thermal-energy-storage",body:'
1. Introduction
The rapid global economic growth and population explosion resulted in increased consumption of nonrenewable energy resources such as coal, petroleum and natural gas which not only reduces these fossil fuels sources but also leads to major global environmental issues like CO2 emission, and global warming and air pollution. If the world energy requirements totally depend on fossil fuel which is continuously exhausting will results in energy crisis in the near future. To minimize the reliance on fossil fuels for energy production, the development of renewable energy resources and the enrichment of energy efficiency have been deliberated as the alternative strategy that could be adopted [1, 2]. The scientific development of thermal energy storage by utilizing phase change materials (PCMs) to store latent heat has been considered as a worthy solution for reducing the worldwide energy scarcity as these materials provide viable ways of keeping thermal energy and offering reliable energy management by controllable heat release in suitable environments [3]. PCMs are a class of heat storage materials, able to absorb and release sufficient amounts of latent-heat energy at a constant temperature when a state change occurs from a solid form to the liquid one and vice-versa. In addition to higher thermal energy-storage density compared to conventional heat-storage materials, PCMs can bridge the gap between energy availability and energy use to reduce energy waste [4].
The application of PCMs as a means of thermal-energy storage has been practiced since 1970s, and PCMs have been developed and designed to fulfill the desired requirements. Nowadays, PCMs have not been only applied in renewable energy effective utilization such as solar thermal energy and low-temperature waste heat utilization but also used for thermal regulation and thermal management in the fields of photovoltaic-thermoelectric systems, temperature-sensitive electronic parts or devices requiring cool or thermal protection, biological products or pharmaceutical needing cool storage, smart fibers and textiles with a thermoregulatory function, telecom shelters in tropical regions, thermal buffering of Li-ion batteries, energy-saving buildings, thermal comfort in vehicles, etc. [5].
Though PCMs due to their desirable properties is widely used in both domestic and industrial areas in recent years, their phase transition brings some difficulties during their application for thermal energy storage and management. After fusion PCMs are converted to low viscous liquids which can then easily diffuse or flow over other materials and thus cause difficulty in handling the process in the liquid state [6]. Other problems associated with the commonly used PCMs include the need of using special latent heat devices, the hysteresis of thermal response due to low thermal conductivity and supercooling, the poor heat transfer during the charging and recovery processes, absorb moisture from the atmosphere or lose water through evaporation, the leakage and loss of PCMs, etc. [7]. Due to these problems, pristine PCMs are generally not recommended for thermal energy storage applications. To avoid the problem, microencapsulation technology was introduced which involves the packing/encapsulation of PCMs into tiny closed ampules that not only protect the liquid PCMs from the interference and interaction of the surrounding materials but also give them a stable form in the liquid state. The product obtained as a result of this packing technology was named microcapsule. The microcapsules which pack the PCM core individually with a firm shell can, therefore, handle even liquids as a solid material [8]. Additionally, the development of a microcapsule shell provides a large heat transfer surface to the encapsulated PCMs and hence considerably increases the heat transfer and thermal response [9]. Thus, microencapsulation of PCMs has been accepted as a more consistent technology for liquid PCMs compare to form stable composite PCMs. Microencapsulation technology of solid–liquid PCMs has received great attention for over 20 years, and several studies can be found in the literature on this topic [10]. Usually, the microencapsulated PCMs could be prepared by making a polymeric shell via coacervation, in-situ polymerization, interfacial polymerization and suspension polymerization techniques, for which the commonly used shell materials include polyureas, poly (methyl methacrylate), melamine-formaldehyde resins, polystyrene, urea-formaldehyde resins, and bio-based polymers such as Arabic gum, agar and gelatin. Moreover, many inorganic materials such as titanium dioxide (TiO2), silica (SiO2), calcium carbonate and aluminum oxide have been reported in the recent literature that could also be used as shell materials for encapsulating PCMs [11, 12, 13]. These inorganic shells have shown much higher mechanical strength and rigidity than the polymeric ones and can form a much more secure barrier around PCMs to protect them from damaging interaction with the environment.
Currently, the researchers are interested in the design and development of multifunctional microencapsulated PCMs. One of the potential approaches to achieve the additional functionality involve the use of inorganic functional shell assembly on the microencapsulated PCM core. In this way, not only the additional functions for microencapsulated PCMs along with the wall materials is achieved but also allows the establishment of signal or multilayered shells with various designed functions. Pointing at the high-tech designs and versatile applications of microencapsulated PCMs for thermal energy storage and thermal management, this chapter provides a reliable source of information on recent progress and development in microencapsulation technology for solid–liquid PCMs and especially introduces the diverse designs for PCMs-based microcapsules with various special functions. Moreover, a thorough analysis of the trend in the development and applications of microencapsulated PCMs is also presented. The chapter also highlights the design of bi- and multi-functional PCM-based microcapsules by fabricating various functional shells in a multilayered structure to offer a great potential to meet the growing demand for versatile applications.
2. Phase change materials (PCMs)
PCMs due to their higher latent heat values can store and release a large amount of heat energy during melting and solidifying processes [14]. These materials have been thought to act as a storage medium with numerous applications such as cooling of food products, buildings, textiles, solar systems, spacecraft thermal systems and waste heat recovery systems [15]. On the basis of phase conversion PCMs are categorized into solid–liquid, solid–solid, solid–gas and liquid–gas [1]. Among these categories, solid–liquid PCMs due to their high density, favorable phase equilibrium, minor volume changes and low vapor pressure at the operating temperature during phase transition are more suitable for thermal energy storage systems. Furthermore, solid–liquid PCMs show little or no subcooling during freezing, melting/freezing at the same temperature and phase separation, and sufficient crystallization rate.
PCMs possess high chemical stability, nontoxic, nonexplosive and noncorrosive nature, do not undergo degradation after long-term thermal cycles, and have good chemical properties capable of completing reversible freezing/melting cycle [6]. Solid–liquid PCMs can be divided into three major types: (a) organic PCMs (b) inorganic PCMs and (c) eutectic PCMs [16]. Organic PCMs include paraffin and nonparaffin (alcohols, fatty acids and glycols) materials [2]. Inorganic PCMs generally include salt hydrates, metallic compounds and metal alloys with the advantages of a broader range of transition temperature, high thermal conductivity and high latent heat storage capacity, low cost and nonflammable nature. In contrast, lack of thermal stability, phase segregation, supercooling, corrosion and decomposition, are problems that dominate their benefits [17]. Eutectic PCMs are the combination of two or more low melting components, each of which freezes and melts congruently to make a mixture of the components’ crystals upon crystallization [6]. Eutectic PCMs can be prepared for a specific application by mixing organic–organic, inorganic–inorganic, or a combination of the two PCMs at a given ratio. These PCMs have high thermal conductivity and density without segregation and supercooling, while their specific heat capacity and latent heat are much lower than those of paraffin/salt hydrates [18].
3. Microencapsulation shell materials
In recent years, microencapsulation of PCMs has been widely used to avoid the leakage and reaction of the PCMs with the surrounding environment during the solid–liquid phase transition.
Microencapsulation of PCMs can also be responsible for relatively constant volume, high thermal cycling stability and large heat transfer area for PCM-based thermal storage [19]. Shell/wall materials play a vital role in controlling various physical properties like morphology, mechanical and thermal properties of the produced microcapsules [7]. On the basis chemical nature shell material can be divided into three groups: (a) organic, (b) inorganic and (c) organic–inorganic hybrid materials [20].
3.1 Organic shells
Organic shell materials include synthetic and natural polymeric materials, which have excellent structural flexibility, good sealing properties and high resistance to the volume change associated with repeated phase transformations of PCMs [21]. The organic shell materials most frequently used consist of urea-formaldehyde (UF) resin [22], melamine-formaldehyde resin [23], and acrylic resin [24]. Many workers around the world used MF resin as the wall material due to its good chemical compatibility, low cost and thermal stability [25]. Mohaddes et al. effectively utilized MF as the shell material for encapsulation of n-eicosane for application to textiles [26]. Fabrics doped with this type of microcapsules have higher thermoregulation capacity and low thermal delay efficiency. Among the group of acrylic resins, the copolymers of methacrylate have significant thermal stability, chemical resistance, nontoxic nature and easy preparation. Alkan et al. has shown that n-eicosane microencapsulation with polymethylmethacrylate (PMMA) shell had good thermal stability [27]. Ma et al. successfully encapsulated binary core materials, butyl stearate and paraffin using poly(methylmethacrylate-co-divinylbenzene) (P(MMA-co-DVB)) copolymer as the shell material [28]. The microcapsules so obtained possess a uniform size of 5–10 μm with a uniform spherical shape and dense surface. Moreover, the phase transition temperature of these microcapsules can be adjusted by adjusting the butyl stearate to paraffin ratio. Wang et al. studied the effect of GO on the thermal properties of capric acid@UF microcapsules by adding various contents of graphene oxide (GO) [29]. It was found that the microcapsules with 0.6% GO had the highest enthalpy of 109.60 J/g and encapsulation ratio of 60.7%. The microcapsules with GO presented smoother surfaces and good thermal conductivity.
3.2 Inorganic shells
Microcapsules prepared by using organic polymeric shell materials are usually not suitable for application in some situations due to the low thermal conductivity, flammable nature and poor mechanical strength of the organic shell materials [30]. In recent years, inorganic shells due to their good thermal conductivity, high rigidity and high mechanical strength, have been progressively employed as an alternative shell material for microcapsule preparation [21]. The commonly used inorganic shell materials include Silica (SiO2) [31], zinc oxide (ZnO) [32], titanium dioxide (TiO2) [33] and calcium carbonate (CaCO3) [34].
Silica because of its fire resistance nature, high thermal conductivity and ease of preparation are one the most commonly used shell materials for encapsulation of fatty acids [35], paraffin waxes [34] and inorganic hydrated salts [36]. Liang et al. prepared nanocapsules by encapsulating n-octadecane core material using silica as the shell material via interfacial hydrolysis and polycondensation of tetraethoxysilane (TEOS) in miniemulsion [37]. The thermal conductivity of nanocapsules so obtained was observed to be higher than 0.4 Wm−1 K−1 with melting enthalpy and encapsulation ratio of 109.5 J/g and 51.5%, respectively. The enthalpy of the nanocapsules was not altered and no leakage was observed after 500 thermal cycles. However, the hydrolysis and polycondensation of TEOS, used as a silica precursor, could cause a reduction in the compactness of the silica shell and have a relatively weak mechanical strength. CaCO3 shells have higher rigidity and better compactness compared to silica. Yu et al. employed CaCO3 as shells material for encapsulating n-octadecane through the self-assembly method [12]. The microcapsules obtained were of spherical morphology with a uniform diameter (5 μm) and had good thermal stability, thermal conductivity, anti-osmosis properties and serving durability.
Metal oxides, like ZnO and TiO2, owing to their multifunctional properties including photochemical, catalytic and antibacterial characteristics are frequently used as shell materials to obtain PCM microcapsules with some remarkable characteristics. Li et al. synthesized multifunctional microcapsules with latent heat storage and photocatalytic and antibacterial properties by using ZnO as the shell material and n-eicosane as the core material [38]. Similarly, Liu et al. utilized TiO2 as shells material for encapsulating n-eicosane through interfacial polycondensation followed by ZnO impregnation [39]. The prepared microcapsules have both thermal storage and photocatalytic capacities with a melting temperature of 41.76°C and latent heat of 188.27 J/g.
3.3 Organic: inorganic hybrid shells
Organic–inorganic hybrid shells materials are used to overcome the shortcomings related to the individual organic or inorganic materials for encapsulating PCMs. In hybrid shells, organic materials offer structural flexibility while inorganic materials can improve thermal conductivity, thermal stability and mechanical rigidity [21]. Polymers (such as PMMA and PMF) based shells doped with SiO2 or TiO2 are extensively used to encapsulate PCMs [40]. Wang et al. prepared n-octadecane microcapsules using PMMA-silica hybrid shells via photocurable Pickering emulsion polymerization with good morphology and particles size of 5–15 μm [41]. The highest encapsulation efficiency (62.55%) was achieved with the weight ratio of MMA to n-octadecane of 1:1. Zhao et al. successfully synthesized bifunctional microcapsules by using PMMA doped with TiO2 as the hybrid shell and n-octadecane as the core material [42]. TiO2 was observed to improve microcapsules’ thermal conductivity but reduce encapsulation efficiency and enthalpy. The initial degradation temperature of microcapsules with 6% TiO2 reached 228.4°C, confirming good thermal stability of the microcapsules. Wang et al. prepared multifunctional microcapsules with regular-spherical morphology by using poly(melamine-formaldehyde)/silicon carbide (PMF/SiC) hybrid shells and n-octadecane as cores material [43]. The thermal conductivity of microcapsules with 7% SiC had improved by 60.34% compared to those microcapsules with no SiC, which is also accompanied by a significant increase in heat transfer rate.
4. Technologies for microencapsulation of PCMs
Microencapsulation techniques are of several types which are broadly classified into three major categories on the basis of fabrication mechanism: (1) physical methods (2) chemical methods and (3) physico-chemical methods. All these techniques involve the formation of a solid shell/coat around small liquid or solid particles of 1–100 μm diameter to accomplish the desired properties such as, protection competency, time-dependent release of material, provision of the substance to the particular target, minimize interaction with the environment, corrosion prevention, steadiness of function and to facilitate the use of toxic materials. The microencapsulation of PCMs is a special packaging methodology in which solid–liquid PCMs can be enclosed in some wall materials by using physical or chemical process to make small particles termed ‘microcapsules’ [44]. The PCM in a microcapsule is named as the core material while the outer shell which encloses the PCM from the surrounding environment is called the wall material. Microencapsulation as an emerging technology, commonly applied in many fields like thermal energy storage, medicine, food preservation, catalysis, dyes, textile, cosmetics, self-healing, coatings, engineering and defense [45]. A detailed classification of the microencapsulation methods is listed in Figure 1.
Figure 1.
Major physical and chemical microencapsulation methods for solid–liquid PCMs.
4.1 Physical methods
Physical methods involve involves physical processes, like drying, dehydration and adhesion in the formation of microcapsule shells. The most frequently used physical methods for PCMs encapsulation are spray-drying and solvent evaporation. The spray-drying process can be accomplished in the following steps: (1) preparation of oil–water emulsion comprising PCMs and shell materials, (2) spraying of the oil–water emulsion in a drying chamber via an atomizer, (3) drying of the sprayed droplets by using a stream of drying gas at a particular temperature, and (4) separating the solid particles by cyclone and filter [46]. Borreguero et al. employed a spray drying method for microencapsulation of paraffin Rubitherm®RT27 core using polyethylene EVA shell with and without carbon nanofibers (CNFs) [47]. The CNFs addition improved the thermal conductivity and mechanical strength of microcapsules, and the heat storage capability was retained. Also, the DSC analysis shown that even after the 3000- thermal charge/discharge cycles the microcapsules still had good thermal stability. Hawlader et al. synthesized spherical shape and uniform size microcapsule with paraffin core and gelatin and Arabic gum using spray-drying method [48]. The microcapsules prepared at the core-to-shell ratio of 2:1 have heat storage and release capacity reached 216.44 J/g and 221.217 J/g, respectively.
The solvent evaporation method includes: (1) preparation of polymer solution by dissolving shell materials in a volatile solvent; (2) addition of PCMs to the polymer solution to form O/W emulsion; (3) developing shells on the droplets by evaporating the solvent; (4) filtration and drying to obtaining the microcapsules. Lin et al. encapsulated myristic acid (MA) with ethyl cellulose (EC) using the solvent evaporation method [49]. The melting and solidifying temperatures were observed to be 53.32°C and 44.44°C, while the melting and solidifying enthalpies were found 122.61 J/g and 104.24 J/g, respectively. Wang et al. applied the solvent evaporation method to synthesize high-performance microcapsules by using sodium phosphate dodecahydrate (DSP) as the core and poly(methyl methacrylate) (PMMA) as the shell [50]. The optimal preparation temperature for the microencapsulation process was 80–90°C, reaction time 240 min, and stirring rate 900 rpm. The microcapsules obtained had an energy storage capacity of 142.9 J/g at the endothermic peak temperature of 51.5°C.
4.2 Chemical methods
In chemical methods, microencapsulation is done by the polymerization or condensation of monomers, oligomers, or prepolymers as raw materials to form shells at an oil–water interface. The chemical methods mostly involve in-situ polymerization, suspension polymerization, interfacial polymerization, and emulsion polymerization. The schematic diagrams of these four polymerization methods are shown in Figure 2. In situ polymerization method (Figure 2(a)), involves the formation of a shell on the surface of the droplet by polymerization of the prepolymers which can be accomplished in the following steps [52]: (1) preparation of the O/W emulsion by adding PCMs to surfactant aqueous solution; (2) preparation of a prepolymer solution; (3) addition of the prepolymer solution to the O/W emulsion, followed by adjusting the appropriate reaction conditions; and (4) microcapsule synthesis. Konuklu et al. successfully utilized in situ polymerization method for microencapsulation of decanoic acid using poly(urea-formaldehyde) (PUF), poly(melamine-formaldehyde) (PMF), and poly(melamine urea-formaldehyde) (PMUF) [53]. The microcapsules obtained by coating of PUF displayed higher heat storage capacity but weaker mechanical strength and lower heat resistance, while the microcapsules coated with PMF shells had higher thermal stability but lower thermal energy storage capacity. However, the PMUF-encapsulated microcapsules possessed seamless thermal stability and no leakage was found at 95°C. Zhang et al. utilized in situ polycondensation method for synthesizing dual-functional microcapsules containing n-eicosane cores and ZrO2 shells [54]. The microcapsules synthesized have a spherical shape with a size of 1.5–2 μm have good thermal energy storage and possessed better thermal stability, and thermal properties almost unchanged after 100 thermal cycles. Su et al. used methanol-modified melamine-formaldehyde (MMF) prepolymer as shell material for microencapsulation of dodecanol and paraffin via in situ polymerization [55]. They observed that the average diameter of dodecanol-based microcapsules sharply decreased and encapsulation efficiency increased with increasing stirring rates. The maximum encapsulation efficiency was found to be 97.4%.
Figure 2.
Schematic diagrams of chemical methods for PCMs microencapsulation: (a) in situ polymerization, (b) interfacial polymerization, (c) suspension polymerization, and (d) emulsion polymerization [51].
Interfacial polymerization is used in the preparation of organic shell materials such as polyurea and polyurethane. In this method, two reactive monomers are separately dissolved in the oil phase and the aqueous phase, then in the presence of an initiator polymerization occurs at the oil–water interface as shown in Figure 2(b). This method includes the following steps: (1) preparation of an O/W emulsion having hydrophobic monomer and PCMs; (2) addition of the hydrophilic monomer under proper conditions to initiate polymerization; (3) filtration, washing, and drying to get microcapsules. Ma et al. successfully used the interfacial polymerization method for microencapsulation of binary core materials like butyl stearate (BS) and paraffin with polyurea/polyurethane as the shell material [56]. The microcapsules phase change temperature was adjusted by changing the ratio of the two core materials. The microcapsules obtained possessed high thermal stability. Lu et al. encapsulated the butyl stearate core with a polyurethane-based cross-linked network shell via interfacial polymerization [57].
In the suspension polymerization method, the dispersed droplets of PCMs, monomers and initiators are suspended in a continuous aqueous phase by using surfactants and mechanical stirring. The oil-soluble initiator free radicals are then released into the emulsion system to initiate polymerization of the monomers at a suitable temperature and stirring rate [46], as presented in Figure 2(c). Wang et al. successfully employed the suspension polymerization method to encapsulate n-octadecane with thermochromic pigment/PMMA shells at five different pigment/MMA ratios varying as 0, 1.4, 4.3, 7.1, and 14.3 wt.% [58]. It was observed that the microcapsules without pigment achieved the highest melting and crystallization enthalpies of 149.16 J/g and 152.55 J/g, respectively. Tang et al. prepared spherical shape microcapsules with an average diameter of about 1.60 μm using n-octadecane core material and n-octadecyl methacrylate (ODMA)-methacrylic acid (MAA) copolymer as shell material via the suspension polymerization method [59]. The microcapsules attained the highest phase change enthalpy of 93 J/g at monomers to the n-octadecane ratio of 2:1. Sanchez-Silva et al. microencapsulated Rubitherm®RT31 with polystyrene via suspension polymerization by using different suspension stabilizers [60]. The DSC investigations have shown that when PVP and gum Arabic were used as suspension stabilizers the microcapsules obtained presented the lowest thermal storage capacity of 75.7 J/g and highest of 135.3 J/g.
In emulsion polymerization (Figure 2(d)), first, the PCMs and monomers dispersed phase is suspended in a continuous phase in the presence of surfactants at constant stirring, followed by the addition of water-solution initiators to start the polymerization process [61]. This method is used to prepare microcapsule shells by polymerizing organic materials like PMMA and polystyrene. Şahan et al. encapsulated stearic acid (SA) with poly(methyl methacrylate) (PMMA) and four other PMMA-hybrid shell materials via emulsion polymerization technique [62]. The average diameter of microcapsules so obtained was found to be 110–360 μm, the thickness of 17–60 μm, heat storage capacity below 80 J/g and degradation temperature above 290°C. Sarı et al. successfully utilized the emulsion polymerization technique to microencapsulate paraffin eutectic mixtures (PEM) containing four different contents with PMMA shells [63]. The microcapsules obtained were spherical with a particle size of 1.16–6.42 μm, heat storage capacity of 169 J/g and melting temperature in the range of 20–36°C.
4.3 Physico-chemical methods
In the physical–chemical method, microencapsulation is accomplished by combining the physical processes like phase separation, heating and cooling, with chemical processes, like hydrolysis, cross-linking and condensation. Normally, the coacervation and sol–gel methods are the most frequently employed methods. The coacervation method is of two types, one is single coacervation which requires only one type of shell material and the other is complex coacervation which requires two kinds of opposite-charged shell materials for microcapsules preparation. The microcapsules synthesized by the complex coacervation method usually have a more uniform size, better morphology and stability.
The complex coacervation processes involve the following key steps: (1) formation of emulsion by dispersing PCMs in polymer aqueous solution; (2) addition of a second aqueous polymer solution with opposite charges and deposition of shell material on droplet surface by electrostatic attraction and (3) Getting of microcapsules by cross-linking, desolation or thermal treatment. Hawlader et al. encapsulated paraffin cores with gelatin and acacia by using a complex coacervation process [48]. The melting and solidifying enthalpies of microcapsules obtained reached 239.78 J/g and 234.05 J/g, respectively, when the amount of cross-linking agent was 6–8 ml, homogenizing time was 10 min, and the ratio of core to the shell was 2:1. Onder et al. employed complex coacervation to microencapsulate n-hexadecane, n-octadecane and n-nonadecane core materials with natural and biodegradable polymers, like gum Arabic-gelatin mixture [64]. The microcapsules having n-hexadecane and n-octadecane cores showed good enthalpies of 144.7 J/g and 165.8 J/g, respectively, were obtained at the dispersed content of 80% in the emulsion and the microcapsules containing n-nonadecane prepared at the dispersed content of 60% in the emulsion presented enthalpy value of only 57.5 J/g.
The sol–gel method is a cheap and mild process for synthesizing PCMs microcapsules by inorganic shells, such as SiO2 and TiO2 shells. The major steps involved in the preparation of microcapsule by the sol–gel method are as follows: (1) preparation of colloidal solution by uniformly dispersing the reactive materials like PCMs, precursor, solvent and emulsifier in a continuous phase via hydrolysis reaction; (2) formation of a three-dimensional network structured gel system through condensation polymerization of monomers and (3) drying, sintering and curing processes to obtain microcapsules [65]. Cao et al. used the sol–gel process to microencapsulate paraffin core with TiO2 shells. They found that the sample with a microencapsulation ratio of 85.5% had melting and solidifying latent heat of 161.1 kJ/kg (at the melting temperature of 58.8°C) and 144.6 kJ/kg (at the solidifying temperature of 56.5°C), respectively [66]. Latibari et al. successfully employed the sol–gel method to synthesize nanocapsules containing palmitic acid (PA) core with SiO2 shell by controlling solution pH [67]. The nanocapsule obtained presented an average particle size of 183.7, 466.4 and 722.5 nm, at pH 11, 11.5 and 12, respectively, and the corresponding melting latent heats values of 168.16, 172.16 and 180.91 kJ/kg, respectively.
5. Design of microencapsulated PCMs for versatile application
5.1 PCMs microencapsulation with function inorganic shells
Microencapsulation with conventional polymeric, inorganic or composite shells can provide only protection for the PCM core, but at the same time, these inert wall materials cause a reduction in their latent heat-storage capacities which make them unsuitable for thermal energy storage and thermal management systems. In view of that various inorganic materials have a feature of functional diversity, it will be possible to synthesize bi-function PCMs-based microcapsules by encapsulating the PCM core with a functional inorganic shell. This idea was first used by Fei et al. [68] and successfully synthesized a novel multi-functional microcapsules based on an anatase TiO2 shell and n-octadecane/titania aerosol core via the hydrothermal method. The microcapsules obtained presented multi-functional properties with photocatalytic activity and UV-blocking effectiveness as well as a thermal energy-storage function. Chai et al. [69] introduced a new synthetic strategy by fabricating a well-defined core-shell structured PCM microcapsule based on a functional TiO2 shell. The crystallization of amorphous TiO2 was initiated by adding fluorine ions when the in-situ polycondensation of titanic precursors was performed in a nonaqueous O/W emulsion-templating system. The microcapsules so prepared have excellent thermal energy-storage capacity and show photocatalytic and antibacterial functions. Liu et al. [70] introduced a new technology by modifying the brookite TiO2 shell of the n-eicosane core with graphene nanosheets. It was observed that graphene promotes the charge transfer and separation ability of microcapsule which leads to a significant increase in its photocatalytic activity. Liu et al. [39] also explored that modification of TiO2 shell with ZnO boosts the latent heat-storage capacity and photocatalytic activity of the resultant microcapsules. A study on the utilization of microcapsules doped with ZnO presented good thermal regulation and thermal management properties when incorporated into the gypsum-matrix composites. These explorers make the modified microcapsules good candidates for direct solar energy utilization. Additionally, Liu et al. [71] introduced a morphology-controlled synthetic technology to fabricate PCM-based microcapsules with crystalline TiO2 shells by using different structure-directing agents and effectively obtained the microcapsules in the tubular, octahedral and spherical shapes. They also studied the influence of structural morphology on the thermal energy-storage capacity of these microcapsules and observed the highest latent heat-storage efficiency with microcapsules of spherical morphology while the tubular ones displayed the fastest heat response rate. Li et al. [38] successfully encapsulated n-eicosane with ZnO shell via in-situ precipitation reaction of Zn(CH3COO)2·2H2O and NaOH in an emulsion templating system. The microcapsule prepared exhibited good thermal energy-storage capability and high working reliability as well as high photocatalytic activities and antimicrobial effectiveness against Staphylococcus aureus. These microcapsules, therefore, have gained potential applications in medical care and surgical treatment. Gao et al. [72] designed multi-functional microcapsules by a microencapsulating n-eicosane core with a Cu2O shell, through emulsion templated in-situ precipitation and reduction. The microcapsules obtained exhibited multifunctional properties of effective photothermal conversion, high latent-heat storage/release efficiency for solar photocatalysis and solar thermal energy storage, as well as demonstrated sensitivity to some toxic organics gases due to a p-type semiconductive feature of Cu2O shell.
5.2 Advanced design of microencapsulated PCMs for versatile applications
In recent years due to the fast development in microencapsulation technology, a large number of innovative designs have been introduced for fabricating bi- or multi-functional PCMs-based microcapsules. Jiang et al. [73] designed magnetic PCM-based microcapsules as an applied energy microsystem for bio-applications as thermoregulatory enzyme carriers. They synthesized the magnetic microcapsules by encapsulating n-eicosane with a TiO2/Fe3O4 hybrid shell by Pickering emulsion-templated interfacial polycondensation and then Candida rugosa lipase (CRL) was immobilized onto the microcapsules obtained by covalent bonds through a series of complicated surface modification and immobilization reactions. The microcapsules obtained were observed to have higher thermal stability, longer storage stability, higher biocatalytic activity and better reusability compared to traditional inert enzyme carriers. Likewise, Li et al. [74] also developed thermoregulatory enzyme carriers based on the magnetic microcapsules containing n-docosane core and SiO2/Fe3O4 hybrid shell with α-amylase immobilized onto the microcapsule and examined the effect of ambient temperature on their biocatalytic activity. They found that the biocatalytic activity was increased considerably for the immobilized α-amylase on the developed enzyme carriers due to the thermoregulation microenvironment around the microcapsules. These innovative designs provide a novel approach for the preparation and applications of microencapsulated PCMs in areas of bioengineering and biotechnological.
Choi et al. [75] designed a novel, temperature-sensitive drug release system based on PCMs. They first prepared the gelatin nanoparticles containing fluorescein isothiocyanate-dextran as a drug via emulsification technique, and then 1-tetradecanol was used to synthesize the PCM-matrix microbeads containing these gelatin nanoparticles by using a simple fluidic device based on an O/W emulsion. Moreover, Wang et al. [58] designed and synthesized thermochromic microencapsulated PCM by encapsulating n-octadecane with PMMA shell with simultaneous dispersion of thermochromic pigments in core and shell by suspension-like polymerization. The microcapsules obtained showed a visible color change with change in temperature, confirmed the occurrence of thermal energy storage or release at the specific temperature.
Geng et al. [76] designed a three-component core consisting of 1-tetradecanol as a PCM, leuco dye and phenolic color developer as an electron donor and fabricated reversible thermochromic microcapsules for application in thermal protective clothing. They encapsulated the three-component core with a poly (methylated melamine-formaldehyde) (PMMF) shell via emulsion-templated copolymerization. The as synthesized microcapsules exhibited thermochromic reversibility with good energy storage/release capability and have a great potential for applications in thermal protective clothing of firefighters as well as intelligent textiles or fabrics, food and medicine package and so on. Wu et al. [77] synthesized reversible thermochromic microcapsules by encapsulating 1-hexadecanol with modified gelatin and gum Arabic via a complex coacervation process. The wall materials of this microcapsule system were fused with 2-phenylamino-3-methyl-6-di-n-butylamino-fluoran as a color former and 2,2-bis(4-hydroxyphenyl) propane as a color developer. The microcapsule prepared acts as an indicator for the states of energy saturation and consumption through color changes. In addition, Zhang et al. [78] introduced polysaccharide-assisted microencapsulation as an innovative methodology for encapsulation of volatile PCMs with a fluorescent retention indicator to determine the retention of microencapsulated volatile PCM in diverse working environments. They microencapsulated heptane core with polymeric shell by one-step in-situ polymerization path using Nile red as a fluorescent indicator which was incorporated into the heptane core during the synthetic process, and therefore the fluorophores in Nile red could give a clear indication for the core and shell structures of microcapsules.
6. Applications of microencapsulated PCMs
Microencapsulated PCMs due to their unique properties such as solid-to-liquid phase transition, chemical and thermal stability and higher amount of energetic changes, has received special attention for their applications in in our ordinary daily life and various industries. In recent years, PCMs have been designed and fabricated to meet the requirements around the world. The potential applications of PCM microcapsules are shown in Figure 3, and discussed as bellows:
Figure 3.
Potential applications of PCMs microcapsules.
6.1 Application in fibers and textiles
In textile industries, microencapsulated PCMs are embedded within the fibers or coated onto the surface of fabrics which are used in the preparations of outdoor dress such as snowsuits, trousers, gloves, ear warmers and boots etc. The microencapsulated PCMs enhance the thermal storage capacities of the fibers/fabrics (2.5–4.5 times) and thus protect from extremely cold weather [46]. Microencapsulation is a promising technology for applications in the textile industry such as agriculture textiles, medical textiles automotive textiles and sportswear/protective clothing. Scacchetti et al. explored the thermal and antimicrobial properties of cotton with silver zeolites functionalized via a chitosanzeolite composite and microcapsules of PCMs [79]. They suggested the use of chitosan zeolite for the production of textiles for superior antibacterial and thermoregulating properties. Microencapsulated PCMs increase the flame-retardant property thermal and comfort of the textiles, as these PCM microcapsules were scattered homogeneously onto textile substrates and were durable with repeated washings [80].
6.2 Application in slurry
PCM microcapsules with high latent heat are used in the slurry industry as an enhanced heat transfer fluid (HTF) and a thermal storage medium (TSM). Song et al. considered laminar heat transfer of PCM microcapsules slurry and proved that the heat transfer coefficient improved with increasing Reynolds number and volume concentration of microcapsules [81]. Roberts et al. compared the heat transfer capability of metal-coated and nonmetal-coated PCM microcapsules slurry and noticed an additional 10% increment in heat transfer coefficient and PCM microcapsules inducing pressure drop in slurry [82]. Zhang and Niu reported higher thermal storage capacity for PCM microcapsules slurry storage devices and stratified water storage tanks [83]. Xu et al. prepared PCM microcapsules with Cu-Cu2O/CNTs shell and their dispersed slurry for direct absorption solar collectors [84]. They reported that the PCMs@Cu-Cu2O/CNTs microcapsule slurry had high heat storage competency and outstanding photothermal conversion performance which made it as one of the most potential HTFs for direct absorption solar collector.
6.3 Application in energy-saving building
Another amazing application of PCM microcapsules is their utilization in building materials to overcome overheating problems in summer and provided a new effective solution for thermal management and energy saving in buildings. The PCM microcapsules in construction materials boost the thermal and acoustic insulation of walls. Usually, the PCM microcapsules are embedded into concrete mixtures, cement mortar, gypsum plaster, wallboards, sandwich, slabs, panels and to fulfill the energy demand of the building for heating, cooling, lighting, air conditioning, ventilation and domestic hot water systems [85]. Many researchers around the world worked on the application of PCMs microcapsules in the building industry. Cabeza et al. reported an innovative concrete material with high thermal properties by mixing it with PCM microcapsules [86]. It was found that the concrete wall with PCM microcapsules increase its overall mechanical resistance and stiffness and causes even temperature fluctuations and thermal inertia, making it to be a promising technology to save energy for buildings [87]. Su et al. studied nano-silicon dioxide hydrosol as the surfactant for the preparation of PCM microcapsules for thermal energy storage in buildings [88]. Essid et al. investigated the compressive strength and hygric properties of microencapsulated PCMs concretes [89]. They reported that the use of concrete containing PCM microcapsules as structural material is sufficiently safe, though its compressive strength is lower and porosity is higher than the pure concrete. Schossig et al. [90] directly integrated formaldehyde-free microencapsulated paraffins in building materials and studied their effect for application in conventional construction materials. They observed that the utilization of these PCMs microcapsule could help to keep the indoor temperature up to 4°C lower than typical conditions and could reduce the number of hours that the indoor temperature was greater than 28°C.
6.4 Application in foams
The application of microencapsulated PCMs in foams can enhance their thermal insulating efficiency. Borreguero et al. reported that the thermal energy storage capacity of rigid polyurethane foams was improved when it was embedded with PCM microcapsules investigated rigid polyurethane foams containing and indicated that improved [91]. Li et al. introduced a new approach to enhancing the latent heat energy storage ability by embedding PCM microcapsules in metal foam [92]. They observed that compared to the surface temperature of virgin PCM modules, the surface temperature for the PCM microcapsule/foam and PCM/foam composite modules was reduced from about 90 to 55 and 45°C, respectively. PCM microcapsule/foam composites solved the problem of low thermal conductivity and leakage. Bonadies et al. synthesized poly(vinyl alcohol)- (PVA-) based foams containing PCM microcapsules and investigated their thermal storage and dimensional stability [93]. They observed that the formation of crystalline domain and amount of water uptake was influenced by microcapsules which in turn affected the number of intra- and intermolecular hydrogen bonds as many PVA –OH groups interact with microcapsule shells.
6.5 Others applications
There are many other potential applications of PCM microcapsules. These include biomedical applications, solar-to-thermal energy storage and electrical-to-thermal energy storage [65]. Zang et al. prepared multifunctional microencapsulated PCMs that can be used for sterilization [94]. They reported that these microcapsules have high antibacterial activity against Escherichia coli, S. aureus, and Bacillus subtilis, and the antibacterial efficiency of 2-hour contacting PCM microcapsules was inhibited up to 64.6%, 99.1%, and 95.9%, respectively. Zhang et al. also studied solar-driven PCM microcapsules with efficient Ti4O7 nanoconverter for latent heat storage [95]. The solar absorption capacity of the novel PCM microcapsules was found to be 88.28%, and the photothermal storage efficiency of the PCMs@SiO2/Ti4O7 microcapsules was 85.36% compared with 24.14% for pure PCMs. Zheng et al. proposed a joule heating system to reduce the convective heat transferring from the electrothermal system of the surrounding by inserting the highly conductive and stable PCMs microcapsules [96]. They showed that the working temperature could be improved by 30% with the loading of 5% PCMs microcapsules even at lower voltage and ambient temperature.
7. Conclusion
Microencapsulation is a promising technology to fabricate PCM microcapsules for thermal energy storage and other versatile applications. Microencapsulation technology not only overcome the problem of leakage, volatilization and handling the difficulty of liquids PCMs but also improve the heat transferring ability of PCMs and thus makes them a favorable means for many broad range of applications. The thermal, physical, chemical and mechanical properties of PCM microcapsules are highly dependent on the type of the core materials, shell materials and synthesis processes. Encapsulation with inorganic shells can provide more advantages for microencapsulated PCMs and therefore will gain much more attention from fundamental research to commercial development in the future. The designing parameters, such as weight ratio of raw materials for core and shell, the selection of dispersion medium, reaction temperature, time, agitation speed, particles size and its distribution and other additives should be carefully addressed to obtain PCMs microcapsules with well-defined core-shell structured and good thermal energy-storage capability. Though PCM microcapsules are considered smart thermal energy storage materials, still much more new materials and synthetic techniques are to be explored to offer numerous possibilities for the design and fabrication of innovative bi- and multi-functional PCMs microcapsules with better properties and functions than the traditional ones.
\n',keywords:"microencapsulation, phase change materials, designing, multifunctional microcapsules, thermal energy storage, versatile applications",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/81726.pdf",chapterXML:"https://mts.intechopen.com/source/xml/81726.xml",downloadPdfUrl:"/chapter/pdf-download/81726",previewPdfUrl:"/chapter/pdf-preview/81726",totalDownloads:19,totalViews:0,totalCrossrefCites:0,dateSubmitted:"December 5th 2021",dateReviewed:"January 21st 2022",datePrePublished:"May 11th 2022",datePublished:null,dateFinished:"May 11th 2022",readingETA:"0",abstract:"Microencapsulated phase change materials have been considered as potential candidates to overcome the global energy shortage, as these materials can provide a viable method for storing thermal energy and offering consistent energy management by controllable heat release in desirable environments. Microencapsulation technology offers a method for overcoming the trouble associated with the handling of solid–liquid phase change materials (PCMs) via encapsulating PCMs with thin or tiny shells which are known as ‘microcapsules’. Microcapsule shells not only keep PCMs isolated from the surrounding materials but also provide a stable structure and sufficient surface for PCMs to enhance heat transfer. Thus microencapsulation technology received remarkable attention from fundamental studies to industrial growth in recent years. In order to provide a reliable source of information on recent progress and development in microencapsulated PCMs, this chapter emphases on methods and techniques for the encapsulation of PCMs with a diversity of shell materials from traditional organic polymers to novel inorganic materials to pursue high encapsulation efficiency, excellent thermal energy-storage performance and long-term operation durability. The chapter also highlights the design of bi- and multi-functional PCM-based microcapsules by fabricating various functional shells in a multilayered structure to meet the growing demand for versatile applications.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/81726",risUrl:"/chapter/ris/81726",signatures:"Tahira Mahmood, Rahmat Ali and Abdul Naeem",book:{id:"11077",type:"book",title:"Microencapsulation - Recent Advances, New Perspectives and Applications of Smart Microcapsules",subtitle:null,fullTitle:"Microencapsulation - Recent Advances, New Perspectives and Applications of Smart Microcapsules",slug:null,publishedDate:null,bookSignature:"Prof. Fabien Salaün",coverURL:"https://cdn.intechopen.com/books/images_new/11077.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-394-8",printIsbn:"978-1-80355-393-1",pdfIsbn:"978-1-80355-395-5",isAvailableForWebshopOrdering:!0,editors:[{id:"27644",title:"Prof.",name:"Fabien",middleName:null,surname:"Salaün",slug:"fabien-salaun",fullName:"Fabien Salaün"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Phase change materials (PCMs)",level:"1"},{id:"sec_3",title:"3. Microencapsulation shell materials",level:"1"},{id:"sec_3_2",title:"3.1 Organic shells",level:"2"},{id:"sec_4_2",title:"3.2 Inorganic shells",level:"2"},{id:"sec_5_2",title:"3.3 Organic: inorganic hybrid shells",level:"2"},{id:"sec_7",title:"4. Technologies for microencapsulation of PCMs",level:"1"},{id:"sec_7_2",title:"4.1 Physical methods",level:"2"},{id:"sec_8_2",title:"4.2 Chemical methods",level:"2"},{id:"sec_9_2",title:"4.3 Physico-chemical methods",level:"2"},{id:"sec_11",title:"5. Design of microencapsulated PCMs for versatile application",level:"1"},{id:"sec_11_2",title:"5.1 PCMs microencapsulation with function inorganic shells",level:"2"},{id:"sec_12_2",title:"5.2 Advanced design of microencapsulated PCMs for versatile applications",level:"2"},{id:"sec_14",title:"6. Applications of microencapsulated PCMs",level:"1"},{id:"sec_14_2",title:"6.1 Application in fibers and textiles",level:"2"},{id:"sec_15_2",title:"6.2 Application in slurry",level:"2"},{id:"sec_16_2",title:"6.3 Application in energy-saving building",level:"2"},{id:"sec_17_2",title:"6.4 Application in foams",level:"2"},{id:"sec_18_2",title:"6.5 Others applications",level:"2"},{id:"sec_20",title:"7. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Progress in Materials Science. 2014;65:67-123'},{id:"B2",body:'Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management. 2004;45:263-275'},{id:"B3",body:'Kalnæs SE, Jelle BP. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings. 2015;94:150-176'},{id:"B4",body:'Sharma A, Tyagi VV, Chen C, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009;13:318-345'},{id:"B5",body:'Guney MS, Tepe Y. Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews. 2017;75:1187-1197'},{id:"B6",body:'Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews. 2015;48:373-391'},{id:"B7",body:'Jamekhorshid A, Sadrameli S, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews. 2014;31:531-542'},{id:"B8",body:'Delgado M, Lázaro A, Mazo J, Zalba B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renewable and Sustainable Energy Reviews. 2012;16:253-273'},{id:"B9",body:'Kant K, Shukla A, Sharma A. Advancement in phase change materials for thermal energy storage applications. Solar Energy Materials and Solar Cells. 2017;172:82-92'},{id:"B10",body:'Zhao C-Y, Zhang GH. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews. 2011;15:3813-3832'},{id:"B11",body:'He F, Wang X, Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renewable Energy. 2015;74:689-698'},{id:"B12",body:'Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Applied Energy. 2014;114:632-643'},{id:"B13",body:'Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Solar Energy Materials and Solar Cells. 2014;123:183-188'},{id:"B14",body:'Khadiran T, Hussein MZ, Zainal Z, Rusli R. Advanced energy storage materials for building applications and their thermal performance characterization: A review. Renewable and Sustainable Energy Reviews. 2016;57:916-928'},{id:"B15",body:'Mondal S. Phase change materials for smart textiles–an overview. Applied Thermal Engineering. 2008;28:1536-1550'},{id:"B16",body:'Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews. 2007;11:1913-1965'},{id:"B17",body:'Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y. Latent heat thermal energy storage systems with solid–liquid phase change materials: A review. Advanced Engineering Materials. 2018;20:1700753'},{id:"B18",body:'Zeng J-L, Chen Y-H, Shu L, Yu L-P, Zhu L, Song L-B, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells. 2018;178:84-90'},{id:"B19",body:'Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Farid M. Innovative method of metal coating of microcapsules containing phase change materials. Solar Energy. 2016;129:54-64'},{id:"B20",body:'Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews. 2010;14:615-628'},{id:"B21",body:'Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Applied Energy. 2019;235:846-873'},{id:"B22",body:'Brown EN, Kessler MR, Sottos NR, White SR. In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation. 2003;20:719-730'},{id:"B23",body:'Huang R, Li W, Wang J, Zhang X. Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. New Journal of Chemistry. 2017;41:9424-9437'},{id:"B24",body:'Qiu X, Song G, Chu X, Li X, Tang G. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage. Thermochimica Acta. 2013;551:136-144'},{id:"B25",body:'Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. Journal of Materials Chemistry A. 2015;3:11624-11630'},{id:"B26",body:'Mohaddes F, Islam S, Shanks R, Fergusson M, Wang L, Padhye R. Modification and evaluation of thermal properties of melamine-formaldehyde/n-eicosane microcapsules for thermo-regulation applications. Applied Thermal Engineering. 2014;71:11-15'},{id:"B27",body:'Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management. 2011;52:687-692'},{id:"B28",body:'Ma Y, Chu X, Li W, Tang G. Preparation and characterization of poly (methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials. Solar Energy. 2012;86:2056-2066'},{id:"B29",body:'Wang X, Chen Z, Xu W, Wang X. Capric acid phase change microcapsules modified with graphene oxide for energy storage. Journal of Materials Science. 2019;54:14834-14844'},{id:"B30",body:'Wu S, Yuan L, Gu A, Zhang Y, Liang G. Synthesis and characterization of novel epoxy resins-filled microcapsules with organic/inorganic hybrid shell for the self-healing of high performance resins. Polymers for Advanced Technologies. 2016;27:1544-1556'},{id:"B31",body:'Liu Z, Chen Z, Yu F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Solar Energy Materials and Solar Cells. 2019;200:110004'},{id:"B32",body:'Bao Y, Yan Y, Chen Y, Ma J, Zhang W, Liu C. Facile fabrication of BTA@ ZnO microcapsules and their corrosion protective application in waterborne polyacrylate coatings. Progress in Organic Coatings. 2019;136:105233'},{id:"B33",body:'Genc M, Genc ZK. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. Journal of Thermal Analysis and Calorimetry. 2018;131:2373-2380'},{id:"B34",body:'Jiang Z, Yang W, He F, Xie C, Fan J, Wu J, et al. Microencapsulated paraffin phase-change material with calcium carbonate shell for thermal energy storage and solar-thermal conversion. Langmuir. 2018;34:14254-14264'},{id:"B35",body:'Lin Y, Zhu C, Fang G. Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials. Solar Energy Materials and Solar Cells. 2019;189:197-205'},{id:"B36",body:'Li M, Wang W, Zhang Z, He F, Yan S, Yan P-J, et al. Monodisperse Na2SO4·10H2O@ SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage. Industrial & Engineering Chemistry Research. 2017;56:3297-3308'},{id:"B37",body:'Liang S, Li Q , Zhu Y, Chen K, Tian C, Wang J, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion. Energy. 2015;93:1684-1692'},{id:"B38",body:'Li F, Wang X, Wu D. Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energy Conversion and Management. 2015;106:873-885'},{id:"B39",body:'Liu H, Wang X, Wu D, Ji S. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Solar Energy Materials and Solar Cells. 2019;193:184-197'},{id:"B40",body:'Li C, Yu H, Song Y, Liang H, Yan X. Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage. Energy. 2019;167:1031-1039'},{id:"B41",body:'Wang H, Zhao L, Chen L, Song G, Tang G. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids. 2017;111:207-213'},{id:"B42",body:'Zhao J, Yang Y, Li Y, Zhao L,Wang H, Song G, et al. Microencapsulated phase change materials with TiO2-doped PMMA shell for thermal energy storage and UV-shielding. Solar Energy Materials and Solar Cells. 2017;168:62-68'},{id:"B43",body:'Wang X, Li C, Zhao T. Fabrication and characterization of poly (melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Solar Energy Materials and Solar Cells. 2018;183:82-91'},{id:"B44",body:'Dubey R. Microencapsulation technology and applications. Defence Science Journal. 2009;59:82'},{id:"B45",body:'Wazarkar K, Patil D, Rane A, Balgude D, Kathalewar M, Sabnis A. Microencapsulation: An emerging technique in the modern coating industry. RSC Advances. 2016;6:106964-106979'},{id:"B46",body:'Alva G, Lin Y, Liu L, Fang G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy and Buildings. 2017;144:276-294'},{id:"B47",body:'Borreguero A, Valverde J, Rodríguez J, Barber A, Cubillo J, Carmona M. Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying. Chemical Engineering Journal. 2011;166:384-390'},{id:"B48",body:'Hawlader M, Uddin M, Khin MM. Microencapsulated PCM thermal-energy storage system. Applied Energy. 2003;74:195-202'},{id:"B49",body:'Lin Y, Zhu C, Alva G, Fang G. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage. Applied Energy. 2018;231:494-501'},{id:"B50",body:'Wang TY, Huang J. Synthesis and characterization of microencapsulated sodium phosphate dodecahydrate. Journal of Applied Polymer Science. 2013;130:1516-1523'},{id:"B51",body:'Peng G, Dou G, Hu Y, Sun Y, Chen Z. Phase change material (PCM) microcapsules for thermal energy storage. Advances in polymer technology. https://doi.org/10.1155/2020/9490873'},{id:"B52",body:'Zhang H, Wang X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009;332:129-138'},{id:"B53",body:'Konuklu Y, Unal M, Paksoy HO. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar Energy Materials and Solar Cells. 2014;120:536-542'},{id:"B54",body:'Zhang Y, Wang X, Wu D. Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics. Solar Energy Materials and Solar Cells. 2015;133:56-68'},{id:"B55",body:'Su J-F, Wang S-B, Zhou J-W, Huang Z, Zhao Y-H, Yuan X-Y, et al. Fabrication and interfacial morphologies of methanol–melamine–formaldehyde (MMF) shell microPCMs/epoxy composites. Colloid and Polymer Science. 2011;289:169-177'},{id:"B56",body:'Ma Y, Chu X, Tang G, Yao Y. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell. Journal of Colloid and Interface Science. 2013;392:407-414'},{id:"B57",body:'Lu S, Shen T, Xing J, Song Q , Shao J, Zhang J, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Materials Letters. 2018;211:36-39'},{id:"B58",body:'Wang H, Luo J, Yang Y, Zhao L, Song G, Tang G. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Solar Energy. 2016;139:591-598'},{id:"B59",body:'Tang X, Li W, Zhang X, Shi H. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage. Energy. 2014;68:160-166'},{id:"B60",body:'Sánchez-Silva L, Rodríguez JF, Sánchez P. Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;390:62-66'},{id:"B61",body:'Huang X, Zhu C, Lin Y, Fang G. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Applied Thermal Engineering. 2019;147:841-855'},{id:"B62",body:'Şahan N, Nigon D, Mantell SC, Davidson JH, Paksoy H. Encapsulation of stearic acid with different PMMA-hybrid shell materials for thermotropic materials. Solar Energy. 2019;184:466-476'},{id:"B63",body:'Sarı A, Alkan C, Bilgin C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly (methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Applied energy. 2014;136:217-227'},{id:"B64",body:'Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochimica Acta. 2008;467:63-72'},{id:"B65",body:'Arshad A, Jabbal M, Yan Y, Darkwa J. The micro−/nano-PCMs for thermal energy storage systems: A state of art review. International Journal of Energy Research. 2019;43:5572-5620'},{id:"B66",body:'Cao L, Tang F, Fang G. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings. 2014;72:31-37'},{id:"B67",body:'Latibari ST, Mehrali M, Mehrali M, Mahlia TMI, Metselaar HSC. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy. 2013;61:664-672'},{id:"B68",body:'Fei B, Lu H, Qi K, Shi H, Liu T, Li X, et al. Multi-functional microcapsules produced by aerosol reaction. Journal of Aerosol Science. 2008;39:1089-1098'},{id:"B69",body:'Chai L, Wang X, Wu D. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Applied Energy. 2015;138:661-674'},{id:"B70",body:'Liu H, Wang X, Wu D. Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustainable Chemistry & Engineering. 2017;5:4906-4915'},{id:"B71",body:'Liu H, Wang X, Wu D, Ji S. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy. 2019;172:599-617'},{id:"B72",body:'Gao F, Wang X, Wu D. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Solar Energy Materials and Solar Cells. 2017;168:146-164'},{id:"B73",body:'Jiang B, Wang X, Wu D. Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. Applied Energy. 2017;201:20-33'},{id:"B74",body:'Li J, Liu H, Wang X, Wu D. Development of thermoregulatory enzyme carriers based on microencapsulated n-docosane phase change material for biocatalytic enhancement of amylases. ACS Sustainable Chemistry & Engineering. 2017;5:8396-8406'},{id:"B75",body:'Choi SW, Zhang Y, Xia Y. A temperature-sensitive drug release system based on phase-change materials. Angewandte Chemie International Edition. 2010;49:7904-7908'},{id:"B76",body:'Geng X, Li W, Wang Y, Lu J, Wang J, Wang N, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy. 2018;217:281-294'},{id:"B77",body:'Wu B, Shi L, Zhang Q , Wang W-J. Microencapsulation of 1-hexadecanol as a phase change material with reversible thermochromic properties. RSC Advances. 2017;7:42129-42137'},{id:"B78",body:'Zhang Y, Jiang Z, Zhang Z, Ding Y, Yu Q , Li Y. Polysaccharide assisted microencapsulation for volatile phase change materials with a fluorescent retention indicator. Chemical Engineering Journal. 2019;359:1234-1243'},{id:"B79",body:'Scacchetti FA, Pinto E, Soares GM. Thermal and antimicrobial evaluation of cotton functionalized with a chitosan–zeolite composite and microcapsules of phase-change materials. Journal of Applied Polymer Science. 2018;135:46135'},{id:"B80",body:'Alay Aksoy S, Alkan C, Tözüm MS, Demirbağ S, Altun Anayurt R, Ulcay Y. Preparation and textile application of poly (methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules. The Journal of the Textile Institute. 2017;108:30-41'},{id:"B81",body:'Song S, Shen W, Wang J, Wang S, Xu J. Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. International Journal of Heat and Mass Transfer. 2014;73:21-28'},{id:"B82",body:'Roberts NS, Al-Shannaq R, Kurdi J, Al-Muhtaseb SA, Farid MM. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Applied Thermal Engineering. 2017;122:11-18'},{id:"B83",body:'Zhang S, Niu J. Two performance indices of TES apparatus: Comparison of MPCM slurry vs. stratified water storage tank. Energy and Buildings. 2016;127:512-520'},{id:"B84",body:'Xu B, Chen C, Zhou J, Ni Z, Ma X. Preparation of novel microencapsulated phase change material with Cu-Cu2O/CNTs as the shell and their dispersed slurry for direct absorption solar collectors. Solar Energy Materials and Solar Cells. 2019;200:109980'},{id:"B85",body:'Konuklu Y, Ostry M, Paksoy HO, Charvat P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy and Buildings. 2015;106:134-155'},{id:"B86",body:'Cabeza LF, Castellon C, Nogues M, Medrano M, Leppers R, Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings. 2007;39:113-119'},{id:"B87",body:'Giro-Paloma J, Al-Shannaq R, Fernández AI, Farid MM. Preparation and characterization of microencapsulated phase change materials for use in building applications. Materials. 2016;9:11'},{id:"B88",body:'Su W, Darkwa J, Kokogiannakis G. Nanosilicon dioxide hydrosol as surfactant for preparation of microencapsulated phase change materials for thermal energy storage in buildings. International Journal of Low-Carbon Technologies. 2018;13:301-310'},{id:"B89",body:'Essid N, Loulizi A, Neji J. Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material. Construction and Building Materials. 2019;222:254-262'},{id:"B90",body:'Schossig P, Henning H-M, Gschwander S, Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells. 2005;89:297-306'},{id:"B91",body:'Borreguero AM, Rodríguez JF, Valverde JL, Peijs T, Carmona M. Characterization of rigid polyurethane foams containing microencapsulted phase change materials: Microcapsules type effect. Journal of Applied Polymer Science. 2013;128:582-590'},{id:"B92",body:'Li W, Hou R, Wan H, Liu P, He G, Qin F. A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam. Solar Energy Materials and Solar Cells. 2017;171:197-204'},{id:"B93",body:'Bonadies I, Izzo Renzi A, Cocca M, Avella M, Carfagna C, Persico P. Heat storage and dimensional stability of poly (vinyl alcohol) based foams containing microencapsulated phase change materials. Industrial & Engineering Chemistry Research. 2015;54:9342-9350'},{id:"B94",body:'Zhang X, Wang X, Wu D. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy. 2016;111:498-512'},{id:"B95",body:'Zhang Y, Li X, Li J, Ma C, Guo L, Meng X. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage. Nano Energy. 2018;53:579-586'},{id:"B96",body:'Zheng Z, Jin J, Xu G-K, Zou J, Wais U, Beckett A, et al. Highly stable and conductive microcapsules for enhancement of joule heating performance. ACS Nano. 2016;10:4695-4703'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Tahira Mahmood",address:"tahiramahmood@uop.edu.pk",affiliation:'
National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
'}],corrections:null},book:{id:"11077",type:"book",title:"Microencapsulation - Recent Advances, New Perspectives and Applications of Smart Microcapsules",subtitle:null,fullTitle:"Microencapsulation - Recent Advances, New Perspectives and Applications of Smart Microcapsules",slug:null,publishedDate:null,bookSignature:"Prof. Fabien Salaün",coverURL:"https://cdn.intechopen.com/books/images_new/11077.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-394-8",printIsbn:"978-1-80355-393-1",pdfIsbn:"978-1-80355-395-5",isAvailableForWebshopOrdering:!0,editors:[{id:"27644",title:"Prof.",name:"Fabien",middleName:null,surname:"Salaün",slug:"fabien-salaun",fullName:"Fabien Salaün"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"226732",title:"Prof.",name:"Elizabeth",middleName:null,surname:"Guarneros Bañuelos",email:"eguarner@hotmail.com",fullName:"Elizabeth Guarneros Bañuelos",slug:"elizabeth-guarneros-banuelos",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"59654",title:"Bioethics in the Use of Experimental Animals",slug:"bioethics-in-the-use-of-experimental-animals",abstract:"This chapter deals with the history of the humanitarian use of animals in laboratory experiments from ancient times to the present day. It emphasizes the various criteria that have been established to try to improve the quality of life of an animal and its sacrifice with euthanasic techniques, since the emergence of Russell’s statement of the three Rs (replacement, reduction, and refinancing). In addition, there is a review of the application of bioethical principles in scientific institutions in developing countries, such as Mexico. It also reviews some aspects of the humanitarian treatment of experimental animals at the time of designing an experiment protocol.",signatures:"Tomás Alejandro Fregoso Aguilar and Elizabeth Guarneros\nBañuelos",authors:[{id:"154908",title:"Dr.",name:"Tomás A.",surname:"Fregoso-Aguilar",fullName:"Tomás A. Fregoso-Aguilar",slug:"tomas-a.-fregoso-aguilar",email:"fisiobiologo@hotmail.com"},{id:"226732",title:"Prof.",name:"Elizabeth",surname:"Guarneros Bañuelos",fullName:"Elizabeth Guarneros Bañuelos",slug:"elizabeth-guarneros-banuelos",email:"eguarner@hotmail.com"}],book:{id:"6568",title:"Reflections on Bioethics",slug:"reflections-on-bioethics",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"35851",title:"Prof.",name:"Gareth",surname:"Jones",slug:"gareth-jones",fullName:"Gareth Jones",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"154908",title:"Dr.",name:"Tomás A.",surname:"Fregoso-Aguilar",slug:"tomas-a.-fregoso-aguilar",fullName:"Tomás A. Fregoso-Aguilar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"154959",title:"Dr.",name:"Claudia",surname:"Calzada",slug:"claudia-calzada",fullName:"Claudia Calzada",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"189090",title:"MSc.",name:"Carlos Alberto",surname:"Jiménez Zamarripa",slug:"carlos-alberto-jimenez-zamarripa",fullName:"Carlos Alberto Jiménez Zamarripa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"191302",title:"Dr.",name:"Ángel",surname:"Morales-González",slug:"angel-morales-gonzalez",fullName:"Ángel Morales-González",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191302/images/system/191302.jpeg",biography:"Ángel Morales-González, engaged in doctoral studies specializing in Systems Engineering at the SEPI-ESIME, IPN. He was recognized by the National System of Researchers (SNI) as a National Researcher candidate level (2016-2018) and level 1 (2019-2021). He is the author of 20 internationally and nationally published articles and editor and coordinator of 6 specialized books. Currently, Dr. Morales-González is a full-time Professor-Researcher C at the ESCOM-Instituto Politécnico Nacional, México.",institutionString:"Instituto Politécnico Nacional",institution:null},{id:"227464",title:"MSc.",name:"Judith Margarita",surname:"Tirado-Lule",slug:"judith-margarita-tirado-lule",fullName:"Judith Margarita Tirado-Lule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"227465",title:"Dr.",name:"Alejandro",surname:"González-Cisneros",slug:"alejandro-gonzalez-cisneros",fullName:"Alejandro González-Cisneros",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"227466",title:"MSc.",name:"Edgar Omar",surname:"López- De León",slug:"edgar-omar-lopez-de-leon",fullName:"Edgar Omar López- De León",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"231067",title:"MSc.",name:"Alberto",surname:"Sánchez-Morales",slug:"alberto-sanchez-morales",fullName:"Alberto Sánchez-Morales",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240143",title:"Dr.",name:"Héctor Manuel",surname:"Manzanilla-Granados",slug:"hector-manuel-manzanilla-granados",fullName:"Héctor Manuel Manzanilla-Granados",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",src:"R-SLS"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11721",title:"Hypothermia and Hyperthermia - Physiology Concepts and Clinical Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b0d0d929b72cece233f4b8cd014550c",slug:null,bookSignature:"Dr. Marinos Kosmopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/11721.jpg",editedByType:null,editors:[{id:"442908",title:"Dr.",name:"Marinos",surname:"Kosmopoulos",slug:"marinos-kosmopoulos",fullName:"Marinos Kosmopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:394},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4438},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"944",title:"Metallurgy",slug:"metals-and-nonmetals-metallurgy",parent:{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals"},numberOfBooks:42,numberOfSeries:0,numberOfAuthorsAndEditors:854,numberOfWosCitations:2274,numberOfCrossrefCitations:1183,numberOfDimensionsCitations:2793,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"944",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9991",title:"Iron Ores",subtitle:null,isOpenForSubmission:!1,hash:"f1b2c288312233e1be62cd01c7e74fec",slug:"iron-ores",bookSignature:"Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/9991.jpg",editedByType:"Edited by",editors:[{id:"111000",title:"Dr.",name:"Volodymyr",middleName:null,surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7722",title:"Recent Advancements in the Metallurgical Engineering and Electrodeposition",subtitle:null,isOpenForSubmission:!1,hash:"0d7ff67bd6f4c13830658bc6f9a75851",slug:"recent-advancements-in-the-metallurgical-engineering-and-electrodeposition",bookSignature:"Uday Basheer Al-Naib, Dhanasekaran Vikraman and K. Karuppasamy",coverURL:"https://cdn.intechopen.com/books/images_new/7722.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7563",title:"Lead Free Solders",subtitle:null,isOpenForSubmission:!1,hash:"fa9e966728c9c936c095b75b3c94526d",slug:"lead-free-solders",bookSignature:"Abhijit Kar",coverURL:"https://cdn.intechopen.com/books/images_new/7563.jpg",editedByType:"Edited by",editors:[{id:"111049",title:"Dr.",name:"Abhijit",middleName:null,surname:"Kar",slug:"abhijit-kar",fullName:"Abhijit Kar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7564",title:"Stainless Steels and Alloys",subtitle:null,isOpenForSubmission:!1,hash:"9a9d0d51670e197f855d03bed672e493",slug:"stainless-steels-and-alloys",bookSignature:"Zoia Duriagina",coverURL:"https://cdn.intechopen.com/books/images_new/7564.jpg",editedByType:"Edited by",editors:[{id:"205149",title:"Prof.",name:"Zoia",middleName:null,surname:"Duriagina",slug:"zoia-duriagina",fullName:"Zoia Duriagina"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7232",title:"Magnesium Alloys",subtitle:"Selected Issue",isOpenForSubmission:!1,hash:"968e7fbf2920c8d89c013c5a8be0dbb3",slug:"magnesium-alloys-selected-issue",bookSignature:"Tomasz Tański, Wojciech Borek and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7232.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6726",title:"Metallic Glasses",subtitle:"Properties and Processing",isOpenForSubmission:!1,hash:"a16db3e7e34f021f5b42c2d1dc354a5a",slug:"metallic-glasses-properties-and-processing",bookSignature:"Hu Huang",coverURL:"https://cdn.intechopen.com/books/images_new/6726.jpg",editedByType:"Edited by",editors:[{id:"35374",title:"Prof.",name:"Hu",middleName:null,surname:"Huang",slug:"hu-huang",fullName:"Hu Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6132",title:"Advanced Casting Technologies",subtitle:null,isOpenForSubmission:!1,hash:"f2da423c1b74b321e5302adaaf888495",slug:"advanced-casting-technologies",bookSignature:"T.R. Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/6132.jpg",editedByType:"Edited by",editors:[{id:"139338",title:"Prof.",name:"Thoguluva",middleName:"Raghavan",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6071",title:"Aluminium Alloys",subtitle:"Recent Trends in Processing, Characterization, Mechanical behavior and Applications",isOpenForSubmission:!1,hash:"fcc00ef303e29cf8724bb8c83601b2d3",slug:"aluminium-alloys-recent-trends-in-processing-characterization-mechanical-behavior-and-applications",bookSignature:"Subbarayan Sivasankaran",coverURL:"https://cdn.intechopen.com/books/images_new/6071.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",middleName:null,surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6057",title:"Austenitic Stainless Steels",subtitle:"New Aspects",isOpenForSubmission:!1,hash:"9d535d6a795541ead4919f3fcfa82ff0",slug:"austenitic-stainless-steels-new-aspects",bookSignature:"Wojciech Borek, Tomasz Tanski and Zbigniew Brytan",coverURL:"https://cdn.intechopen.com/books/images_new/6057.jpg",editedByType:"Edited by",editors:[{id:"186373",title:"Dr.",name:"Wojciech",middleName:null,surname:"Borek",slug:"wojciech-borek",fullName:"Wojciech Borek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6020",title:"Shape Memory Alloys",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"89ba319783170fefc256fcfa0613a6c0",slug:"shape-memory-alloys-fundamentals-and-applications",bookSignature:"Farzad Ebrahim",coverURL:"https://cdn.intechopen.com/books/images_new/6020.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:42,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13693,totalCrossrefCites:40,totalDimensionsCites:159,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]},{id:"44359",doi:"10.5772/56197",title:"Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys",slug:"microstructure-and-mechanical-properties-of-high-strength-two-phase-titanium-alloys",totalDownloads:10278,totalCrossrefCites:55,totalDimensionsCites:127,abstract:null,book:{id:"3494",slug:"titanium-alloys-advances-in-properties-control",title:"Titanium Alloys",fullTitle:"Titanium Alloys - Advances in Properties Control"},signatures:"J. Sieniawski, W. Ziaja, K. Kubiak and M. Motyka",authors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"},{id:"109232",title:"Prof.",name:"Jan",middleName:null,surname:"Sieniawski",slug:"jan-sieniawski",fullName:"Jan Sieniawski"}]},{id:"46882",doi:"10.5772/58534",title:"Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs)",slug:"additive-manufacturing-of-al-alloys-and-aluminium-matrix-composites-amcs-",totalDownloads:10093,totalCrossrefCites:52,totalDimensionsCites:117,abstract:null,book:{id:"3844",slug:"light-metal-alloys-applications",title:"Light Metal Alloys Applications",fullTitle:"Light Metal Alloys Applications"},signatures:"Diego Manfredi, Flaviana Calignano, Manickavasagam Krishnan,\nRiccardo Canali, Elisa Paola Ambrosio, Sara Biamino, Daniele Ugues,\nMatteo Pavese and Paolo Fino",authors:[{id:"16648",title:"Dr.",name:"Diego",middleName:null,surname:"Manfredi",slug:"diego-manfredi",fullName:"Diego Manfredi"},{id:"18978",title:"Dr.",name:"Matteo",middleName:null,surname:"Pavese",slug:"matteo-pavese",fullName:"Matteo Pavese"},{id:"19187",title:"Dr.",name:"Sara",middleName:null,surname:"Biamino",slug:"sara-biamino",fullName:"Sara Biamino"},{id:"19188",title:"Dr.",name:"Elisa",middleName:null,surname:"Ambrosio",slug:"elisa-ambrosio",fullName:"Elisa Ambrosio"},{id:"19189",title:"Dr.",name:"Paolo",middleName:null,surname:"Fino",slug:"paolo-fino",fullName:"Paolo Fino"},{id:"170227",title:"Dr.",name:"Flaviana",middleName:null,surname:"Calignano",slug:"flaviana-calignano",fullName:"Flaviana Calignano"},{id:"170228",title:"MSc.",name:"Riccardo",middleName:null,surname:"Canali",slug:"riccardo-canali",fullName:"Riccardo Canali"},{id:"170229",title:"MSc.",name:"Manickavasagam",middleName:null,surname:"Krishnan",slug:"manickavasagam-krishnan",fullName:"Manickavasagam Krishnan"}]},{id:"41099",doi:"10.5772/53752",title:"Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments",slug:"durability-and-corrosion-of-aluminium-and-its-alloys-overview-property-space-techniques-and-developm",totalDownloads:8035,totalCrossrefCites:21,totalDimensionsCites:74,abstract:null,book:{id:"3053",slug:"aluminium-alloys-new-trends-in-fabrication-and-applications",title:"Aluminium Alloys",fullTitle:"Aluminium Alloys - New Trends in Fabrication and Applications"},signatures:"N. L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson",authors:[{id:"43567",title:"Prof.",name:"Nick",middleName:null,surname:"Birbilis",slug:"nick-birbilis",fullName:"Nick Birbilis"}]},{id:"24059",doi:"10.5772/18766",title:"High Strength Al-Alloys: Microstructure, Corrosion and Principles of Protection",slug:"high-strength-al-alloys-microstructure-corrosion-and-principles-of-protection",totalDownloads:6877,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"217",slug:"recent-trends-in-processing-and-degradation-of-aluminium-alloys",title:"Recent Trends in Processing and Degradation of Aluminium Alloys",fullTitle:"Recent Trends in Processing and Degradation of Aluminium Alloys"},signatures:"Anthony E. Hughes, Nick Birbilis, Johannes M.C. Mol, Santiago J. Garcia, Xiaorong Zhou and George E. Thompson",authors:[{id:"43567",title:"Prof.",name:"Nick",middleName:null,surname:"Birbilis",slug:"nick-birbilis",fullName:"Nick Birbilis"},{id:"32486",title:"Prof.",name:"Anthony",middleName:"E",surname:"Hughes",slug:"anthony-hughes",fullName:"Anthony Hughes"},{id:"43568",title:"Prof.",name:"Arjan",middleName:null,surname:"Mol",slug:"arjan-mol",fullName:"Arjan Mol"},{id:"43569",title:"Prof.",name:"Santiago",middleName:null,surname:"Garcia Espallargas",slug:"santiago-garcia-espallargas",fullName:"Santiago Garcia Espallargas"},{id:"43570",title:"Prof.",name:"Xiaorang",middleName:null,surname:"Zhou",slug:"xiaorang-zhou",fullName:"Xiaorang Zhou"},{id:"83528",title:"Prof.",name:"George",middleName:null,surname:"Thompson",slug:"george-thompson",fullName:"George Thompson"}]}],mostDownloadedChaptersLast30Days:[{id:"12751",title:"Contemporary Forming Methods of the Structure and Properties of Cast Magnesium Alloys",slug:"contemporary-forming-methods-of-the-structure-and-properties-of-cast-magnesium-alloys",totalDownloads:3085,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"27",slug:"magnesium-alloys-design-processing-and-properties",title:"Magnesium Alloys",fullTitle:"Magnesium Alloys - Design, Processing and Properties"},signatures:"Leszek A. Dobrzański, Tomasz Tański, Szymon Malara, Mariusz Król and Justyna Domagała-dubiel",authors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"},{id:"15880",title:"Prof.",name:"Leszek A.",middleName:null,surname:"Dobrzański",slug:"leszek-a.-dobrzanski",fullName:"Leszek A. Dobrzański"},{id:"15882",title:"MSc.",name:"Szymon",middleName:null,surname:"Malara",slug:"szymon-malara",fullName:"Szymon Malara"},{id:"15883",title:"Dr.",name:"Mariusz",middleName:null,surname:"Król",slug:"mariusz-krol",fullName:"Mariusz Król"},{id:"142678",title:"Dr.",name:"Justyna",middleName:null,surname:"Domagała-Dubiel",slug:"justyna-domagala-dubiel",fullName:"Justyna Domagała-Dubiel"}]},{id:"74167",title:"Solidification of Metals and Alloys",slug:"solidification-of-metals-and-alloys",totalDownloads:1163,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"In order to analyse the process of solidification of metals and alloys critically, it is most pertinent to understand the different modes of nucleation and the uneven rates of growth throughout the melt. It is also important to take a note of the constraints in the growth process that definitely influence the crystal structure and the structure related properties of the casting. The freezing pattern of the liquid melt decides the feeding of the mould which is instrumental in producing a complete and compact casting. For pure metals and even in case of alloys with a narrow freezing range a well defined solid–liquid macro-interface exists. Here feeding of the solidifying casting is the easiest, by the common lowering of the liquid metal surface in the mould. However, in many instances, a well defined interface is not witnessed. The solid–liquid interface could be discrete and not continuous. Here process of feeding the solidification sites that witness considerable shrinkages, may become complicated. On grounds of above it is implied, the process of solidification constitutes an important aspects in the production of a defect free casting.",book:{id:"10432",slug:"casting-processes-and-modelling-of-metallic-materials",title:"Casting Processes and Modelling of Metallic Materials",fullTitle:"Casting Processes and Modelling of Metallic Materials"},signatures:"Upendra Kumar Mohanty and Hrushikesh Sarangi",authors:[{id:"328540",title:"Prof.",name:"Hrushikesh",middleName:null,surname:"Sarangi",slug:"hrushikesh-sarangi",fullName:"Hrushikesh Sarangi"},{id:"328543",title:"Prof.",name:"Upendra Kumar",middleName:null,surname:"Mohanty",slug:"upendra-kumar-mohanty",fullName:"Upendra Kumar Mohanty"}]},{id:"48856",title:"Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material",slug:"silicon-carbide-in-microsystem-technology-thin-film-versus-bulk-material",totalDownloads:2868,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"This chapter looks at the role of silicon carbide (SiC) in microsystem technology. It starts with an introduction into the wide bandgap (WBG) materials and the properties that make them potential candidates to enable the development of harsh environment microsystems. The future commercial success of WBG microsystems depends mainly on the availability of high-quality materials, well-established microfabrication processes, and economic viability. In such aspects SiC platform, in relation to other WBG materials, provides a clear and competitive advantage. The reasons for this will be detailed. Furthermore, the current status of the SiC thin film and bulk material technologies will also be discussed. Both SiC material forms have played important roles in different microsystem types.",book:{id:"4721",slug:"advanced-silicon-carbide-devices-and-processing",title:"Advanced Silicon Carbide Devices and Processing",fullTitle:"Advanced Silicon Carbide Devices and Processing"},signatures:"Mariana Amorim Fraga, Matteo Bosi and Marco Negri",authors:[{id:"9292",title:"Dr.",name:"matteo",middleName:null,surname:"bosi",slug:"matteo-bosi",fullName:"matteo bosi"},{id:"38456",title:"Dr.",name:"Mariana",middleName:null,surname:"Amorim Fraga",slug:"mariana-amorim-fraga",fullName:"Mariana Amorim Fraga"},{id:"175671",title:"MSc.",name:"Marco",middleName:null,surname:"Negri",slug:"marco-negri",fullName:"Marco Negri"}]},{id:"46237",title:"Corrosion Resistance Through the Application of Anti- Corrosion Coatings",slug:"corrosion-resistance-through-the-application-of-anti-corrosion-coatings",totalDownloads:7361,totalCrossrefCites:11,totalDimensionsCites:32,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Api Popoola, OE Olorunniwo and OO Ige",authors:[{id:"169258",title:"Dr.",name:"Patricia",middleName:null,surname:"Popoola",slug:"patricia-popoola",fullName:"Patricia Popoola"}]},{id:"46235",title:"Corrosion Detection for Automated Visual Inspection",slug:"corrosion-detection-for-automated-visual-inspection",totalDownloads:3471,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Francisco Bonnin-Pascual and Alberto Ortiz",authors:[{id:"124589",title:"Prof.",name:"Alberto",middleName:null,surname:"Ortiz",slug:"alberto-ortiz",fullName:"Alberto Ortiz"},{id:"169256",title:"Ph.D. Student",name:"Francisco",middleName:null,surname:"Bonnin-Pascual",slug:"francisco-bonnin-pascual",fullName:"Francisco Bonnin-Pascual"}]}],onlineFirstChaptersFilter:{topicId:"944",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81709",title:"New-Age Al-Cu-Mn-Zr (ACMZ) Alloy for High Temperature-High Strength Applications: A Review",slug:"new-age-al-cu-mn-zr-acmz-alloy-for-high-temperature-high-strength-applications-a-review",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.104533",abstract:"One of the prime challenges with age hardened Al-Cu alloys is the strength degradation at high temperatures (above ∼250°C) due to the coarsening of strengthening θ′ precipitates and associated metastable θ′ → stable θ phase transformation. A recent discovery suggests that micro-alloying with Manganese (Mn) and Zirconium (Zr) can synergistically restrict θ′ precipitate coarsening, thereby rendering an excellent high temperature stability for Al-Cu-Mn-Zr (ACMZ) alloys. The θ′ precipitates are stabilized primarily from the reduction of interfacial energy by preferential solute segregation (Mn & Zr) at θ′ precipitate/α-Al matrix interfaces. The Al-Cu-Mn-Zr alloys thereby exhibit excellent high temperature hardness and tensile properties (yield and ultimate tensile strength) in addition to superior fatigue life and creep resistance. This newly developed Al-Cu-Mn-Zr alloys also showed excellent hot tearing resistance compared to the conventional cast Al-Cu alloys so much so that it meets the industrial standards as well. These alloys also have promising manufacturing possibility by additive route. Overall, Al-Cu-Mn-Zr alloys offer great potential for the automotive industry because of their unprecedented high temperature performance which should enable engineers to build light weight passenger vehicles leading to a safer and greener environment.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Samarendra Roy and Shibayan Roy"},{id:"80372",title:"Application of the Aluminothermic Reduction Process for Magnesium Removal in Aluminum Scrap",slug:"application-of-the-aluminothermic-reduction-process-for-magnesium-removal-in-aluminum-scrap",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.102407",abstract:"Magnesium is considered as impurity element in aluminum recycled for obtaining some cast alloys, with low concentration Mg, because at 0.1 wt% results in fragility, fractures, and defects. This research applies the aluminothermic reduction process to decrease magnesium content in aluminum cans by adding ZnO, to produce reaction products solid-state (Al2O3, MgO and MgAl2O4), and there is a possibility to obtain Al-Zn alloy. The conditions of the process were, melting temperature (750, 800, 850°C) and stirring velocity (200, 250, 300 rpm). The Mg and Zn contents were measured for chemical analysis and scrap generated from every process was analyzed by X-ray diffraction. The results show how the aluminothermic reduction decreased Mg from 0.93 to 0.06 wt% and increased zinc up to 5.52wt % in the molten metal. Therefore, this process can be used to remove Mg and can also prevent the generation of polluting gases into the environment.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Rocio Maricela Ochoa Palacios, Citlaly Castillo Rodriguez, Jesus Torres Torres, Perla Janet Resendiz Hernandez and Alfredo Flores Valdes"},{id:"80920",title:"Drilling of 7075 Aluminum Alloys",slug:"drilling-of-7075-aluminum-alloys",totalDownloads:51,totalDimensionsCites:0,doi:"10.5772/intechopen.102864",abstract:"Aluminum alloy (Al 7075) has been increasingly used as structural components in automotive and aerospace industry due to their low density, high strength and good corrosion resistance compared with other metals. To manufacture and assemble the components, drilling operations are often conducted. However, Al 7075 is ductile and soft, which causes difficulty in drilling, resulting in material adhesion, high tool wear, short tool life and poor hole quality. As a result of the poor hole quality, there is a high percentage of part rejection, which can increase the manufacturing time and cost. This chapter discusses challenges and techniques to drill Al 7075 in terms of the cutting parameters and drilling conditions to prolong the tool life and achieve good hole quality. Drilling experiments on Al 7075-T6 (heat-treated) were conducted using carbide cutting tools at various cutting parameters. Reducing cutting speed and increasing feed rate resulted in reducing tool wear, whereas a reduction in surface roughness, hence improved machined surface finish, was found when both cutting speed and feed rate were reduced in drilling Al 7075-T6. Producing good hole quality is vital during the drilling process to ensure a good assembly and product service performance.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Aishah Najiah Dahnel, Mohamad Noor Ikhwan Naiman, Muhammad Azim Mirza Mohd Farid, Ahmad Faris Abdul Rahman and Nur Munirah Meera Mydin"},{id:"79869",title:"Assisting Liquid Phase Sintering of Pure Aluminum (Al) by the Tin Addition",slug:"assisting-liquid-phase-sintering-of-pure-aluminum-al-by-the-tin-addition",totalDownloads:102,totalDimensionsCites:0,doi:"10.5772/intechopen.101507",abstract:"In the present study, the addition of tin (Sn) to the pure Al system was done, and its effects on the morphology, density, and compressive yield strength of pure Al were analyzed systematically. In this context, the morphology of sintered Al revealed enhanced wettability and sintering response between Al particles with increased Sn content. Moreover, physical characteristics of sintered Al alloys demonstrated oxidation phenomenon (black color specimen) with the lowest Sn content of 1.5 weight percent (wt.%), in which a higher Sn content of 2 and 2.5 wt.% produced silver color specimens, implying a reduction in oxidation. Additionally, densification of sintered Al alloys was greatly promoted with increased Sn contents, suggesting effective wetting as confirmed by the previous morphological observations. Similarly, the compressive yield strength of sintered Al alloys improved with increased Sn content which might be due to the enhanced inter-particle contacts between Al particles and sufficient wetting by molten Sn. Based on the results obtained, the introduction of Sn powder at various contents improved the sintering response of pure Al powder by providing sufficient liquid-phase sintering. Therefore, the sintered Al alloys had enhanced the morphological, densification, physical characteristics, and compressive yield strength.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Nur Ayuni Jamal, Farazila Yusof, Yusilawati Ahmad, Norhuda Hidayah Nordin and Suraya Sulaiman"},{id:"79459",title:"Characteristics of Al-Mg Test Pieces with Fe Impurities Fabricated by Die Casting, Roll Casting, and Hot Forging",slug:"characteristics-of-al-mg-test-pieces-with-fe-impurities-fabricated-by-die-casting-roll-casting-and-h",totalDownloads:64,totalDimensionsCites:0,doi:"10.5772/intechopen.100940",abstract:"The suitability of Al-Mg alloys for recycling was investigated using energy-saving processes. The Al-Mg alloy is a non-heat-treatable alloy and has the advantage of energy saving in comparison with heat-treatable alloys. Al-Mg alloys with Mg contents ranging from 4.5–10% were tested. Die casting, cast-forging, and roll casting were selected as energy-saving processes, as they have the advantage of process saving. A single-roll caster equipped with a scraper was used as the roll-caster. Fe was added to the Al-Mg alloys at contents of 0.2%, 0.4%, 0.6%, and 0.8% to model recycled alloys used in automobile manufacture. In the selected processes, the tensile stress and 0.2% proof stress of the Al-Mg alloys were little influenced by the added Fe content, whereas the elongation tended to decrease as the Fe content increased. The process influenced the degree to which the Fe content affected the elongation, and it was found that a suitable Mg content for recycling depends on the target process.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Toshio Haga"},{id:"79154",title:"Development and Characterization of New Functionally Graded Aluminium Alloys",slug:"development-and-characterization-of-new-functionally-graded-aluminium-alloys",totalDownloads:108,totalDimensionsCites:0,doi:"10.5772/intechopen.101022",abstract:"Nowadays, aluminium alloys are adopted mainly to produce engineering and automotive components. The present investigation aims to design, cast and characterize novel functionally graded materials (FGMs) produced using Al-Mg and Al-Si alloys by gravity casting technique. Alloys were sequentially cast into a mould to obtain an FGM to realizing great mechanical and metallurgical bonding. Zn addition was further performed in FGM to increase the mechanical properties, thanks to the nucleation of the intermetallic phases MgZn2. Castings were subsequently mechanically tested by tensile tests, bending tests, hardness and microhardness measures to assess the products\\' quality. Microstructural characterizations were performed along the FGM to assess the metallurgical bonding and evaluate the microstructures obtained. Fracture, microstructural and compositional analysis will highlight the quality of this new FGM proposed. Possible applications of these materials are suggested, as automotive pistons or structural components.",book:{id:"10847",title:"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg"},signatures:"Elisa Fracchia and Mario Rosso"}],onlineFirstChaptersTotal:8},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:8,paginationItems:[{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:2,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:17,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:358,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:399,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:319,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:320,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/226732",hash:"",query:{},params:{id:"226732"},fullPath:"/profiles/226732",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()