In previous studies it was shown that the energy release during the decay of short-living radioactive elements in small bodies is sufficient for the temperature inside such a protoplanetary core to become larger than the melting temperature of iron. This ensures the realization of the process of differentiation of matter and the development of convection in the inner envelopes. At all stages of proto-Earth’s formation, convective heat and mass transfer is the most important factor in the dynamics of the planet. However, the release of heat due to friction in the viscous liquid of the outer regions of the core so far has not been taken into account at all or was taken into account only in the formed envelopes of a planet of constant radius. In this chapter, we present the results of a numerical simulation of the thermal evolution of a 3D spherical segment of a protoplanet of an increasing radius, taking into account the accidental falling of bodies and particles. An algorithm for the numerical solution of the problem is given, taking into account the dissipation of tidal energy in the Earth-Moon system at the stage of planetary accumulation.
Part of the book: Geophysics